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 Derivations on Diff erentiable Functions

 Let (R1 denote the class of real valued functions

 defined on the non-degenerate interval ICR and let

 ^ C IR1 be an algebra over the reals . A map

 d : T - (R1

 is said to be a derivation if d is linear and

 (1) d(fg) = f -dg + g- df

 holds for every f,g6 T . Suppose that the identity

 function a (x) = x (x€I) belongs to 1? and let h = da .

 Then contains the polynomials and it is easy to see

 that dp = h-p' holds for every polynomials p . It was

 proved by Yasuo Watatani that df = h-f' holds also for

 every f £ C°°(I) supposing that Coc(I)C.'3:' L2j.

 In this paper we describe the derivations of the

 class óD of diff erentiable functions defined on I . As

 we shall see, df = h-f' is no longer true for every

 derivation on ćD . However, if we suppose that df is

 Baire 1 for every f £ óO then (df ) (x) = h(x)-f'(x)

 holds true for each f €. ¿D apart from a fixed scattered

 subset of I .
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 Theorem 1. A linear map

 d: áD - IR1

 is a derivation if and only if (df) (a) =0 holds whenever

 f 6<D , aél and

 (2) lim - = 0 .
 X- a (x-a)

 Proof . If (2) holds then the function g defined by

 g(x) = •(

 I 0 , .x=a

 is dif f erentiable. Thus, if d is a derivation, we have

 df = d(g-(a-a)) = dg-(a-a) + g-h

 from which (df) (a) =0 .

 Now suppose that d:<£> - IR1 is a linear map satisfying

 the condition of Theorem 1. Let f,gč.3D and a£l be

 arbitrary and put

 s(x) = (f (x)-f (a) ) (g(x)-g(a) ) - f ' (a) • g' (a) . (x-a) 2 (x € :

 S ( X ) Then sčóD and lim - S - - X r = 0 holds and hence we have
 x-a (x-a)

 (ds) (a) = 0 .
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 Hence, by the linearity of d ,

 d (fg) (a) = d(s+f (a) (g-g(a) ) + g (a) (f-f (a) ) +

 + f (a)g(a)+f ' (a)g' (a) (a-a)2) (a) =

 = (ds) (a) + f (a) (dg) (a) + g(a)(df)(a) +

 + 2 f ' (a) -g' (a)- h(a) (a-a) = f(a).(dg)(a) +

 + g (a) . (df) (a) .

 Since a is arbitrary, this implies (1) and d is

 a derivation. 0

 The function f is said to have the second Peano

 derivative at the point a if the finite limit

 (3) lim (f (x)-f (a)-f' (a) (x-a) )/ (x-a) 2
 X- a

 exists. We shall denote by (P^(ã) class of functions
 f 6Í) having the second Peano derivative at a£:I . Then

 ^2^) a linear subspace of <33 and since
 2 1

 the function f(x) = (x-a) «sin - - - , f(a) = 0 belongs
 X"a

 to ÓD - ( a ) •

 Corollary. Let d:áD - R1 be an arbitrary map and

 put h = da . d is a derivation if and only if for each

 a€I there exists a linear functional A :ćD - IR such that
 cl

 (a) C Ker X
 Z cl

 and
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 (df) (a) = h (a) • f ' (a) + A f
 CI

 holds for every f £-cD and a € I .

 Proof. Suppose that d satisfies the condition of

 the Corollary; then d is linear. Let f śD , a él and

 suppose (2) . Then

 f(a) = f' (a) = 0 and

 from which

 (df) (a) = h(a)-fMa) + A f = 0 .
 CL

 Thus, by Theorem 1, d is a derivation.

 On the other hand, if d is a derivation then let

 A be defined by J a J

 A f = (df) (a) - h (a) • f ' (a) (f é £ ) .
 CL

 Then A is linear on and it easily J follows from a J

 Theorem 1 that A vanishes on CP., (a) . In fact, let d ¿

 fGî^3) and let c be the value of the limit under (3).
 Let g = f-f (a) -f ' (a) (o-a) -c (o-a) ^ , then lim ^ ^ 0 = 0

 X- a (x-a)
 and hence

 A ci f = A g + Aa(f (a)+f ' (a) (a-a)+c(a-a)2)= ci a. a

 = (dg) (a)-h(a) • g' (a)+f ' (a) -h(a)-h(a) -f ' (a) =0 .□

 Now we turn to formulate our main result. A set HC.iR

 is said to be scattered if H does not contain any non-
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 empty subset which is dense in itself. It is obvious that

 every scattered set is nowhere dense in iR and it is also

 well-known that a scattered set must be countable ( [11 ,

 §18, V. , p. 141) .

