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Derivations on Differentiable Functions

Let RI denote the class of real valued functions
defined on the non-degenerate interval ICR and let

§5C.RI be an algebra over the reals. A map

d : F - RI

is said to be a derivation if d is linear and
(1) d(fg) = £-dg + g-df

holds for every £f,g€ T . Suppose that the identity
function o(x) = x (x€I) belongs to F and let h = do
Then F contains the polynomials and it is easy to see
that dp = h~”p’ holds for every polynomials p . It was
proved by Yasuo Watatani that df = h'f’ holds also for
every £€C*(I) supposing that C®(I)c¥F ([2].

In this paper we describe the derivations of the
class D of differentiable functions defined on I . As
we shall see, df = h'f’ 1is no longer true for every
derivation on L . However, if we suppose that df is
Baire 1 for every £& then (df)(x) = h(x) £’(x)
holds true for each fe&d apart from a fixed scattered

subset of I
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Theorem 1. A linear map

d:@-RI

is a derivation if and only if (df) (a) = O holds whenever

fed, aeIl and

(2) lim —2%) _ o |

x-a (x-a) 2

Proof. If (2) holds then the function g defined by

o, X=a
is differentiable. Thus, if d is a derivation, we have
df = d(g:(og=a)) = dg-(c=-a) + g-h

from which (df)(a) = 0O .
Now suppose that d:d - lRI is a linear map satisfying
the condition of Theorem 1. Let £f,g€JL and a€&I be

arbitrary and put

s(x) = (£(x)-f(a)) (g(x)=-g(a)) - f’(a)-g'(a)o(x--a)2 (xe:
Then s&€d and 1lim _s(_x)_2 = 0 holds and hence we have
X~a (x—a)
(ds) (a) =0
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Hence, by the linearity of 4 ,

d(fg) (a) d(s+f(a) (g-g(a)) + g(a) (f-f(a)) +

+

£(a)g(a)+£’ (a)g’ (a) (g-a)?) (a) =

(ds) (a) + f£(a) (dg) (a) + g(a) (df) (a) +
+ 2 f’(a).g’(a)-h(a) (a=a) = f(a)-:(dg) (a) +

+ g(a)- (df) (a)

Since a is arbitrary, this implies (1) and d is
a derivation. O

The function £ 1is said to have the second Peano
derivative at the point a if the finite limit
(3) lim (£(x)-£(a)-£’(a) (x-a))/ (x-a) >

x=~a

exists. We shall denote by sz(a) the class of functions
£ed having the second Peano derivative at a &I . Then
’Pz(a) is a linear subspace of &) and ?z(a)%@ since

the function f£f(x) = (x-a)zo sin - , f(a) = 0 belongs

Xx-a
to L - '.Pz (a)

Corollary. Let a:D - RI be an arbitrary map and
put h =do . d 1is a derivation if and only if for each

a€l there exists a linear functional Aa:SD - R such that

Pz(a)CKer Ay

and
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(df) (a) = h(a)-£'(a) + A £
holds for every f€&€® and ac€I .

Proof. Suppose that d satisfies the condition of

the Corollary; then d is linear. Let fe€dD , a€I and

suppose (2). Then

f(a) = f’(a) = 0O and fe?z(a)
from which

(df) (a) = h(a)'f’(a) + Aaf =0 .

Thus, by Theorem 1, 4 1is a derivation.
On the other hand, if d is a derivation then let

ka be defined by
A £ o= (df) (a) - h(a) - f’(a) (£fed) .

Then A, is linear on O and it easily follows from

Theorem 1 that A vanishes on TPz(a) . In fact, let

feﬁPz(a) and let ¢ be the value of the limit under (3).

Let g = £-£(a)-£'(a) (c-a)-c(o-a)2 , then lim —LXL_ - o

2
x+a (x-a)
and hence

A E = a9 + A (£(a)+£' (a) (9-a)+c(0-a) D)=

(dg) (a)-h(a)-g’'(a)+f’(a)-h(a)-h(a)-£f’(a) = O

.Q

Now we turn to formulate our main result. A set HCR

is said to be scattered if H does not contain any non-
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empty subset which is dense in itself. It is obvious that
every scattered set is nowhere dense in R and it is also
well-known that a scattered set must be countable (D.] ’

§18, V., p. 141).

