Janina Ewert, Department of Mathematics WSP, 76-200 S≹upsk, Poland J.S. Lipiński, Institute of Mathematics, University of Gdańsk, 80-952 Gdańsk, Poland

ON POINTS OF CONTINUITY, QUASICONTINUITY AND CLIQUISHNESS OF REAL FUNCTIONS

Let X be a topological space and let Y be a metric space with metric d. By $R^{\mathfrak{m}}$ we mean \mathfrak{m} -dimensional euclidean space.

A function $f:X \rightarrow Y$ is said to be:

- quasicontinuous at a point $x_0 \in X$, if for every neighborhood V of $f(x_0)$ and every neighborhood U of x_0 there exists a nonempty open set $U_1 \subseteq U$ such that $f(U_1) \subseteq V$ [1,3,5,6,8]; - cliquish at a point $x_0 \in X$, if for every $\varepsilon > 0$ and every neighborhood U of x_0 there exists a nonempty open set $U_1 \subseteq U$ such that $d(f(x'), f(x'')) < \varepsilon$ for $x', x'' \in U_1$ [4,5,6,8].

Let us denote by C(f), E(f) and A(f) the set of points of continuity, quasicontinuity and cliquishness of f, respectively. Then we have $C(f) \subseteq E(f) \subseteq A(f)$, the set A(f) is closed [4, Theorem 1] and $A(f) \setminus C(f)$ is of the first category [6, Theorem 7].

Let us consider a triplet C, E, A of subsets of X such that:

$$\begin{cases} C \subseteq E \subseteq A = \overline{A}, & C \text{ is } G_0 \text{ and} \\ A \setminus C \text{ is of the first category.} \end{cases}$$

Does there exist a function $f: X \to Y$ for which C = C(f), E = E(f) and A = A(f)? When $X = Y = R^1$, a positive answer is given in [2, Theorem 2]. In [2] there can be found a characterization of the pairs E(f), A(f) and C(f), E(f) when X and Y are uniform spaces. In this paper we will characterize the triplet C(f), E(f), A(f) for a function f defined on R^m .

Theorem 1

The sets $C,E,A \subseteq \mathbb{R}^m$ satisfy (*) if and only if there exists a function $f:\mathbb{R}^m \to \mathbb{R}^l$ such that C = C(f), E = E(f) and A = A(f).

Proof: The necessity follows from [6, Theorem 7] and from the results of [4].

Assume that (*) is satisfied. Since A\C is an F_{σ} set of the first category, there exists a sequence $\{F_n: n=0,1,\ldots\}$ of closed nowhere dense sets such that $F_0=\emptyset$, $F_n\subseteq F_{n+1}$ for $n=1,2,\ldots$ and A\C = $\bigcup_{n=1}^\infty F_n$. Let $d(p,F_n)$ be the distance of a point p from the set F_n . For each $n=1,2,\ldots$ we define the function $f_n: R^m \to R^1$ by

$$f_{n}(p) = \begin{cases} 10^{-n} \sin[d(p,F_{n})]^{-1} & (p \notin F_{n}), \\ 2 \cdot 10^{-n} & (p \in F_{n} \setminus (E \cup F_{n-1})), \\ 0 & (p \in F_{n-1} \cup (F_{n} \cap E)). \end{cases}$$

The function f_n is continuous on the set $R^m \setminus F_n$ and for any point $p_0 \in F_n$ we have $\limsup_{p \to p_0 \\ p \notin F_n} (p) = 10^{-n}$ and $p \to p_0 \\ p \notin F_n$

lim inf $f_n(p) = -10^{-n}$. Let us put $g = \sum_{n=1}^{\infty} f_n$. The uniform $p + p_0 = p + p_0 = p + p_0$

convergence of this series implies the continuity of g on the set $R^m \setminus \bigcup_{n=1}^\infty F_n = C \cup (R^m \setminus A)$. Let $s_{n-1} = \sum_{k=1}^n f_k$. Evidently $g = s_{n-1} + f_n + r_n$. If $p_0 \in F_n \setminus F_{n-1}$, then s_{n-1} is continuous at p_0 and $|r_n| \leq \frac{2}{9} \cdot 10^{-n}$, so we obtain the following inequalities

(1)
$$s_{n-1}(p_0) + \frac{7}{9} \cdot 10^{-n} \le \limsup_{\substack{p \to p \\ p \notin F_n}} g(p) \le s_{n-1}(p_0) + \frac{11}{9} \cdot 10^{-n},$$

(2)
$$s_{n-1}(p_{0}) - \frac{11}{9} \cdot 10^{-n} \le \lim_{\substack{p \to p \\ p \notin F_{n}}} \inf g(p) \le$$

$$\le s_{n-1}(p_{0}) - \frac{7}{9} \cdot 10^{-n}$$

Consequently

$$\frac{14}{9} \cdot 10^{-n} \leq \limsup_{\substack{p \to p \\ p \notin F_n}} g(p) - \liminf_{\substack{p \to p \\ p \notin F_n}} g(p) \leq \frac{22}{9} \cdot 10^{-n}.$$

