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 Continuity in the Density Topology

 Andrew M. Bruckner in his book [2] (p. 21) states the following problem:

 characterize the set of all continuous f such that for each approximately con-

 tinuous g, gof is also approximately continuous.

 The obvious candidate for the solution to this problem is that f 1 pre-

 serves points of density of each set S in the range of f; that is, if x

 is a point of density of S, f 1 (x) is a point of density of f 1 (S) . In his

 paper [1] Bruckner investigates this property for homeomorphisms .

 In this paper the general class of functions will be investigated. This

 requires the concept of the density topology.

 The following notation will be used:

 R - the set of real numbers;

 Ac - the complement of A;

 J - any interval in R, open, closed or half-open;

 D - the density topology on R (or on J) ;

 I A I - the outer Lebesgue measure of a set Ac R;

 d(A,x) d (A,x) ,d (A,x) - the upper (resp. lower, ordinary) outer density of a

 set A at a point x;

 A* - the closure of a set AcR relative to the density topology;

 A0 - the interior of a set AcR relative to the density topology.
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 1.1. For a set EcR let us denote by d(E) the set of all x€R such

 that d(E,x) « 1. The class of all measurable sets E such that Ecd(E) is

 a topology for R, so called density topology D (see [6], p. 90).

 A function h:J-»R continuous as a mapping from J equipped with D

 topology into R with the same topology will be called continuous in the

 density topology or simply D-continuous.

 1.2. Proposition. A function h:J-*R is approximately continuous if

 and only if it is continuous as a mapping from J wi th D topology into R

 with the natural topology.

 Proof. See [2] p. 23.

 1.3» Proposition. D is a T . topology.

 *2

 Proof. See [3], see also [8] p. 26.

 1.4. Proposition. Let X be a T. topological space. It is T j

 if and only if a function f:X + X is continuous whenever the composition g°f

 is continuous for every bounded continuous g:X-»-R.

 Proof. Necessity. Suppose X is T j and there is a discontinuous
 TT

 function f:X-»-X such that for each real-valued bounded continuous g, g°f

 is also continuous. Then there is a point xGX and a set AcX such that

 x€A and f(x)£f(A) (E is the closure of a set E in X) . Since X is

 » there is a continuous function g:X-*[0,l] such that g(f(x)) e 0 and
 ^ » . -1 -

 f (A) eg ({1}). Let k=(g°f) ({1}). K is closed and K=>f (f(A) )dA.

 Since x£A , then x6K. Hence g ( f (X) ) = 1, a contradiction.
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 Sufficiency. Since X is T_ļ_, the subbase for X is formed by the

 sets g (G), where G is open in R, and g is a bounded continuous real-

 valued function on X (see [7] p. 96). Thus a function f:X-»-X is continuous

 if and only if f ' (g '(G)) » (g°f) '(G) is open for any G and g.

 1.5. Corollary. A function f : J J is P-continuous if and only if

 the composition g°f is approximately continuous for every continuous g.

 Proof. This is a simple consequence of 1.2., 1.3. and I.A..

 2.1. Observation. J_f AQ is measurable, then A0 = ACld(A) and

 AA s A U (xGR:ď(A,x) > 0).

 2.2. Proposition. For every AcR

 A" =» A U {x(ER:d (A,x) >0).

 Proof. It suffices to consider a nonmeasurable A. Let B be a

 measurable set such that A<=B and | A n P | » ļ B n P ļ for every interval PCR.

 The inclusion A U {xER:d (A,x) > OjciA^ is obvious.

 To prove the inclusion Aacau{x£R:5(A,x) >0} suppose there is a point

 x€AÄ - A such that d(A,x) » 0. Then d(B,x) ■ 0. Hence x€(BcU{x})°. Since

 xEA", then (B° U {x}) fi A i* 0 and xGA, a contradiction.

 Note: x is an accumulation point of A for D topology if and only if

 ď(A,x) > 0.

 2.3. Definition. A point x€R is called a point of inner densi ty of

 a set AcR, if d(AC,x) = 0. The set of all points of inner density of A
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 will be denoted by d.(A).

 It is easy to see that x is a point of inner density of A if and only

 if there is a measurable set E^A such that x6d(E). From 2.2 we also have:

 2. k. Corollary. A8 ■ d.(A) DA for every A^R.

 3.1. Observation. Each P-continuous function is approximately con-

 tinuous. Each P-continuous function belongs to the first Bai re class and has

 the Darboux property.

