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ON POINTS OF CONTINUITY, QUASICONTINUITY
AND CLIQUISHNESS OF REAL FUNCTIONS

Let X . be a topological space and let Y be a metric space

with metric d. By R™ we mean m - dimensional euclidean space.
A function f :X # Y 1is said to be:

- guasicontinuous at a point xOfEX, if for every neighborhood

Vv of f(xo) and every neighborhood T of X5 there exists a

nonempty open set Ul < U such that f(Ul) v [1,3,5,6,8]:

- Cliquish at a point xo?EX, if for every € > O and every

neighborhood U of Xy there exists a nonempty open set

U, €U such that d(f(x"), £(x“)) < ¢ Ffor x’,x”EUl (4,5,6,8].

Let us denote by C(f), E(f) and A(f) the set of points of
continuity, quasicontinuity and cliquishness of £, respectively.
Then we have C(f) € E(f) < A(f), the set A(f) is closed [4,

Theorem 1] and A(£)\C(f) 1is of the first category [6, Theorem 7].

Let us consider a triplet C, E, A of subsets of X such

that:

f'C TECA=23aA, C is & and
{5} ' ©

\\A\C is of the first category.
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Does there exist a function f :X 4 Y for which € = C(f),

E =E(f) and A = A(f!'? When X =Y = Rl, a positive answer
is given in [2, Theorem 2}. 1In [2] there can be found a charac-
terization of the pairs E(f), A(f} and C(f), E(f) when X

and Y are uniform spaces. 1In this paper we will characterize

the triplet C(f), E(f), A(f) for a function f defined on R™.

Theorem 1
The sets C.E,A c r® satisfy * (*) if and only if there exists

1

a function £ :R™ 4 R such that C = C(f), E = E(f) and

A = A(f).

Proof: The necessity follows from [6, Theorem 7] and from the

results of [4].

" Assume that (%) is satisfied. Since A\C is an F, set

of the first category, there exists a sequence {Fn :n=0,1,...}

4 ' o -

of closed nowhere dense“sets such that FO 2, Fn Fn+1 for

n=1,2,... and A\C = U F - Let d(p,Fn) be the distance of
n=1

a point p from the set Fo- For each n=1,2,... we define the

function fp : R™ 4 R1 by

~-Nn_ . -1 .
10™sinld(p,F )17 (P EF ).,
-n
£ (p) = 2:10 (PE€F \(EUF__,)),
o) (p€F__, U (F, NE)) .

The function fn is continuous on the set Rm\Fn and for any

point py €F =~ we have lim sup £ _(p) = 107" and
PP,

PEF

474



o
lim inf fn(p) = - 10", Let us put g = X £ The uniform
n=

PP, 1
p¢F
convergence of this series implies the continuity of g on the
® n-1
set R\ U F_=cCcU([R™MA). Let s 1= 2 £, . Evidently
n=1 " n=t k=1 *
g=s, y+f +r . If pg EFn\Fn_l, then s__, is continuous at

p, and Irn‘ < %.1o'n, so we obtain the following inequalities

(1) sn_l<p0)4-%-1o'n < lim sup g(p) <
pp
11 ' -n p{F:

(2) s. . (p) -2.10™ ¢ 1lim inf g(p) <
n-1'"0 9
PP,
F
7 107" p¢ n
< spalPy) -3¢ '
consequently
%;-1o"n < lim sup g(p) -lim inf g(p) %;-10’“.
PP, PP,
pdF pEF

Hence the function g is discontinuous at each point of the set

- -]
aA\c¢ = U F_- Thus we obtain
n=1

(3) Clg) = c U (R™MaA).

Let us observe that altering the values of fn on the set Fn

does not change (1), (2) or (3) provided Ifn(p)]:g2-10_n for

;>€Fn. Moreover the density of the set C(g) implies A(g) = R".

Now let p,€A\E. Then py€F \(F__, UE) for some n and, by
the definition of the function g, g(po) = sn_l(po)-+2-1o_n >
sn_l(po)+-%%-lo—n. According to (1) there exists a neighborhood
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G of Py such that g(p) sn_1(po)4-%§-lo—n < g(po) for any

;)GG\Fn. Hence g 1is not quasicontinuous at Pg- Thus

A\E<A(g)\E(qg) .

Moreover (4) and (3) are true if we change the values of the
function fn on the set anﬁE provided ‘fn(P)l g2-10"n for

pEanE.

Let p€E\C. Then there exists exactly one index n such

that pGE(FnIWE)\Fn_l. Since C(g) is a dense set, there exists
a sequence {pk :k=1,2,...} of points belonging to C(g) converging
to p. The sequence {g(pk) :k=1,2,...} is bounded, so it contains

a convergent subsequence. Without loss of generality we may assume

that {g(pk) :k=1,2,...] 1is convergent. Now we define for
n=1,2,... functions h letting
, -
}tiz\ g(p) -s, 5 (P (p € (F NE)\F__;).
h (p) =<
£ (p) (pf (F, PEIN\F ;).
\
®
Let us put h = z h_ . Since kaERm\Fn for k=1,2,..., (1)

n=
and (2) imply Ihn(p)] < 2 10 ®. fThus, according to earlier
remarks C(h) = CU (R™A) and A\ECA(h)\E(h). Furthermore
for any point p €E\C we have h(p) = sn_l(p)-+hn(p) = ii: h(pk).
Hence p is a point of guasicontinuity of h. Consequently

E\CcE(M)\C(h). Thus C(h) = cU (R™\Aa), E(h) = EU (R™\A) and

A(h) = R,
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Let D be a dense border subset(l) of R™, Finally we

' py n'(p) = d(p,A) for PED

define a function h’ :R™ 4 R
and h'(p) = 0 for p¢D. Evidently A =C(h’) = E(h’) = A(’).
Then for the function £ = h+h’ we have C(f) = C, E(f) = E

and A(f) = A.

Theorem 2

Let X and Y Dbe real normed spaces and let X be a Baire
space. The sets C, E, ACX ‘satisfy (*) if and only if there
exists a function f :X 2 Y for which C = C(f), E = E(f) and

A = A(f).

Proof: The necessity follows from [4] and [6].

As in the proof of Theorem 1 we can show that there exists
a function fl X = Rl such that C = C(fl), E = E(fl) and
A = A(fl). (The existence of a dense border subset DCX which
appears in the last part of the proof follows from the theorem of
Sierpinski {7]). Let M be 2 one dimensional subspace of Y and
let iM :tM Y be the embedding of the subspace M in the space

Y. By T :R1 * M we denote the natural isomorphism. Then

f iM o T Ofl :X #+ Y is the function for which ¢ = C(f),

td
i

E(f) and A = A(f).

(1)

Editorial Comment: A dense border set is a dense set whose
complement is also dense.
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