V. Špitálský and V.Toma, Faculty of Mathematics and Physics, Comenius University, Mlýnská dolina, 84215 Bratislava, Slovakia, e-mail: toma@fmph . uniba.sk

A THEOREM ON SEQUENCES OF DIFFERENTIABLE FUNCTIONS

1 Introduction

 Some interesting results dealing with convergence of derivatives are known. We can quote e.g. results of D. Preiss and G.Petruska and M.Laczkovich ([4], [3]) stating that each Baire two function is a pointwise limit of derivatives and each Baire one function defined on a nowhere dense compact set is a uniform limit of derivatives. These results, however, don't say anything about con vergence of primitives. Except the well known theorem that under uniform convergence of derivatives $(\lim f_n)' = \lim f'_n$ and some of its localizations, the literature contains few other theorems describing the relationship between f' and g, where $f = \lim f_n$, $g = \lim f'_n$. Here we try to fill in this gap for continuous derivatives by showing that the only thing we can say is $f'(x) = g(x)$ almost everywhere on a dense open set. We also show that this assertion holds in the more general case where derivatives of higher orders are considered. As a consequence we get a result related to the aforementioned theorems, namely: for every $p+1$ functions from the first Baire class defined on a nowhere dense closed set there exists a sequence of p -times continuously differentiable func tions, such that the sequences of the successive derivatives converge to the corresponding function.

2 Statement of Results

The main result of this paper is the following:

Key Words: Baire 1 functions, C^p functions, pointwise limits

Mathematical Reviews subject classification: Primary: 26A24 Secondary: 26A21 Received by the editors January 9, 1995

Theorem 1 Let $p \in \mathbb{N}$ and $g_0, g_1, \ldots, g_p : \mathbb{R} \to \mathbb{R}$. Then there is a sequence $(f_n)_{n\geq 1}$ of p-times continuously differentiable functions such that

$$
f_n \to g_0, \ f'_n \to g_1, \ldots, \ f_n^{(p)} \to g_p,
$$

if and only if every g_i is Baire one,

(1)
$$
g_0^{(p)}(x) = g_1^{(p-1)}(x) = \cdots = g_p(x)
$$
 a.e. on a dense open set U

and g_0, \ldots, g_{p-1} are locally absolutely continuous on U .

An immediate consequence of Theorem 1 is the following

Corollary 1 Let $p \in \mathbb{N}$ and let $F \subset \mathbb{R}$ be nowhere dense and closed. Then for every set of Baire one functions g_0, g_1, \ldots, g_p defined on F there is a sequence $(f_n)_{n>1}$ of p-times continuously differentiable functions defined on R such that

$$
f_n \to g_0
$$
, $f'_n \to g_1$,..., $f_n^{(p)} \to g_p$ on F.

Note that Theorem 1 does not hold without the assumption that the p^{th} derivatives, $f_n^{(p)}$, are continuous. Moreover, if we only assume that the f_n are p-times differentiable, the function $g_p = \lim_{n\to\infty} f_n^{(p)}$ can be any Baire two function independent of the g_0, \ldots, g_{p-1} . This fact easily follows from [3, Corollary 4.12] and from the fact that every Baire two function is the limit of bounded approximately continuous functions, (see [5] and [6]).

In the proof of Theorem 1 we shall use the following notation: \mathcal{B}_1 , L^1_{loc} , C^p denotes the class of all Baire one, locally Lebesgue integrable, p -times continuously differentiable functions $f : \mathbb{R} \to \mathbb{R}$, respectively. Define

$$
\mathcal{T}_p = \{ (g_0, g_1, \ldots, g_p) ; \exists (f_n)_{n \geq 1} \subset C^p : f_n^{(r)} \to g_r \text{ for every } r = 0, 1, \ldots, p \},
$$

$$
\mathcal{T} = \bigcup_{p=1}^{\infty} \mathcal{T}_p
$$

and for arbitrary $g : \mathbb{R} \to \mathbb{R}$, $M \subset \mathbb{R}$ define the function g_M by $g_M(x) = g(x)$ if $x \in M$, $g_M(x) = 0$ otherwise.

