RESEARCH ARTICLES Real Analysis Exchange Vol. 7 (1981-82)
L. Zajíček, Matematicko-fyzikální fakulta University Karlovy,
186 oo Praha 8, Sololovská 83, Czechoslovakia.

On Dini derivates of continuous and monotone functions.

<u>1. Introduction</u>. In [10] H.H. Pu, J.D. Chen and H.W. Pu proved the following:

<u>Lemma A.</u> Let f be a continuous function on R. Then the set of all x at which $\overline{f}_{ap}^+(x) < \overline{f}(x)$ is a first category set. They used this lemma to obtain the approximate analogue of the well known Neugebauer theorem [9] on the symmetry of derivates of continuous functions. M.J. Evans and P.D. Humke [4] pointed out that Lemma A immediately yields the following:

<u>Theorem B.</u> Let f be a continuous function. Then at all points x except a first category set $\overline{f^+}(x) = \overline{f^-}(x) = \overline{f^+}_{ap}(x) = \overline{f^-}_{ap}(x)$.

In [5] M.J. Evans and P.D. Humke proved that the following assertion holds.

<u>Theorem C</u>. Let f be a monotone function on R. Then at all points x except a σ -porous set $\overline{f}^+(x) = \overline{f}^-(x) = \overline{f}^+_{ap}(x) = \overline{f}^-_{ap}(x)$ and $\underline{f}^+(x) = \underline{f}^-(x) = \underline{f}^+_{ap}(x) = \underline{f}^-_{ap}(x)$.

In the present article we show that Theorems B, C can be strengthened. In fact, in these theorems we can assert instead of $\overline{f^+}(x) = \overline{f^+}_{ap}(x)$ the stronger fact that $\overline{f^+}(x)$ is a right essential derived number. We say (see [7], p.4 and [2], p. 51) that an extended real number e is a right essential derived number (resp. an essential derived number) of f at x if there exists a measurable set E having right upper density 1 at x (resp. symmetric upper density 1 at x) such that $\lim_{y\to x, y\in E} (f(x))(y-x)^{-1} = e \cdot y \to x, y \in E$ As consequences some results on preponderant derivatives are obtained. Note that Corollary 4 gives a partial answer to a question to Problem 4 of [1].

For the definitions of σ -porous sets and related notions see e.g. [5] or [6]. The symbol λ stands for the Lebesgue measure on the real line R.

<u>2. Theorems</u>. The following simple fact is essentially well known (c.f.[7] and [10]).

Lemma. Let f be a continuous function on R. Let $a \ge 0$, h > 0, $r \in R$, $x_n \rightarrow x$ and $\lambda \{y \in (x_n, x_n + h): (f(y) - f(x_n))(y - x_n)^{-1} \le x\} \ge a$. $\leq r\} \ge a$. Then $\lambda \{y \in (x, x + h): (f(y) - f(x))(y - x)^{-1} \le r\} \ge a$.

Proof. It is easy to see that

 $\lim \sup \{t_{\varepsilon}(0,h): (f(x_n+t) - f(x_n))/t \leq r\} \subset \{t_{\varepsilon}(0,h):$

 $(f(x+t) - f(x))/t \le r$. From this fact the assertion of Lemma immediately follows.

<u>Theorem 1</u>. Let f be a continuous function on R and w an <u>arbitrary positive function such that</u> $\lim_{h \to 0+} w(h) = 0$. <u>Then for all points</u> x <u>except a first category set there exists a</u> <u>measurable set</u> M <u>such that</u> $\lim_{h \to 0+} \inf \lambda((x,x+h)-M) / w(h) = 0$ <u>and</u> $h \to 0+$ $\lim_{h \to 0+} (f(y)-f(x)) \cdot (y-x)^{-1} = \overline{f}^+(x)$ $y \to x, y \in M$ <u>Proof</u>. It is easy to verify that it is sufficient to prove that the set A of all x for which there exists a rational number r such that $\overline{f^+}(x) > r$ and lim inf $\lambda((x,x+h) - \{y:(f(y)-f(x))(y-x)^{-1} > r\}) / w(h) > 0$ h+0+ is a first category set. For a rational r and a positive integer n let $B_{r,n}$ be the set of all x for which $\lambda(\{ye(x,x+h): (f(y) - f(x))(y-x)^{-1} \le r\}) \ge w(h) / n$ whenever 0 < h < 1/n. Put $A_{r,n} = B_{r,n} \cap \{x: \overline{f^+}(x) > r\}$. Since $A = \bigcup A_{r,n}$, it is sufficient to prove that all $A_{r,n}$ are nowhere dense sets. Suppose that an $A_{r,n}$ is dense in (a,b), a < b. From the Lemma it immediately follows that $B_{r,n}$ is a closed set. Consequently $(a,b) < B_{r,n}$ and thus $\underline{f^+}(y) \le r$ for any $y \in (a,b)$. By Dini's Theorem ([11], p.204) we obtain that $\overline{f^+}(x) \le r$ on (a,b), which is a contradiction.

<u>Corollary 1</u>. Let f be a continuous function on R. Then at all points x except a first category set $\overline{f}^+(x) = \overline{f}^-(x)$, $\underline{f}^+(x) = \underline{f}^-(x)$ are essential derived numbers of f.