 Theorem 2 . Let d:£) - R1 a derivation and suppose

 that df is Baire 1 for every fé© . Then there exists

 a scattered set HCl such that

 (df) (x) = h(x) • f ' (x)

 holds for every f 6. oD and x ê I-H . (h = do , where a

 denotes the identity function on I . )

 Lemma. Let F:[0,oo) - cr be continuous, increasing

 and satisfying

 (4) F (0) = F|(0) = 0 .

 Let g £ <3D , ač int I be given and suppose that

 I g (x) I F ( I x-a I )

 holds in a neighbourhood of a . Suppose further that a

 is an accumulation point of a given set ACI .

 Then for every e > 0 there are functions g-j_/g2€^D

 and closed sets K^i^CiR such that

 (5) gx (x) + g2 (x) = g(x) in a neighbourhood of a ;
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 (6) lg^(x)l < t for every xčl and i=l,2 ;

 (7) lg^(x)l ś 4- F (dist (x,K^) ) for every x 61 and 1=1,2

 (8) iR-£a-e ,a+e3cK^ (1=1,2)
 and

 (9) a is an accumulation point of A O int (i=l,2).

 Proof. We can suppose a=0 and that 0 is a right

 hand side accumulation point of A . If F (x) = 0 for some

 x > 0 then g(x) = 0 in a neighbourhood of 0 and we can

 take g^ = g2 = 0 and = 1R . Thus we can suppose
 F (x) >0 (x > 0) .

 First we fix 6 £(0,e) such that C""6 / ^ I ^ci

 (10) I g (x) I < F ( I x I ) < "I for every lxi ^6 .

 Let bQ = 6 . Suppose that k > 0 and the point

 0 < b^ ^ ô has been defined. Since F is positive in
 and uniformly continuous in CO/^ļ / we can choose

 0 < c^ < -jb^ such that

 (11) F (x) < 2-F(x-ck) for every xe[jbk'6] •

 Then we choose 0 < b^+^ < c^ with

 (12) AO(bk+l'ck) ^ 0 '
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 Thus, by induction, we have defined the sequences

 {b^} , {c^} such that

 <£=rb > c > b.. > c, > . . . > O O O 1 1

 and

 lim b, K = lim cv = 0 . k- co K k-oo

 Let k £ 0 be fixed. By (10) and (11) we have

 lg(ibk)l < F(ibk) < 2F(ibk-ok) .

 Since F is continuous and positive for x > 0 , we can

 construct a dif ferentiable function s^: - ¡R such
 that

 (13) lsk(x) I < 2-F(x-ck) (ck < x š -jbk)
 and

 sk(Ibk) = g(Ibk) '

 (14) 1 1 sk(K) 1 = 1 •

 Now we define the functions g^, g ^ as follows. For x

 negative we put g^Cx) = = ' where

 0 if x ^ -e and x él ,

 u (x) = <

 ■|g(x) if -j6 < x < 0 ,

 and in (-e,-- jôjni we define u such that it is differenti-
 able, u(- jô ) = > u'(- jõ) = -ig'C- ^-õ) and satisfies
 the inequality
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 Iu(x) I < min(e ,F (x+e) ,F (-x) )

 (X e(-e,-jô]n I) .

 This is possible since

 |^g(~6)| £ ¿F(¿0) < F(^6) < F(-|õ+e) .

 For X non-negative we define

 i~S2k+l<x) lf C2k+1 * X S 2b2k+l '

 g^x) = J g(x) if |b2k+1 < x S c2k ,
 g(x)-s2k(x) if c2k < x £ ¿b

 (k = 0, 1, . . . )

 and g^(x) = 0 otherwise;

 s2k(x) if c2k < x Ž 2b2k ,

 g2(x) = ļ g(x) if ib2k < x Ś ,
 Jlxl-s^-^x) if c2k.1 < x Ä |b2k.1

 (k=l,2,...)

 and = 0 otherwise. Finally we put

 cO

 Kx = U {0} U U [b2k/C2k-l-^ U '-bo'CO)
 k= 1

 and

 K2 = (-»,-c]U (0}u û [b2k+1,c2k3u[b0,«) .
 K - 1

 Let k > 0 be fixed. g^ is obviously dif f erentiable

 at every point of <c2k+1,b2k) - i^>2]c+1/ =2k' łb2k> •
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 (14) implies that g^ is dif ferentiable also at the points

 "I^k+l and Tb2k " ^ 311(1 follows that

 lim l- lim l-

 x-c2k+° X"C2k

 and hence is dif ferentiable at c2k , too. Thus we

 have proved that g^ is dif ferentiable at the points of

 I-K1 .