Hence the function g is discontinuous at each point of the set $A \setminus C = \bigcup_{n=1}^{\infty} F_n$. Thus we obtain

$$C(g) = C \cup (R^{m}\backslash A).$$

Let us observe that altering the values of f_n on the set F_n does not change (1), (2) or (3) provided $|f_n(p)| \leq 2 \cdot 10^{-n}$ for $p \in F_n$. Moreover the density of the set C(g) implies $A(g) = R^m$. Now let $p_0 \in A \setminus E$. Then $p_0 \in F_n \setminus (F_{n-1} \cup E)$ for some n and, by the definition of the function $g, g(p_0) = s_{n-1}(p_0) + 2 \cdot 10^{-n} > s_{n-1}(p_0) + \frac{11}{9} \cdot 10^{-n}$. According to (1) there exists a neighborhood

G of p_0 such that $g(p) \le s_{n-1}(p_0) + \frac{12}{9} \cdot 10^{-n} < g(p_0)$ for any $p \in G \setminus F_n$. Hence g is not quasicontinuous at p_0 . Thus

$$A \setminus E \subset A(g) \setminus E(g)$$
.

Moreover (4) and (3) are true if we change the values of the function f_n on the set $F_n \cap E$ provided $|f_n(p)| \leq 2 \cdot 10^{-n}$ for $p \in F_n \cap E$.

Let $p \in E \setminus C$. Then there exists exactly one index n such that $p \in (F_n \cap E) \setminus F_{n-1}$. Since C(g) is a dense set, there exists a sequence $\{p_k : k=1,2,\ldots\}$ of points belonging to C(g) converging to p. The sequence $\{g(p_k) : k=1,2,\ldots\}$ is bounded, so it contains a convergent subsequence. Without loss of generality we may assume that $\{g(p_k) : k=1,2,\ldots\}$ is convergent. Now we define for $p=1,2,\ldots$ functions $p=1,2,\ldots$ functions $p=1,2,\ldots$

$$h_{n}(p) = \begin{cases} \lim_{k \to \infty} g(p_{k}) - s_{n-1}(p) & (p \in (F_{n} \cap E) \setminus F_{n-1}), \\ \\ f_{n}(p) & (p \notin (F_{n} \cap E) \setminus F_{n-1}). \end{cases}$$

Let us put $h = \sum_{n=1}^{\infty} h_n$. Since $p_k \in R^m \setminus F_n$ for $k=1,2,\ldots$, (1) and (2) imply $|h_n(p)| \leq 2 \cdot 10^{-n}$. Thus, according to earlier remarks $C(h) = C \cup (R^m \setminus A)$ and $A \setminus E \subseteq A(h) \setminus E(h)$. Furthermore for any point $p \in E \setminus C$ we have $h(p) = s_{n-1}(p) + h_n(p) = \lim_{k \to \infty} h(p_k)$. Hence p is a point of quasicontinuity of h. Consequently $E \setminus C \subseteq E(h) \setminus C(h)$. Thus $C(h) = C \cup (R^m \setminus A)$, $E(h) = E \cup (R^m \setminus A)$ and $A(h) = R^m$.

Let D be a dense border subset (1) of R^m . Finally we define a function $h': R^m \to R^1$ by h'(p) = d(p,A) for $p \in D$ and h'(p) = 0 for $p \notin D$. Evidently A = C(h') = E(h') = A(h'). Then for the function f = h + h' we have C(f) = C, E(f) = E and A(f) = A.

Theorem 2

Let X and Y be real normed spaces and let X be a Baire space. The sets C, E, $A \subset X$ satisfy (*) if and only if there exists a function $f: X \to Y$ for which C = C(f), E = E(f) and A = A(f).

Proof: The necessity follows from [4] and [6].

As in the proof of Theorem 1 we can show that there exists a function $f_1:X\to R^1$ such that $C=C(f_1)$, $E=E(f_1)$ and $A=A(f_1)$. (The existence of a dense border subset $D\subset X$ which appears in the last part of the proof follows from the theorem of Sierpiński [7]). Let M be a one dimensional subspace of Y and let $i_M:M\to Y$ be the embedding of the subspace M in the space Y. By $T:R^1\to M$ we denote the natural isomorphism. Then $f=i_M\circ T\circ f_1:X\to Y$ is the function for which C=C(f), E=E(f) and A=A(f).

⁽¹⁾ Editorial Comment: A dense border set is a dense set whose complement is also dense.

References

- W. Bledsoe, Neighborly functions. Proc. Amer. Math. Soc. 3(1952), 114-115.
- J. Ewert, J.S. Lipiński, On points of continuity, quasicontinuity and cliquishness of maps (to appear).
- S. Kempisty, Sur les fonctions quasicontinues. Fund. Math. 19(1932), 184-197.
- 4. J.S. Lipiński, T. Šalát, On the points of quasicontinuity cliquishness of functions. Czech. Math. J. 21(96), (1971), 484-489.
- 5. S. Marcus, Sur les fonctions quasicontinues au sens de S. Kempisty. Coll. Math. 8(1961), 47-53.
- 6. A. Neubrunnová, On quasicontinuous and cliquish functions.

 Časopis Pěst. Mat. 99(1974), 109-114.
- 7. W. Sierpiński, Sur la décomposition des espaces métriques en ensembles disjoints. Fund. Math. 36(1949), 68-71.
- 8. H.P. Thielman, Types of functions. Amer. Math. Monthly. 60(1953), 156-161.

Received January 17, 1983