<u>Corollary 2</u>. Let f be a continuous function. Then the set of all points at which the preponderant derivative of f (resp. the right preponderant derivative) exists but the derivative (resp. the right derivative) does not exist is a first category set. (We can clearly choose any definition of the (right) preponderant derivative contained in [3], [8], [1].)

<u>Theorem 2.</u> Let f be a monotone function. Then at all points x except a σ -porous set $\overline{f}^+(x) = \overline{f}^-(x)$ and $\underline{f}^+(x) = \underline{f}^-(x)$ are

235

essential derived numbers of f.

<u>Proof</u>. From Theorem C and from the fact that the functions -f(x), f(-x), -f(-x) are monotone it follows that it is sufficient to prove that the set of all x at which $\overline{f}(x) = \overline{f}(x)$ and $\overline{f}(x)$ is not a left essential derived number is σ -porous. For any positive integer n and rational numbers s < r let $A_{n,s,r}$ be the set of all points x at which f is continuous, $\overline{f}(x) > r$ and $\lambda(\{y_{\varepsilon}(x-h,x): (f(y) - f(x))(y-x)^{-1} < s\})/h > 1/n$ whenever 0 < h < 1/n. It is clearly sufficient to prove that all $A_{n,s,r}$ are porous. Let $x \in A_{n,s,r}$ be given. Choose p > 0 such that

(1)
$$8p(1 + |r|/(r-s)) < 1/n$$
.

We shall prove that the porosity of $A_{n,s,r}$ at x is at least p. Let 0 < d < 1/2n. Choose $y_{\epsilon}(x,x+d)$ such that

(2) $(f(y) - f(x))(y-x)^{-1} > r$.

Define the auxiliary linear function g(z) = f(y) + (z-y)r and put a = inf{ $z \in [x, y]$: $f(z) \ge g(z)$ }. Since f is continuous at x,(2) yields a > x. Put J = (a, a + 4p(a-x)) if f is nondecreasing and J = (a - 4p(a-x), a) if f is nonincreasing. Since J $\subset (x, x + 2(a-x))$ it is clearly sufficient to prove that $J \cap A_{n,s,r} = \emptyset$. Suppose on the contrary that there exists $z \in J \cap A_{n,s,r}$. Then $f(z) \ge g(a)$ and therefore

(3)
$$g(z) - f(z) \leq 4p|r|(a-x)$$

Define the further auxiliary linear function h(t) = f(z) + (t-z)s. From (3) easily follows that h(t) > g(t) for t < z - 4|r|p(a-x)/(r-s). Therefore $C = \{te(x,z):$ $(f(t) - f(z))/(t-z) < s \} = \{t\varepsilon(x,z): f(t) > h(t)\} \subset [z - 4|r|(a-x)p/(r-s), z) \cup \{t\varepsilon(x,z - 4|r|(a-x)p/(r-s)): f(t) > g(t)\}. By the definition of a the last set is a subset of J and therefore <math>\lambda C \le 4p(a-x)+4|r|(a-x)p/(r-s)<(a-x)/2n<(z-x)/n and this is a contradiction since (z-x) < 1/n and zeA_{n,s,r}.$

<u>Corollary 3</u>. Let f be a <u>Lipschitz function</u>. Then the conclusion of Theorem 2 holds.

<u>Proof</u>. Consider the function g(x) = f(x) + Kx, where K is a Lipschitz constant of f.

<u>Corollary 4</u>. Let f be a monotone or Lipschitz function. Then the set of all points at which the preponderant derivative of f(resp. the right preponderant derivative) exists but the derivative does not exist is a σ -porous set.

REFERENCES

- [1] A.M. Bruckner: Some observations about Denjoy's preponderant derivative, Bul. Math. Soc. Sci. Math. R.S.R. 21 (69)(1977), 1-10.
- [2] A.M. Bruckner, C. Goffman: Approximate differentiation, Real Analysis Exchange 6(1980/81), 9-65.
- [3] A. Denjoy: Sur une propriete des fonctions derivees, Enseignement Math. 18(1916), 320-328.
- [4] M.J. Evans, P.D. Humke: Directional cluster sets and essential directional cluster sets of real functions defined in the upper half plane, Rev. Roum. Math. Pures et Appl. 23(1978), 533-542.
- [5] M.J. Evans, P.D. Humke: The equality of unilateral derivates, Proc. Amer. Math. Soc. 79(1980), 609-613.
- [6] J. Foran, P.D. Humke: Some set theoretic properties of σ-porous sets, Real Analysis Exchange 6(1980/81), 114-119.
- [7] V. Jarnik: Sur les nombres derives approximatifs, Fund. Math. 22(1934), 4-16.
- [8] J.L. Leonard: Some conditions implying the monotonicity of a real function, Rev. Roum. Math. Pures et Appl. 17 (1972), 757-780.
- [9] C.J. Neugebauer: A theorem on derivates, Acta Szeged 23 (1962), 79-81.
- [10] H.H. Pu, J.D. Chen, H.W. Pu: A theorem on approximate derivates, Bull. Inst. Math. Acad. Sinica 2(1974), 87-91.
- [11] S. Saks: Theory of the Integral, New York 1937.

Received May 29, 1981