 3.2. A set AcR is measurable if and only if it is a union of a P-open

 set and a P-closed set. Thus we have:

 Proposition. J_f f is P-continuous, then f 1 (B) is measurable for

 every measurable set B.

 The converse is false. It will be shown later.

 3-3. Proposition. A function f is P-continuous if and only if for

 each BCR and yGBndi(B),

 f"'({y))cd.(f"'(B)).

 Proof. Simply, f is P-continuous if and only if

 f*1 (B°) c(f-1 (B))°.

 3.^. Proposition. A function f:J+R is P-continuous if and only if

 for each AcJ and x€J such that ď(A,x) >0,
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 f (x)ef (A) or d (f (A) ,f (x) ) > 0.

 Proof. In fact, f is P-continuous if and only if

 f (Aa)c f(A)A.

 3-5. Proposition. J_f f satisfies the conditions:

 (i) f 1 (B) is measurable whenever B i s ;

 (ii) for every measurable B and y6d(B)flB,

 f"1 ({y}) c f"1 (B)

 and every x€f 1 ( {y >) is a density point of f 1 (B) ; then f is D-continuous.

 Proof. If f satisfies (i) and (ii), then f '(B) is D-open for every

 P-open B.

 4.1. Definition. A function f:J-»-R will be said to preserve upper

 outer density at a point x, provided that for every set E,

 if d(E,x)>0, then d(f (E) ,f (x)) > 0.

 We say that f preserves upper outer density on a set KcJ, if f preserves

 upper outer density at each point of K; f preserves outer density, if it does

 so on J.

 4.2 Observation. J_f f:J-»-R preserves upper outer density, then i t

 is P-continuous.

 4.3. Proposition. Let f:J + R be P-continuous and x€J. Then f

 preserves upper outer density at x if and only if
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 d(f '{f (x) }) ,x) » 0.

 Proof. Necessity. Suppose

 ď (f 1 ({f (x) }) ,x) > 0.

 Let E = f 1 ( { f (x) } ) . Then 3(E,x)>0, but

 ď(f(E),f(x)) ■ d({f (x)},f (x) ) = 0.

 Sufficiency. Let

 d(f ' ({ f (x) }) ,x) = 0

 and d(A,x) >0. Then also

 d(A - f 1 ({f (x) }) ,x) > 0.

 Since f is D-continuous and

 f(x)řf(A-f"'({f(x)»)

 then

 ď (f (A - f 1 ({f (x) } ) ) ,f (x) ) > 0.

 Hence

 d(f (A) ,f (x)) > 0.

 k.k. Corollary. A 1-1 function is P-continuous if and only if it

 preserves upper outer density.
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 A. 5. A 1-1 P-continuous function f:[a,b]+R is a homeomorphi sm since

 it possesses the Darboux property. It is easy to see that a homeomorphi sm

 f:[a,b]-»-R preserves upper outer density if and only if f ' preserves density

 points. Thus, for a homeomorphi sm, the conditions given in [1] and in this

 paper, are equivalent.

 k. 6. Proposition. J_f f:[a,b]-»-R is P-continuous and 1-1, then

 f ' is absolutely continuous.

 Proof. As mentioned above, f is a homeomorphi sm. Thus f 1 is

 continuous and monotone. Moreover, f 1 transforms measurable sets into

 measurable sets (3.2); hence it fulfills the Lusin (N) -condi tion. The propo-

 sition now follows from the Banach-Zarecki theorem (see [A] p. 250).

 k. 7. Proposition. J_f f:[a,b]-*R is P-continuous and i-1, then

 f is absolutely continuous.

 Proof. It suffices to show that f satisfies the Lusin (N) -condi tion.

 Suppose there is a set 2 of measure zero such that | f (Z) | > 0. Then there

 is a set K of type G^, of measure zero and such that ZcK. Also | f ( K) ļ >0.
 Since f is a homeomorphism f ( K) is of type Gx. By the Lebesgue Density

 Theorem there exists a point y€f(K) which is a density point of f(.K). This

 y satisfies the condition

 d (f ( [a,b] - K) ,y) « 0.

 But each point x€[a,b] is a density point of [a,b] - K. Thus f does not

 preserve the upper outer density, a contradiction.
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 5.1. There exists a continuous function f which is not D-continuous

 and such that f '(B) is measurable whenever B Is measurable.

