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THE STRUCTURE OF THE SETS {x: f(x) = h{x)} FOR A TYOICAL
CONTINUQUS FUNCTION f AND FOR A CLASS OF LIPSCHITZ FUNCTIONS h.

1. Introduction.

Let R denote the space of real numbers and let C denote the
space of continuous functions f: [0,1] » R equipped with the
uniform norm || f|| = sup {|f(x)] : 0 < x < 1}.

A subset A of C is said to be residual in C if its complement
C\A is of the first category inC. If f e C and ¢ > 0, the
open ball {g ¢ C: |l|g - f|| < e} of C is denoted as usual by
B(f,e).

An interval [<[0,1] is said to be a rational interval if

both of its endpoints are rational, and I will be called an oven
interval if it is open relative to [0,1].

Let f be a given function in C and let XeR. For every
c e R, the set {x: f(x) = xx + c} is called a level of f in the
direction A. By a level of f we mean, in general, a level of f

in some direction x ¢R.

Let ac inf (f(x) - xx: 0 < x <1} and

| A

A

b sup {f(x) - ax: 0 < x < 1}.

fiA

The levels of a function f ¢ C are said to be normal in a

direction » ¢ R 1if there exists a countable dense set

, Do .) such that the level ‘x: f(x) = ix + ¢}

E ) n (af,A TyA

of f in the direction X is



* [od . i
a) a perfect set when c ¢ ey U taf,\’bf,x”

b) a single point when c = ag ,orcs= bf,x’ and

c) the union of a non-empty nerfect set P with an isolated

point x ¢ P when c ¢ Ef N (P and x depending on f,x and c).

[t has been proved by A.M. Bruckner and K.M. Garg [1, Theorem
4.8] that there exists a residual set of functions f in C such that
the levels of f are normal in all but a countable dense set of
directions A. in R, and in each direction 1 e Mg the levels of

f are normal except that there is a unique element ¢ of

b, .} for which the level {x: f{x) = Ax + c} contains

[
Eea U tag by
two isolated points in place of one.

A family of functions H < C is called a 2-narameter family

if for every pair of numbers SELOR: [0,1] (x1 # X5) and for
every pair of numbers Y¥p € R there exists a unique h ¢ H such
that h(xl) =¥ and h(xz) = Yo

In [2] Bruckner and Garg raised the following question. What
conditions on H will guarantee that the analogue of the above
theorem holds on replacing the family of straight lines {ix + c}
by H?

In the present paper we show that the above question has an
affirmative answer if the 2-parameter family H is almost uniformly
Lipschitz. For the proof of this fact we use the methods of
Bruckner and Garg [1].

In §2 we state some properties of a 2-parameter family H and

in §3 we show that the above question has an affirmative answer
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(Theorem 1) when H is almost uniformly Lipschitz. The proofs are

to aopear in [3].

2. Properties of a 2-parameter family.

Let H denote a 2-parameter family of continuous functions.
A function h ¢ H for which ¢ = h(0) and X - h(1) - h(0) will

be denoted by h, .. The number X is called the increase of the

function hx . If Hx = {h ¢ H: h(1) - h(Q) = A}, then it is clear

’

that H. A" H. =0 when X, # \, and {J H, = H.
Al AZ 1 2 ‘R

1. Pronosition. If Xy € ro,1], Yo € R and the functions

h, hy e H, h # h1 are such that h(xo) = hl(x ) = Yo then either

0

h(x) < hl(x) when 0 < x < X, and h(x) »> hl(x) when Xy € X < 1;

or h(x) > hl(x) when 0 < x < X, and h(x) < hl(x) when X< X < 1.

2. Proposition. For every triple of numbers Xy € (0,1] and

Yor A e R there exists a unique function h ¢ Hx such that

h(xo) = Yy

3. Proposition. Liml]hX c - hx,C||= 0 if and only if
N> n’"n

Tim c,=¢ and 1lim Xn = \.

N-wo N

4. Proposition. For every natural number n, let (xa,yé),
(xpoyp)s (xMoy')s (x",y") € [0,1] x R (x; # x; and x' # x") and

let h, . ’hx,c e H be functions such that hk (x') =y

n, n n’n
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h) ’Cn(xn) = .Vn, hx

A (x') = y' and hx,c(x.) = y",

,C

Then if 1im (xn,yn) (x',y') and 1im (xn,yh) = (x",y"),

N-> N->

1]
o

then 1im [h - h
! AyoCn x,cJ

N—>w

3. The structure of the set {x: f(x) = h(x)} when f ¢ C and h

belongs to a 2-parameter family of continuous functions that is

almost uniformly Lipschitz.

