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 1. History. The transfinite classification of real functions

 was introduced by René Baire in his thesis [1] in 1899. Baire 's

 starting point was the following problem.

 Let f be a real function of two variables and suppose that

 f is separately continuous in each of its variables. How can we

 characterize the diagonal function f(x,x)? (One can show by

 simple examples that it is not necessarily continuous.) The

 answer is given by the following theorem proved in the first part

 of Baire' s thesis.

 Theorem. For any real function cp:H -» n the following

 assertions are equivalent:

 (i) cp is the limit of a convergent sequence of continuous

 functions .

 (ii) For every non-empty, perfect Pen, the restriction

 of cp to P has a point of continuity.

 (iii) There exists a separately continuous function f of

 two variables such that

 f (x , x) = cp(x) (x € 3R ) .

 Then Baire introduced the first class, Bļ# as the collection
 of those functions which are not continuous but possess property

 (i) . He also defined Bq for every countable ordinal a:

 (1) Results that sire not referenced have not been published.
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 if Bp have been defined for every ß < a then

 B a = (f = lim f ; f € U Ba 0 (n = 1,2,...)} ' U B a n-»w 3<a Ba 0 ß<a ß

 (Later it turned out to be more convenient not to exclude the

 functions belonging to the previous classes; so that the "Baire

 classes" today are not the same as those defined by Baire him-

 self.) Baire remarks that the class

 E = U B

 oKW-l «

 is closed under pointwise convergence and is of the power of

 the continuum. Hence E does not contain every function.

 Thus the question arises, what properties characterize the

 functions in E. He introduced the "Baire property" as an

 attempt to find such a characterization. It has to be men-

 tioned that the notion of category of sets and the category

 theorem also originate from this paper.

 Lebesgue proved as early as in 1899# that the properties

 (i) and (ii) are also equivalent, for functions of n vari-

 ables [12]. (The proof given by Baire used the special

 structure of perfect sets in 3R and could therefore not be

 generalized. Later Baire gave another proof [4].) In 1904

 Lebesgue proved the following theorem (see [13] or [5], p. 154).

 Let f be defined on an interval I c Kn, Then f is of the

 first class if and only if for every e > 0 there is a sequence
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 OD

 {F } - of closed sets such that U F = I and
 n n=l n

 u>(f,F ) < e (n= 1,2,...)» where cu(f,H) denotes the os-
 n

 dilation of f on the set H. Lebesgue remarks that this con-

 dition is equivalent to the following one:

 For every a < b, the associated set [x € I; a < f(x) < b)

 is F0.
 In his paper [14] Lebesgue completely solved the general

 problem posed by Baire. In this monumental paper Lebesgue intro-

 duced the transfinite classification of Borei sets and proved

 that f 6 U B if and only if the associated set
 ß*a P

 {x; a < f (x) < b) is of additive class a for every a < b.

 He showed that property (ii) has a generalization for every

 a < proved that the classes B^ are non-empty and that

 the Baire property is valid for every f € E. (Baire himself

 only proved this for f € B^ U B2O It is worth mentioning that
 this very same paper contains the famous erroneous assertion that

 the projections of the Borei subsets of the plane are also Borei.

 Let f be defined on an interval I c ]Rn. By the theorems

 of Baire and Lebesgue, the following conditions are equivalent:

 (A) (x ; f (x) < c} and {x ; f(x) > c} are F sets

 for every real c.

 (B) f is the limit of a pointwise convergent sequence of

 continuous functions.

 (C) For every non-empty, perfect subset P of the domain of

 f, fļp has a point of continuity.
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 It turned out soon that these results can be generalized to

 functions defined on some other spaces. The first step in this

 direction was takesn by Baire himself. As early as 1899# Baire

 introduced the space uu^ and defined the notions of limit point,

 closed set, nowhere dense set and sets of first and second

 category in He also proved the category theorem in <wUi
 [2], [3].

 The general notion of metric space was introduced by

 Fréchet in 1906 [6]. Shortly thereafter it was proved that

 (A) and (B) aure equivalent in every metric space (see [10],

 p. 248) and that (C) implies (B) if the space is separable

 {[10], p. 254) . If the space is complete, then (B) implies

 (C) ([10], p. 253). In general this is not true: in the

 space of rational numbers (A) and (B) hold for every

 function while there are nowhere continuous functions which

 obviously do not have property (C) .

 Finally Montgomery proved in 193 5 that (C) implies

 (B) in every metric space [15]. Hence (A)4=^(B)^r: (C)

 is always true and (A) (B) (C) is true if the space

 is complete.

 2. Baire 1 functions and associated sets.

 In an arbitrary topological space the conditions (A) and

 (B) are no longer equivalent. Consider the set 3R of real

 numbers endowed with the density topology. It is well-known

 that the continuous functions in this topology are the approximate-

 ly continuous functions and that they are Baire 1 functions in
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 the ordinary topology. It follows that any function satisfying

 condition (B) in the density topology is a Baire 2 function.