3 Proofs

 The proof of the necessity is rather straightforward. Obviously we can suppose $p = 1$. For an arbitrary open interval I put $H_k = \{x \in I; \exists n \in \mathbb{N} : |f'_n(x)| > k\}$ k}. Since every H_k is open and $(H_k)_{k>1}$ has empty intersection, by the Baire

Category Theorem there is $k \in \mathbb{N}$ and $[a, b] \subset I$ such that $H_k \cap [a, b] = \emptyset$. So $|f'_n(x)| \leq k$ on [a, b] for every $n \in \mathbb{N}$ and by the Lebesgue Dominated Convergence Theorem we have for each $x \in [a, b]$

$$
g_0(x) = \lim_{n \to \infty} f_n(x) = \lim_{n \to \infty} [f_n(a) + \int_a^x f'_n(t) dt] = g_0(a) + \int_a^x g_1(t) dt.
$$

From this the necessity follows easily.

Lemma 1 Let $g \in \mathcal{B}_1 \cap L^1_{loc}$; put $G^0 = g$ and let G^r be an indefinite (Lebesgue) integral of G^{r-1} $(r = 1, ..., p)$. Then $(G^p, ..., G^1, G^0 = g) \in \mathcal{T}$.

PROOF. First suppose $g \ge 0$. Since $g \in \mathcal{B}_1$, there is a sequence of continuously differentiable functions $(g_n)_{n>1}$ such that $g_n \to g$. Take arbitrary compact interval $I = [a, b]$. There is a lower semicontinuous integrable function $\psi \geq g$ on *I* (see e.g. [1], p.192). From [2], p.448, there is $(h_n)_{n>1} \subset C(I)$ such that $0 \leq h_n \nearrow \psi$. Put

$$
H_n^0(x) = \min\{g_n(x), h_n(x)\}, \quad H_n^r(x) = G^r(a) + \int_a^x H_n^{r-1}(t)dt
$$

for $x \in [a, b]$, $r = 1, ..., p$, and define $f_n = H_n^p$. Obviously $f_n^{(p)} = H_n^0 \rightarrow G^0$ $g, f_n^{(p-1)} = H_n^1 \to G^1$ (since $(H_n)_{n \ge 1}$ is integrably dominated by ψ), $f_n^{(p-2)} = H_n^2 \to G^2$ (since $(H_n^1)_{n \ge 1}$ is dominated by $\Psi^1(x) = G^1(a) + \int_a^x \psi(t) dt$), etc. So $(G^p, ..., G^0 = g) \in \mathcal{T}$ on every compact interval I, hence, it is easy to see that $(G^p, \ldots, G^0 = g) \in \mathcal{T}$ on \mathbb{R} .

In the general case put $g_+ = \max(g, 0), g_- = -\min(g, 0)$. Clearly, $g_+, g_$ are nonnegative locally integrable Baire one functions, so from above, $(G_+^p, \ldots, G_+^0 = g_+),$ and $(G_-^p, \ldots, G_-^0 = g_-)$ belong to $\mathcal T$. Now the assertion follows from $G^r = G_+^r - G_-^r$ $(r = 0, \ldots, p)$.

Lemma 2 If $g \in \mathcal{B}_1$ and $g'(x) = 0$ on a dense open set, then, $(g, 0, \ldots, 0) \in$ T. If moreover g is locally integrable, then also $(G^p, \ldots, G^0 = g, 0, \ldots, 0) \in \mathcal{T}$, where G^0, \ldots, G^p are such as in Lemma 1.

PROOF. Let $g'(x) = 0$ on a dense open set U and let $\{(a_k, b_k)\}_k$ denote the system of components of U. Note that $g(x) \equiv c_k = const$ on every (a_k, b_k) . Since g is a Baire one function, there is a sequence of continuous functions $(g_n)_{n\geq 1}$ converging to g; without loss of generality we can suppose that each g_n is uniformly continuous. So for $\varepsilon = \frac{1}{n}$ there is $l \in \mathbb{N}$ such that

(2)
$$
|g_n(x) - g_n(y)| < \frac{1}{n} \quad \text{whenever } |x - y| < \frac{1}{l}.
$$

Sequences of Differentiable Functions 661

Clearly we can take a sequence $\ldots < x_{-1} < x_0 < x_1 < \ldots, x_i \to \infty, x_{-i} \to$ $-\infty$ such that for every $k \leq n$ there is $i = i_k : x_{i-1} = a_k$, $x_i = b_k$ and for every $i \neq i_1, \ldots, i_n : x_i-x_{i-1} < \frac{1}{i}$.

