
 Ruai A naíij¿¿6 Exchange í'ol. S ¡1982-83)

 Janina Ewert,  Department of Mathematics WSP ,

 76-200 Słupsk, Poland

 J.S. Lipiński,  Institute of Mathematics, University

 of Gdansk, 80-952 Gdansk, Poland

 ON POINTS OF CONTINUITY, QUASICONTINUITY

 AND CLIQUISHNESS OF REAL FUNCTIONS

 Let X be a topological space and let Y be a metric space

 with metric d. By Rm we mean m - dimensional euclidean space.

 A function f : X *♦ Y is said to be:

 - quasicontinuous at a point Xq€X, if for every neighborhood

 V of f (Xq) and every neighborhood ü of xQ there exists a

 nonempty open set U^ c u such that f (U^) c: v [1,3,5,6,8]?

 - cliquish at a point x^€x, if for every e > 0 and every

 neighborhood U of x^ there exists a nonempty open set

 U^ c U suchthat d (fix7), f(x")) < e for x',x"€u^ [4,5,6,8].

 Let us denote by C(f) , E(f) and A(f) the set of points of

 continuity, quasicontinuity and cliquishness of f, respectively.

 Then we have C(f) c E(f) c A(f), the set A(f) is closed [4,

 Theorem 1] and A(f)'c(f) is of the first category [6, Theorem 7].

 Let us consider a triplet C, E, A of subsets of X such

 that:

 fc c B c a = K, C is G and
 °

 ļ^A'c is of the first category .

 473



 Does there exist a function f : X Y for which C = C(f) ,

 E = E(f) and A = A(f)? When X = Y = R^" , a positive answer

 is given in [2, Theorem 2]. In [2] there can be found a charac-

 terization of the pairs E(f), A(f) and C(f), E(f) when X

 and Y are uniform spaces. In this paper we will characterize

 the triplet C(f), E(f), A(f) for a function f defined on Rm.

 Theorem 1

 The sets C,E,A c Rm satisfy ' (*) if and only if there exists

 a function f : Rm -» R^ such that C = C (f ) , E = E(f) and

 A = A (f ) .

 Proof: The necessity follows from [6, Theorem 7] and from the

 results of [4] .

 Assume that (*) is satisfied. Since A'c is an set

 of the first category, there exists a sequence ÍF^ :n=0,l,...}
 of closed nowhere dense sets such that F~ = 0, F cr F . . for

 On n+ 1

 n=l,2,... and A'c = U F . Let d(p,F ) be the distance of
 n=l n

 a point p from the set F . For each n=l,2,... we define the

 function f : Rm R^ by

 c _ _J- -,
 10 _ sin [d (p,Fn) ] _J- (p £ Fn) ,

 fn(p) = < 2 • 10~n (p€Fn'(E UFJ) ,
 I O (p €Fn_i U (Fn HE)) .

 The function f is continuous on the set Rm'Fn and for any

 point p0 € F we have lim sup fn(P) = I0~n and
 PX°
 PÍFn
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 00

 lim inf f (p) = - 10~n. Let us put g = Tj f • The uniform
 p-»p^ n n=l
 ptfn

 convergence of this series implies the continuity of g on the
 ® n-1

 set Rm' U F = CU (Rm'A) . Let s . = E f , . Evidently
 n=l n n' k=l

 q y = s . + f + r . If p^€F'f ,/ then s , is continuous at q y n-1 . n n . r0 n n-1 ,/ n-1 ,

 p0 and Jr | |-I0~n, so we obtain the following inequalities

 (1) s i (p0) + |'10_n 1 lim suP g(p) £
 P-P0

 11 -n p£f_
 ¿ sn-l(p0> +3r-10 11 -n •

 (2) s ,(P0) á. lim inf g (p) ¿
 PÍP0

 ¿sn-l(P0'-§-10 .