Theorem 2. Let d:D —= R' a derivation and suppose
that df is Baire 1 for every f&L . Then there exists

a scattered set HCI such that
(df) (x) = h(x)-£f’(x)

holds for every fed and xe&I-H . (h = do , where o

denotes the identity function on I .)

Lemma. Let F:[O,o) - R be continuocus, increasing

and satisfying

(4) F(0) = F[(0) =0 .

Let ged , a€int I be given and suppose that
lg(x)] < F(lx=al)

holds in a neighbourhood of a . Suppose further that a
is an accumulation point of a given set ACI
Then for every ¢ > O there are functions gl,gze@

and closed sets Kl,KZC.lR such that

(5) gl(x) + gz(x) = g(x) in a neighbourhood of a ;
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(6) Igi(x)l < e for every x€I and i=1,2 ;
(7) Igi(x)l < 4'F(dist(x,Ki)) for every x€&€I and i=1,2

(8) |R-[a-e,a+e]cKi (i=1,2)
and

(9) a 1is an accumulation point of ANint Ki (i=1,2).

Proof. We can suppose a=0 and that O 1is a right
hand side accumulation point of A . If F(x) = O for some
x > 0 then g(x) =0 in a neighbourhocod of O and we can
take g, =9, = O and Kl = K2 = R . Thus we can suppose

F(x) >0 (x> 0).

First we fix 6 €(0,¢) such that [-6,6](:1 and

(10) lg(x)! € F(lxl) < for every Ixl €6 .

>jom

Let bO = 6 . Suppose that k 2 O and the point

bk < 6§ has been defined. Since F 1is positive in [%bk,a]

and uniformly continuous in (0,8] , we can choose
1
0 < Sy < ibk such that
1
(11) F(x) < 2-F(x-ck) for every }ce[ébk,éj .

Then we choose 0 < bk+l < ck with

(12) A(W(bk+l,ck) 3.
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Thus, by induction, we have defined the sequences

{bk}, {ck} such that

§=bo>co>bl>cl>...>o
and
lim b, = lim ¢, = O .
kvw X  kew X

Let k 2 0 be fixed. By (10) and (1ll) we have

lg(%bk)l < F(%bk) < 2-F(%b )

k~ k
Since F is continuous and positive for x > O , we can

construct a differentiable function sk:(ck,%bk] - R such

that
(13) Is, (x) | < 2°F (x=c, ) (¢, < % S 3by)
and
s, (3b,) = g(3b,) ,
) s;(3b,) = g’ (3b)

Now we define the functions 9., 9, as follows. For x

negative we put gl(x) = gz(x) = u(x) , where

0 if X £ -e and x €I ,
u(x) =
%g(x) if -%6 <x <0,

and in (-s,-%é]F\I we define u such that it is differenti-
able, u(-%é) = %g(-%é) ’ u’(-%é) = %g'(-%é) and satisfies

the inequality
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lu(x) | < min(e,F(x+e) ,F(-x))
(x €(-¢ -ies]m I)
4 2 .
This is possible since

1 1 1.,1 1 1
159(75)1 < EF(E(S) < F(-i-é) < F(-Eé-'-a) .

For x non-negative we define

. 1
Sox+1 (¥) I Cope1 <X S 3oy v
_ , 1
gl(x) = g(x) if 5b2k+l < x < Cox *
. 1
g(x)-szk(x) if Cox < x = §b2k
(k =0, 1, o o)
and gl(x) = 0O otherwise;
S,, (%) if CH,y < X & ib
2k 2k 272k '
_ 1 ‘
92(X) = 4 g(x) if 2b2k <x£cy g
} 1
g(x)=s, _q(x) if cppq <X = 3b,y, g
(k=1,2,...)

and gz(x) = 0 otherwise. Finally we put

=
"

1 (-00,-€J v {0}y kgl I:bzkrczk_l] V) [bolw)

and

=
1

0] -
2 = (m=,=e]U {0}V kgl[bzkﬂ'czk] Vb )

Let k 2 O be fixed. 91 is obviously differentiable

1 1
(Cores17Pok) 5bors1s Soxr 5P,y ) - However
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(14) implies that 97 is differentiable also at the points
1 1