 Let (an) and (b^) be sequences of real numbers converging to zero and

 satisfying the conditions:

 (i) b1 > at > b2 > a2 > . . . > 0;
 +»

 (i i) (a ,b ) ,0) > 0.
 n-1 n n

 Let

 l/n for x€(a ,b ), n-1, 2,...
 n n

 f (x) =
 0 for x = 0

 and let f be linear in intervals [a ,.,b ], n=l,2,.... It is easy to see
 n+ 1 n

 that f is continuous and f '(B) is measurable for any measurable B.

 Al so

 +00

 (a ,b ) ,0) > 0
 n=1 n n

 but

 0£f{'J (a n ,b n )) and 5 (f ('J (a ,b )) ,0) « d('^/{^},0) n -0, n-1 n n n=l n-1 n

 so f is not D-continuous.

 5.2. There exists a function which is D-continuous and not continuous.

 To give an example consider a sequence of intervals ((a^b^)) such that

 (i) a -► 0, b •+• 0;
 n n
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 (ii) > bj > a2 > b2 > . . . > 0;
 +00

 (iii) d( [J(a ,b ) ,0) = 0.
 n=1 n n

 Let

 1 00

 0 for [0,b )'VJ(a ,b )
 i n n

 f(x) -

 . 1 for X = j(an + bn) , n=l,2,...

 and let f be linear in intervals ¿(a +b ) ,b ], [a ,4-(a +b )], n=l,2,3,....
 i n n n n ¿ n n

 Then f:[0,bj) -»• R . It is not continuous, since

 1 im f ¿(a +b )) * I .
 n-*®

 But f is D-continuous. It suffices to show its D-continuity at the origin.
 +°0

 Suppose ď(A,0) > 0 and f(0) = 0£f(A). Then Ac'J(a ,b ) , a contradiction
 n n

 n=1

 w i th (iii).

 5.3. There exists an approximately continuous function which is neither

 continuous nor D-continuous.

 Let (an) be a sequence of real numbers such that

 (i) aļ > a2 > . . . > 0;
 ( i i) lima =0.

 n
 n-«»

 Let T = (b ,c ) , n=l,2,... be such intervals that [b ,c ] c(a . ,a ), n n n , n n n+i . n

 n=l,2,... and

 +00

 5(Wt ,0) > 0.
 « n

 n=1 «
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 Furthermore, let J s (d ,e ) , nsl,2,... be such that [d ,e ]cT and
 n n n n n n

 + oo

 d(Uj ,0) = 0.
 n=i n

 Define a function f in the following way:

 0 for X » an> n=l,2,3,..., or x ■ 0
 f(x) ■ < n ' for x€T - J , n=l,2,3,...

 n n

 1 for x = --Ud +e ), n=l,2,3,...
 Ł n n

 and let f be linear in the intervals [a . ,b ], ' [d ,¿(d +e )], ' n+ . n ' n 2 n n '

 [y(dn + en) ,en] , [cn,an], n=l,2,3,.... We have f : [0 , a ) ]R . It is easily
 seen that f is not continuous at the origin, since

 1 im f (4-(d + e )) = 1 .
 zn n

 n-*»

 As well, f is not D-continuous. We have

 +00

 d(U(T-Jn),0) n n > 0 n=i n n
 •foo +00

 but 0£f('^/(T - J )) and the set - J )) is countable, hence its
 n=i n=l n n

 density at the origin is zero.

 But f is approximately continuous. It suffices to show its approximate
 -h»

 continuity at zero. Let E = [0 , a ^ ) - W[dn,en]. Then f|^ is continuous at
 n=l

 0 and 0 is a point of (right-hand) density of E. Thus f is approximately

 cont i nuous .

 5.4. Consider the set X of all homeomorphisms

 h: [0,1] - f [0,1]. onto
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 It is a complete metric space with a metric

 p(h.,h) = sup |h (x)-h (x)| + sup | h"T 1 (y) - h~ 1 (y) |
 xe[0,i] ye[o,i]

 (see [6] p. 50). The set Y of all D-continuous 1-1 functions

 f • [0,1] [0,1] is included in X. As mentioned in 5-1., X-Y is non- onto

 empty.

 Proposition. Y is of first category in X.

 Proof. The set A « {hGX:h'(t)=0 a.e.} is of the second category in

 X(*). If heA, then h is not absolutely continuous. By 4.7. we have

 Yc X ' A.

 Note: There are absolutely continuous h€X such that h£Y. In £SJ

 there is an example of a homeomorphism h such that h is D-continuous while

 h ' is not.

 (*) This observation is due to Władysław Wilczyński.
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