 Consequently

 ^•10~n lim sup g (p) -lim inf g(p) £ ^■•10~*n.
 P?P0 p?p0
 P*Fn PfFn

 Hence the function g is discontinuous at each point of the set
 00

 A'C = U F . Thus we obtain
 n=l n

 (3) C (g) = C U (Rm'A) .

 Let us observe that altering ^ the values of f on the set F ^ n n

 does not change (1) , (2) or (3) provided l^n(P) I <L2-10-n for

 p€Fn> Moreover the density of the set C (g) implies A(g) = Rm.

 Now let pq€A'E. Then pQ 6 Fr' (Fn_^ U E) for some n and, by

 the definition of the function g, g (pQ) = sn_^ (pQ) +2-l0-n >

 sn_i (Pq) + ^ -10"n. According to (1) there exists a neighborhood
 475



 1 O - n

 G of p0 such that g(p) ¿ (pQ) +ylO" - n < g(PQ) for any
 p Ç. G'Fn . Hence g is not quasicontinuous at pQ. Thus

 A'ECA(g)'E(g) .

 Moreover (4) and (3) are true if we change the values of the

 function fn on the set Fn He provided ļfn(p) ļ £ 2*10~n for
 p 6 F DE.

 n

 Let p € Exe . Then there exists exactly one index n such

 that p € (FnflE)'Fn Since C (g) is a dense set, there exists
 a sequence {p^ :k=l,2, . ..) of points belonging to C(g) converging

 to p. The sequence (gip^) :k=l,2,...} is bounded, so it contains
 a convergent subsequence. Without loss of generality we may assume

 that {g(p^) :k=l,2,...} is convergent. Now we define for
 n=l,2,... functions hn letting

 f

 lim g(pjJ ~sr_i(P) (P € (Fn nE)NvFn-l) '
 k-ł®

 hn(p) = i

 fn(p) (P £ (Fn OEíXFh^) .
 S»

 00

 Let us put h = Jj h . Since p^ € Rm'Fn for k=l,2,..., (1)
 n=l

 and (2) imply |hn(p)| £ 2 10 . Thus, according to earlier
 remarks C (h) = CU (Rm'A) and A'e <= A (h) 'E (h) . Furthermore

 for any point p € E'C we have h(p) = sn_i ^ + **n ^ = ^(Pķ) '
 k-*®

 Hence p is a point of quasicontinuity of h. Consequently

 E'CCE(h)'C (h) . Thus C (h) = CU (Rm'A) , E (h) = EU ( Rm'A ) and

 A (h) = Rm.
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 ( 1 ^ pļ " Let D be a dense border subset ( 1 ^ of R pļ " . Finally we

 define a function h' : R111 •+ R"*" by b'(p) = d(p,A) for p€D

 and h ' (p) = O for p $ D . Evidently A = C (h ') = E (h ' ) = A (h ') .

 Then for the function f = h + h' we have C (f ) = C, E(f) = E

 and A ( f ) = A .

 Theorem 2

 Let X and Y be real normed spaces and let X be a Baire

 space. The sets C, E, A ex satisfy (*) if and only if there

 exists a function f : X -> Y for which C = C(f) , E = E(f) and

 A = A (f ) .

 Proof: The necessity follows from [4] and [6].

 As in the proof of Theorem 1 we can show that there exists

 a function f ^ : X ■» R^ such that C = C(f^) , E = E(f^) and

 A = A(fļ) . (The existence of a dense border subset D ex which
 appears in the last part of the proof follows from the theorem of

 Sierpiński [7]). Let M be a one dimensional subspace of Y and

 let iM : M -> Y be the embedding of the subspace M in the space
 Y. By T : R^ -» M we denote the natural isomorphism. Then

 f = iM o T o f ļ ; X -» Y is the function for which C = C (f) ,
 E =• E (f ) and A = A (f ) .

 ^ Editorial Comment: A dense border set is a dense set whose
 complement is also dense.
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