5b2k+l and Ebzk . By (4) and (13) it follows that
S, (X)
lin  —2X— =0
X=~C,, +0 2k

2k

and hence 94 is differentiable at Sox ! too. Thus we
have proved that 94 is differentiable at the points of
I--Kl .
l 1 —1 -
If x €(c2k+l, §b2k) then dlSt(X,Kl) = X=Copyq -

Hence, for Cok+1 < x £ c2k we have
Igl(x)l < 2'F(x—c2k+l) = 2-F(dist(x,Kl))
' L . 1
by (13), (10) and (11). Similarly, if Cox < x = 5b2k then

2k) S

IA

lgl(x)l lg(x) | + Iszk(x)l < F(x) + 2 'F(x-c

< 2-F( ) + 2'F(x-c ) = 4.F(dist (x,K

X=Cox+1 2k+1 1))

This proves that Igl(x)l < 4'F(dist(x,Kl)) holds in
I . This estimation, together with (4) implies gi(x) =0
for every x€INK; and hence gle.@ . Using (10) we
obtain Igll < & , too. These assertions can be similarly
proved for 95 and K, . Since gl(x)+g2(x) = g(x) holds

2

in [f%é, bl] and (9) follows immediately from (12) the

proof of the Lemma is complete. ]
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Proof of Theorem 2. Let H denote the set of those

points a &I for which there exists fae'@ such that
. 7
(dfa)(a) # h(a) £ (a) .

We have to prove that H 1is scattered. Suppose this is

not true and let ACH be non-empty and dense in itself.
We can choose A to be countable; otherwise we take a
countable and dense subset of A . Making use of this
assumption we shall construct a function ¢& © such that
de 1is not Baire 1.

For a€A we put

g, = £, - £,(a) - £](a) (o-a) ,

= - ’ .

(dg) (a) = (df ) (a) f,(a)-h(a) # O .
Multiplying by a suitable constant we can suppose that
(15) (dga)(a) 2 2 (a€n) .

o0 .
et A = {an}n=l and define

F_(x) = sup Ilg_ (a_+y)l (x>0, n=1,2,...).
n Iyl <x a ' n =
a;‘l-yeI

Then Fn is continuous and increasing on [0,®). In addition

it follows from 9. (an) = g! (an) = 0 that
n n
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lim
X=+0

=0 (n=1,2,...).

Let én > O be chosen according to

F (x)

Fo(x) < —= n " 1 0<x <6 )
n n X n n
2 2
and put
def =
(16) F(x) = n=lmln(Fn(x),Fn(an)) (x =2 0).

Then F 1is continuous and increasing on [0,=) ;

(17) F(O) = FL(O) =0
and
(18) lgan(x)l < F(Ix-anl) (lx-anl < 5n)

for every n=1,2,... .

Let p(n) denote the greatest integer k such that

3¥In . Then 0 < p(n) < n for every n=1,2,... and for

each non-negative integer k there are infinitely many
even as well as odd natural numbers n wiﬁh p(n) =k .
Now we turn to the construction of the function o
Let toeAﬂint I be arbitrary and put v, = O and Po =R .
Let n > O and suppose that the points to,tl,...,tn_l

ANint I , the function 9,-131 =R and the closed set

P-1 have been define in such a way that £y is an

accumulation point of int Pn-lr]A for every 0 £ i £ n-1
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Then we choose a point t € (int P -1NANint I)- {t.}?_l

i’ i=o
such that
(19) lt_~t | < &
n p(n) n °
Next choose en 5 O so that
n-1
(20) ey totepdeP oy - (8375
and
-+ 13 Te -
e, S Ix til for every xeLtn e s totey
(21)

and i=0,1,...,n=-1 .