Let fe C, heH and let I be a subinter9a1 of [0,1].

The graph of h 1is said to support the graph of f in I from

above(below), if h(x) > f(x) (h(x) < f(x)) for every x e I

and there exists a point X, in I such that h(xo) = f(xo). Further,

if the point Xo is not unique, then the graph of h is said fo

support the graph of f in [ from above (below) at more than one

point. We will say that the qraph of h supports the graph of f

in I if the graph of h supports the graph of f from above or
from below.
If I and J are two disjoint subintervals of [0,1], the

graph of h will be said to support the graph of f in I and J,

if it supports the graph of f in I as well as the graph of f
in J. Similarly for three or more mutually disjoint subintervals

of [0,1].

1. Lemma. For every function f ¢ C there is at most a countable
set of functions in H which support the graph of f in two (or
more) disjoint open subintervals of [0,1].

Let f e C and A ¢ R. We dencte by
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ag = Inf {c e R {x: f(x) =h (x)}# D
Be , = sup (C e R: I{x: f(x) = hx C(x)} 0%
2. Lemma. For every function f ¢ C and for every number X ¢ R

the graph of the functions hx a and h\ g support the graph

S O PEEA
of f in [0,1] from above and from below respectively at least

at one point.

3. Lemma. For every function f ¢ C there is at most a count-

able set :\fcR such that for every ic¢ R\Af

a) the sets {x: f(x) =h (x)} and

Maag o
’/

{x: f(x) = h, 5 (x)} consist of single points and
28 )

b) the set E, , Of numbers c such that the set

{x: f(x) = hx C(x)} is not perfect is dense in

(af,A’Bf,k).

4. Lemma. There exists a residual set of functions f in C such
that for every open rational interval I<[0,1] the incfeases of
functions in H of which the graphs support the graph of f in I
from above at more than one point form a dense set in R and the
increases of functions in H of which the graphs support the

graph of f in I from below at more than one point form a dense

set in R.

5. Lemma. The set of functions f ¢ C of which the graphs

support at least one function of H at more than two points is of
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the first category in C.

6. Lemma. The set of functions f ¢ C for which there exists

X ¢ R and there exist two different functions h ,h e H
x,cl A,cz

whose graphs support the graph of f in two different points is of

the first category in C.

A 2-parameter family H of continuous functions is almost

uniformly Lipschitz if

YV v 7 4
ceR 2eR L, >0 X1%y

L c e[O,l]ihx,c(xl) - hx,c(XZ)Li Lx,clxl-XZI

and, for every natural number n,
M =sup {L. : rxe[-n,n], ce[-n,n]} < +=.
n \,C .

7. Lemma. Let H be a 2-parameter family of continuous functions

which is almost uniformly Lipschitz.
Then there exists a residual set of functions f ¢ C such

that for every function h € H the function f - h is not monotone

at any point xe[0,1].

1. Theorem. Let H be a 2-parameter family of continuous

functions which is almost uniformly Lipschitz.
Then there exists a residual set of functions f ¢ C for
which there exists a countable dense set Af < R and a set

Ef,x countable and dense in (“’f,x’sf,x) such that
12 9F A e R\ 1¢s then

a) the sets {x: f(x) = h a (x)} and {x: f(x) = h (%)}
vy f,\ ‘

consist of single points,



b)

b)

\ =y + {y* = S
for ce (af,x’sf,x’\\“F,x the set {x: f(x) hk’c(x),

is perfect and

for c € Ef,x the set {x: f(x) = hx,c(x)} is the union

of a non-emnty nerfect set and an isolated point, and

Af, then
there exists an unique number Cf,AEEf,AU{af,x’Sf,A}

such that if ¢ E then {x: f(x) = h (x)}

foa € Cf,A

A,C
L VN
is the union of a non-empty perfect set and two isolated

noints, and if Cf,x= T3 or Cf,x = Sf,x’ then the set

{x: f(x) = h, c (x)} consists of two different noints,
'CF

for ¢ ¢ Ef f\ {cf x} the set {x: f(x) = hx C(x)} is

the union of a non-empty perfect set and an isolated
point,

for ¢ ¢ {“f,x’sf,x}\\{cf,x} the set {x: f(x) = hx’c(x)}

consists of a single point and
for ¢ € (af,x’sf,x)\\Ef,x the set {x: f(x) = hx,c(x)}
is perfect.
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