 If x<=(c2k+l' 2b2k^ then = x"c2k+l *

 Hence, for c2k+i < x - c2k we have

 I g^ (x) I < 2 • F (x~c2k+l^ = 2'F (dist (x,K1) )

 by (13), (10) and (11). Similarly, if c2k < x < -jb^ then

 lg1(x)l < lg(x)l + ls2k(x)l < F (x) + 2-F(x-c2k) <

 < 2 -F (x"c2k+l^ + 2 • F (x~c2k+l^ = 4 ' F (dist (x /K]_) )

 This proves that lg^(x)l ^ 4-F (dist (x,Kļ) ) holds in

 I . This estimation, together with (4) implies gļ(x) = 0

 for every x£IOK^ and hence g^ £ £) . Using (10) we

 obtain Ig^l < e , too. These assertions can be similarly

 proved for g2 and K2 . Since g^(x)+g2(x) = g(x) holds

 in [--jó , b^ļ and (9) follows immediately from (12) the
 proof of the Lemma is complete. □
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 Proof of Theorem 2. Let H denote the set of those

 points a£I for which there exists f 6 O such that 3i

 (df ) (a) ji h (a) • f ' (a) .
 a. d

 We have to prove that H is scattered. Suppose this is

 not true and let ACH be non-empty and dense in itself.

 We can choose A to be countable; otherwise we take a

 countable and dense subset of A . Making use of this

 assumption we shall construct a function q> €. (D such that

 dtp is not Baire 1.

 For a € A we put

 g = f - f (a) - f Ma) (a-a) ,
 Cl Cl Cl C L

 then g (a) = g'(a) = 0 and
 cl cl

 (dg ) (a) = (df ) (a) - f'(a)-h(a) ¿ 0 .
 a. a. a.

 Multiplying by a suitable constant we can suppose that

 (15) (dg ) (a) > 2 (aêA) .
 O.

 Let A = {a }°° , and define
 ii n=i

 F n (x) = sup lga (a +y) I (x"X), n=l,2,...). n lyl<x n
 a+y«

 Then F is continuous and increasing on LP,130) . In addition
 n

 it follows from g (a ) = g' (a ) = 0 that
 an n n n
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 F (x)
 lim

 X-+0

 Let 6 > O be chosen according to

 F ( x )
 F (x) < - , -

 n 2n x 2n n

 and put

 OO

 (16) F (x) dif Hinin(F (x),F(6 J) (x > 0) .
 n=l n n n

 Then F is continuous and increasing on Lo,1») ?

 (17) F (0) = FĻ(0) = 0

 and

 (18) lga (x) I < F(lx-al) (Ix-a I < O ā ri nu
 n

 for every n=l,2,... .

 Let p(n) denote the greatest integer k such that

 3^1 n . Then 0 < p(n) < n for every n=l,2,... and for
 each non-negative integer k there are infinitely many

 even as well as odd natural numbers n with p(n) = k .

 Now we turn to the construction of the function <p .

 Let t ê. A Oint I be arbitrary and put <p =0 and P = IR .
 o o o

 Let n > 0 and suppose that the points t0,tl' * ' * /fcn-l^
 A flint I , the function q> , : I - iR and the closed set

 n-i

 P , have been define in such a way 1 that t. is an n-1 , way 1 i

 accumulation point of int A f°r every 0 < i < n-1 .
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 Then we choose a point t €(int P„ , OAflint I)- {t.}1? ^ n n-i i 1=0

 such that

 U9) I t n "t (n) , , I < è n • n p (n) n

 Next choose e > 0 so that
 n

 <20» CVV VEn3cPn-l -
 and

 en - '^i1 for every x€Ltn"en' V"eJ
 (21)

 and i=0,l, . . . ,n-l .

 Now we apply the Lemma with F defined in (16) ,

 g = <3j- t a = t and with e = e . Then the conditions
 t n n
 n

 of the Lemma are satisfied by (17) and (18) . (Observe that

 a = t is an accumulation point of A since A is dense
 n

 in itself.) Thus, by the Lemma, we are given the functions

 ^1' ^2 an<^ cl°se<^ sets K^, K2 satisfying (5)-(9). Now

 (5) asserts that ^i+<?2~^t vanishes in a neighbourhood
 n

 of t and hence, by Theorem 1,

 (d(g1+g2-gt )) <tn> = O .
 n

 From this, applying (15) we obtain

 (dgi) (tn) + (dg2) (tn) = (dgfc ) (tn) > 2
 n

 and thus we have either
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 (dgl) (tn) - 1 or (dg2) (tn} - 1 *