Now we apply the Lemma with F defined in (16),
g = gtn yoa =t and with € = € - Then the conditions
of the Lemma are satisfied by (17) and (18). (Observe that
a = tn is an accumulation point of A since A 1is dense
in itself.) Thus, by the Lemma, we are given the functions
g1+ 95 and closed sets Kl' K2 satisfying (5)-(9). Now

(5) asserts that gl+g2—gt vanishes in a neighbourhood
n

of tn and hence, by Theorem 1,
(d(gl+g2‘gtn))(tn) =0 .
From this, applying (15) we obtain
(dgl)(tn) + (dgz)(tn) = (dgtn)(tn) 2 2

and thus we have either
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(dg ) (e ) 21 or (dg,) (£ ) 21

Suppose e.qg. (dgl) (tn) 2 1 and put

q)n_l(X) if xerI - Ltn-en, t *te,
tpn(x) =
Lﬁ- (x) if x€eIn[t_-e t_+e¢
2 91 n n’” n n

and P = Pn-—anl . It follows from (20), (8) and (9)
that ti is an accumulation point of int PnﬂA for each

O £ i < n. In this way we have defined by induction the

sequence {tn}c:1=oCA , the functions % (n=0,1,...) and
the closed sets POD P,lD oo

The definition of °n and (20) imply that q:n(x) =
= cpn_l(X) holds for every xg I-P__, (n=1,2,...). Now
we define ¢ by

9_ (x) if xe&I-P (n=0,1,...),

©
0O if xeInNP_ .
n=lrl

We contend that o e and d9 is not Baire 1. It easily

follows by induction from (7), (8) and Pn-lDPn that
(22) lq:n(x)l < 4-F(dist(x,Pn)) (xeI, n=0,1,...).

Hence we have tpn(x) = q:é(x) = 0 for every xéPn which

implies (also by induction) that cpn€;® for every n=0,1,...

Thus ¢ 1is differentiable at every point of I-P , where
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o
P =N Pn . Since (22) implies lg9(x)| £ 4:-F(dist(x,P))
n=1

(X€I) hence o¢(x) =0'(x) =0 for xXx€INP and thus we

have o€

Next we show that

|
(@]

(d9) (t)
(do) (£,) 2 1 if k=0,2,4,...

if k=1,3,5,... ,
(23)

First we prove

9 (x) “Py (x)
(24) lim > =0 (k=0,1,...).
x--tk (x-tk)

Let k 2 O be fixed and let x €I be such that

¢(x)-¢k(x) # O . Then xéEPk , since otherwise ¢(x) = wk(x)
would hold, and thus mk(x) =0 and ¢(x) # O . This implie:
that there is n > k such that lx-tnl S and o¢(x) =

= ¢n(x) . Now it follows from (6), (21) and from the definiti

of %n that

lo(x)=9, (x)] = lo(x)] = lg_(x)1 < lx-tkl3 ,

which proves (24).

By Theorem 1, (24) implies that (d(¢-¢k))(tk) =0 ,
from which we obtain (d@)(tk) = (d°k)(tk) ._If k 1is odd,
then 9, Vvanishes in Etk-ek, tk+ek] and hence, using
Theorem 1 again, (d°k)(tk) =0 . If k is even then, by
the definition of Oy there exists a function gwiﬁ3 such

that (dg)(t;) 2 1 and -g vanishes in [ﬁk-ek, tk+ek] .

?x
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Therefore (d¢k)(tk) = (dg)(tk) 2 1 and thus (23) is
proved.

Let 2 denote the closure of ({t It follows

}UD

k' k=0 °
from (19) that for every k 2 0 and &6 > O there are
infinitely many even as well as odd natural numbers n such

that tne (tk-b, t,+68). Hence both (do¢)(x) = O and

k
(do) (x) 2 1 holds in a dense subset of 2 and thus dq>|z
cannot have any point of cbntinuity. Therefore, ? is not
Baire 1, contradicting our assumption. This contradiction
completes the proof of Theorem 2. .|

We remark that for every scattered set HCI there

exists a derivation d on & such that df is Baire 1

for every £ €d and for each a €H there is fa€® with
(df) (a) # h(a)-£f’(a)

In fact, let h be a fixed Baire 1 function on I. For every

ael we can choose a linear functional Aa=© - R such

that A_# O and ?2(a)C—Ker A\, if a€H , and 2 =0
if a&I-H . Then we define d:D - RT by
(df) (a) = h(a)-f'(a) + A_£ (fed , aeIl).

Then d 1is a derivation by the Corollary of Theorem 1.
Let f&€ P be fixed and denote g = df - h'f’ . The set

{x€I, g(x) # 0} H 1is scattered and this easily implies

that g 1is Baire 1. Since h-f’ 1is also Baire 1, the
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same is true for

df = h-f'+g

which proves our assertion.
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