 (By a theorem of Preiss [16] the converse is also true.) On the

 other hand, it is easy to check that the sets in the den-

 sity topology are exactly the Lebesgue measurable sets and hence

 the condition (A) is equivalent to the measurability of the

 function in question. Therefore# in the density topology,

 property (B) is strictly stronger than property (A) .

 Let (X,7) be a topological space. We shall denote by

 Gtļ (X) and (X) the classes of functions f:X -» 3R satisfying
 the conditions (A) and (B) , respectively.

 (X) = (ftX -♦ 3R ; {x € X ; f(x) >c} and (x 6 X ; f (x) < c}

 are sets in X for every c € 3R } ,

 ^(X) = { f :X -» TR ; f = lim f , f 6 C (X) (n=l, 2, . . . ) J ,
 n-*«

 where C (X) denotes the set of real valued, continuous functions

 defined on X.

 (Since, in general, ¿7^ (X) and #^(X) do not coincide, we
 have to decide which one is to be called the first class of Baire

 in X. (X) seems to be the natural choice.)

 Let p denote the system of zero-sets in X:

 g. = {f^ao}) ; f € C(X)]

 and let
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 f = { U^Hn ; Hn e; (n=l,2, . . .) }.

 Proposition 2.1. f € B^ (X) if and only if

 {x € X ; f(x) < c} € pa and {x € X ; f (x) > c} € p° for every
 c c TR .

 (This is a special case of some general theorems on pointwise

 limits of functions belonging to a given class? see [10], p. 241

 or [9], p. 248.)

 Corollary 2.2. B]_ (X) c ¿7^ (X) holds in every topological

 space (X,T) .

 a

 Corollary 2.3. If p contains the closed sets then

 Ctļ (X) = Sļ (X) .

 Theorem 2.4. If (X,T) is normal then <7^ (X) = 3± (X) .

 (We remark that normality does not imply that ¡1° contains

 the closed sets.)

 Since the density topology is completely regular [8], the

 condition of normality cannot be replaced by complete regularity.

 3. Baire 1 functions and continuity points.

 Let (X,T) be a topological space. We introduce the fol-

 lowing classes of real valued functions defined on X.
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 £ļ(X) = (fîX •* JR ? for every non-empty# closed Y c X, the
 restriction of f to the subspace Y has a continuity point},

 ¿(X) = {fsX R ? for every Y c x, the set of points of

 discontinuity of the restriction of f to the subspace Y is

 of first category in Y),
 ★

 ¿?^(X) = { f îX •+ 3R ; for every non-empty Y c X and e > 0
 there exists an open G c x such that Y H G ^ ÇÍ and

 u)(f, Y D G) < « }.

 Proposition 3.1. In every topological space (X,T),

 ^(X) c£*(x) c ^(x) and
 (X) c a (X) c ^ (X) .

 (The first assertion is an easy consequence of the definitions.

 As for ¿7^ (X) <z£(X), see [11]# p. 394.)

 A topological space is said to be a Baire-space if it does not

 contain any non-empty open set of first category. This definition

 together with the previous assertion immediately implies the

 following:

 Proposition 3.2. If the closed subspaces of X are Baire-

 space s then

 0ļ(X) c ^(X) c£*(x) = C^ÍX) = ¿(X) .

 Corollary 3.3. If (X, I) is a compact Hausdorff space then
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 (7ļ (X) = ^(X) C £* (X) = ^(X) = ¿(X) .

 Theorem 3.4. In every topological space (X, T) , the

 following are equivalent:

 (i) <3^ (X) c ax (X) ,

 (ii) £* (X) c ^(X) ,
 (iii) the space is perfect and for every Y c X, if Y is

 locally then Y is F^. (Y is said to be locally F0
 if every x € Y has an open neighborhood U such that YOU

 is F0.)

 Corollary 3,5. If (X#T) is perfect and paracompact then

 ^(X) C0*(x) c (x) = ^(X) c ¿(x) .

 (Observe that every metric space is perfect and paracompact.)

 Proposition 3.6. In every topological space, if

 (X) c ß (X) then C7± (X) « ^ (X) .
 (Proof: Let F c x be closed and let f be the characteristic

 function of F. Then f € (X) c /3^ (X) and hence F =
 {x? f(x) > O) € Thus we can apply 2.3.)

 Corollary 3.7. In every topological space (X, T) , the

 following are equivalent:

 (i) ^(X) ctf^x),
 (ii) £*(X) c/^ix),
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 (iii) ^(X) = B^ (X) ,
 (iv) £* (X) ctfj^X) = Bļ(X)t
 (v) X is perfect, every locally F^-set is F0

 and contains the closed sets.

 4. Absolute Baire 1 functions.

 Let (X, d) be a metric space. The function f:X -* 3R is

 said to be absolute Baire 1 if, for every metric space Y containir

 X as a subspace, there exists a g 6 (Y) such that g|x = f.