 Suppose e.g. (dg^ (t ) ^ 1 and put

 f'n-l(x) if xáI-¡Vcn'V£J,
 <Pn(X) = i

 l=ł£tŁ.,l(,) if xemCvWnl
 v-

 and P = P„ , O K, . It follows from (20), (8) and (9) n n- j. i

 that t . is an accumulation point of int P 0 A for each
 i n

 0 ^ i ú n. In this way we have defined by induction the

 sequence {t J00 „CA , the functions q> (n=0,l,...) and
 n n=o n

 the closed sets P D P.. D . . . .
 o 1

 The definition of <p and (20) imply that ® (x) =
 n n

 = q> . (x) holds for every x€I-P , (n=l, 2 ,...). Now
 x n -L

 we define cp by

 Pq>n(x) if x€I-Pn (n=0,l,...) ,
 cp (x) = <

 OO

 o if xéinnp .
 L n=l n

 We contend that cp S. O and dq> is not Baire 1. It easily
 follows by induction from (7), (8) and P„ OP that

 n-JL n

 (22) I qpn (x) I < 4« F (dist (x/Pß) ) (x6I, n=0,l,...).

 Hence we have <p (x) = <p ' (x) = 0 for every xêP which
 n n n

 implies (also by induction) that <?n €. £) for every n=0,l,...
 Thus op is dif f erentiable at every point of I-P , where
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 oo

 P = O P . Since (22) implies lq>(x)l < 4 • F (dist (x,P) )
 n=l n

 (x€I) hence 9 (x) = cp ' (x) = O for x£IflP and thus we

 have 9 €. í) .

 Next we show that

 (dcp) (t, ) =0 if k=l/3 ,5 , . . . ,
 (23) K

 (dcp ) (tk) >1 if k=o,2,4,. . . .

 First we prove

 9 (x) -<p, (x)
 (24) lim

 x-tk (x-tk)

 Let k > 0 be fixed and let x€I be such that

 <P (x) -<p^ (x) ï 0 . Then x £-2^ / since otherwise q) (x) = ^(x)
 would hold, and thus = ^ 9 (x) ? 0 . This implie:

 that there is n > k such that I x-t I < e and q> (x) =
 n n

 = <Pn(x) ♦ Now it follows from (6), (21) and from the definiti;
 of ® that

 n

 l<p(x)-q»k(x) I = I 9 (x) I = l9n(x)l < lx-tk|3 ,

 which proves (24) .

 By Theorem 1, (24) implies that (d(9~9k)) (t^) = 0 ,

 from which we obtain (d9) (t^) = (d9^) (t^) .If k is odd,

 then 9k vanishes in Ltk""ek' tk+ekP hence, using
 Theorem 1 again, (d9^) (t^) = 0 . If k is even then, by

 the definition of 9k f there exists a function g £ <D such

 that (dg) (t^) ^ 1 and 9^-g vanishes in Ct]c~e]c' '
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 Therefore ^'k^ ^k^ = ~ ^ an(^ ^us (23) is
 proved.

 Let Z denote the closure of {t, J?2 . It follows
 JC K=0

 from (19) that for every k £ 0 and 6 > 0 there are

 infinitely many even as well as odd natural numbers n such

 that tn€ (t^-6 , tk+6). Hence both (d<p)(x) = 0 and
 (dtp) (x) > 1 holds in a dense subset of Z and thus dep I

 ' Z

 cannot have any point of continuity. Therefore, <f> is not
 Baire 1, contradicting our assumption. This contradiction

 completes the proof of Theorem 2 . □

 We remark that for every scattered set H CI there

 exists a derivation d on S such that df is Baire 1

 for every f 6 33 and for each a 6 H there is f éCD with
 cl

 (df) (a) Ý h(a) -t' (a) .

 In fact, let h be a fixed Baire 1 function on I. For every

 a £ I we can choose a linear functional X : cD - iR such
 ĆI

 that X ķ 0 and 3-L (a) C. Ker X if a£H , and X =0
 3. ¿m 3i cl

 if a 6.I-H . Then we define d:íD - IR1 by

 (df) (a) = h (a) • f ' (a) + X f (f 6 £> , a€I).
 cl

 Then d is a derivation by the Corollary of Theorem 1.

 Let f e áD be fixed and denote g = df - h-f' . The set

 {x € I , g(x) ý- 0} H is scattered and this easily implies

 that g is Baire 1. Since h-f' is also Baire 1, the
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 same is true for

 df = h-f'+g

 which proves our assertion.
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