 Theorem 4.1. Let (X,d) be a metric space and let

 fîX -» K be given. Then the following are equivalent:

 (i) f is absolute Baire 1.

 (ii) There exists a complete metric space Y containing

 X as a subspace and g € B^ (Y) such that gļx = f.
 (iii) f € B^ (X) .
 (iv) For every e > 0 and every countable and completely

 bounded H c X there exists an open G c X such that H H G 4 tf

 and uu(f, HOG) < e.

 Let K (X) denote the set of functions f:X -» 3R such that,

 for every non-empty, compact K c X, the restriction f(K has
 a continuity point. Then Theorem 4.1 easily implies the fol-

 lowing assertion [7].

 Corollary 4.2. If (X,d) is a complete metric space then

 (X) = Bļ (X) = H (X) .
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 5. More classes on metric spaces.

 Let X be a non-empty set and let (f } be a trans-
 u a<uu

 finite sequence of real valued functions defined on X. We say

 that f:X *♦ ]R is the limit of the sequence {f } if for
 a cKu)^

 every x € X and s > 0 there exists aQ < such that
 ļ f (x) - f(x) ļ < e for every < a < (u, . (This is equivalent OL U i.

 to the condition that fa^x) ~ f (x) f°r a > aQ = aQ(x).)

 This notion is due to Sierpiński who proved in [18] that

 the limit of a transfinite sequence of Baire 1 functions is

 Baire 1. (We remark that the limit of a transfinite sequence

 of continuous function is continuous; while# supposing the

 continuum hypothesis, every function is the limit of a trans-

 finite sequence of Baire 2 functions.)

 Let S (X) denote the set of limits of transfinite se-

 quences from (X) .

 Let î!t(X) denote the set of functions f:X -» 3R such that

 for every countable Hex there exists g € (X) with gļ^ = f.

 Proposition 5.1. For every metric space (X, d) , S (X) c tf|(X) .

 If ļx| š then S(X) = fl(X) .

 Let &s (X) denote the set of functions f :X 3R such that

 fļy ^ "^(Y) f°r every separable subspace Y c x.

 Theorem 5.2. In every metric space (X, d) , we have

 * />S(X) c fĶ (X) 0
 ^(X) c Õ1 (X) ctf^x) = /^(x) (X) CK(X).

 ¿(X)
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 Corollary 5.3. If the metric space (X, d) is complete

 then the classes above coincide.

 In particular, it follows that in complete metric spaces

 S (X) = (X) . This generalizes the theorem by Sierpiński

 mentioned above. See also [17].

 Corollary 5.4. If (X, d) is a separable metric space then

 C^ix) c £*(X) cr ^(X) = /^(x) c S (X) c ft(X) c ¿(X) c k (X) .

 Let Q denote the set of rational numbers (as a subspace
 / *

 of R). It is easy to see that (Q) 7. / ß (q) and

 (Q) ¥■ B-l (Q) . Indeed, if f (-) ài! - ((p,q) = l,q > O) and
 xx q 4

 ^ A&F *
 g (~) "■ q ((p#q) = l,q > O) then f € 3^ (Q) ' ^ (Q) and

 g € (Q) ' £* (Q) .

 Now let X be a separable metric space such that ļxļ =

 and every countable subset of X is (see [11], p. 517).

 It is easy to check that in this space S (X) contains every

 function f :X -» 1* . If 2 = then there xs a function

 on X which is not Baire 1 since the number of Baire 1
 N

 functions is at most 2 = while the number of all real

 »!
 valued functions on X is it j . Therefore, supposing the
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 continuum hypothesis, we can find a separable space with

 3ļ (X) ^ S (X) .
 We can find other spaces for which S (X) 4 ?í(X),

 Tñ, (X) ¿ Jb (X) and -£(X) ^ h (X) holds, respectively. All these

 examples are based on some "singular" spaces and use the axiom

 of choice or some hypotheses independent of the axioms of set

 theory. The following theorem explains, why it is impossible

 to find some simple, constructive examples.

 Let (X,d) be a metric space. The subset H c x is

 called analytic if H is the result of the (£7) -operation

 applied to a system of closed subsets of X. The space

 (X, d) is called absolute analytic if X is analytic in

 every metric space Y containing X as a subspace. It is

 well-known that X is absolute analytic if and only if there

 is a complete metric space Y containing X as an analytic

 subset (see [9], p. 346).

 Theorem 5.5. If (X, d) is absolute analytic then

 ^(X) = K (x) . (See [7], p. 496.)

 Corollary 5.6. If (X, d) is absolute analytic then

 3ļ (X) = S (X) = Tl (X) = ^ (X) = H (X) .
 The space Q (as a Borei subspace of ]R ) is absolute

 *

 analytic. As we saw, in this space neither (X) = 3^ (X) nor
 *

 (X) = 3ļ (X) is valid.
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