Put $f_n(x_i) = g_n(x_i)$ for every i and on (x_{i-1},x_i) define f_n as follows: If $i = i_k$ for some $k \leq n$, then put $f_n(x) = c_k$ for $x \in [a_k + \frac{b_k - a_k}{2n}, b_k - \frac{b_k - a_k}{2n}]$; on $(a_k, a_k + \frac{b_k - a_k}{2n}) \cup (b_k - \frac{b_k - a_k}{2n}, b_k)$ define f_n such to be p-times continuously differentiable on $[a_k, b_k]$ and $f_n^{(r)}(a_k) = f_n^{(r)}(b_k) = 0$ for every $r = 1, ..., p$. If $i \neq i_k$ for every $k \leq n$ then (since U is dense) there is $k > n$ such that at least one of the following assertions holds:

(i)
$$
x_{i-1} < b_k < x_i
$$
, (ii) $x_{i-1} < a_k < x_i$, (iii) $(x_{i-1}, x_i) \subset (a_k, b_k)$.

In the case (i) put $\delta = \frac{1}{2} \min\{b_k - x_{i-1}, b_k - a_k\}$ and define $f_n(x) = g_n(x_{i-1})$ for $x \in (x_{i-1},b_k - \delta], f_n(x) = g_n(x_i)$ for $x \in (b_k,x_i)$. On $(b_k - \delta,b_k) \subset (a_k,b_k)$ define f_n such that

(3)
$$
f_n \in C^p
$$
, $f_n^{(r)}(x_{i-1}) = f_n^{(r)}(x_i) = 0$ for $r = 1, ..., p$;
\n
$$
\min\{g_n(x_{i-1}), g_n(x_i)\} \le f_n(x) \le \max\{g_n(x_{i-1}), g_n(x_i)\} \text{ on } [x_{i-1}, x_i].
$$

Analogously define f_n in the case (ii). If (iii) is satisfied then on (x_{i-1}, x_i) we can define f_n arbitrary, requiring only that (3) holds.

The fact $f_n^{(r)} \to 0$ follows from the observation

$$
\{x : f_n^{(r)}(x) \neq 0\} \subset \bigcup_{k=1}^n [(a_k, a_k + \frac{b_k - a_k}{2n}) \cup (b_k - \frac{b_k - a_k}{2n}, b_k)] \cup \bigcup_{k=n+1}^{\infty} (a_k, b_k).
$$

The assertion $f_n(x) \to g(x)$ for $x \in U$ is obvious. Now it suffices to realize that by (2), (3) $|f_n(x) - g_n(x)| < \frac{1}{n}$ whenever $x \in \mathbb{R} - U$.

The assertion $f_n(x) \to g(x)$ for $x \in U$ is obvious. Now it suffices to realize
that by (2), (3) $|f_n(x) - g_n(x)| < \frac{1}{n}$ whenever $x \in \mathbb{R} - U$.
The proof of the second statement is similar to the proof of Lemma 1, only e assertion $f_n(x) \to g(x)$ for $x \in U$ is obvious. Now it suffices to realize
t by (2), (3) $|f_n(x) - g_n(x)| < \frac{1}{n}$ whenever $x \in \mathbb{R} - U$.
The proof of the second statement is similar to the proof of Lemma 1, only
lead of $\min(g_n$

intered in $f_n(x) \to g(x)$ for $x \in U$ is obvious. Now it sumes to realize
that by (2), (3) $|f_n(x) - g_n(x)| < \frac{1}{n}$ whenever $x \in \mathbb{R} - U$.
The proof of the second statement is similar to the proof of Lemma 1, only
instead of \min The proof of the second statement is similar to the proof of Lemma 1, only
instead of $\min(g_n, h_n)$ we have to take functions f_n constructed as above such
that $f_n \in C^s$, $f_n^{(r)} \to 0$ for $r = 1, ..., s$ and $|f_n(x) - \min\{g_n(x), h_n(x)\}|$ instead of $\min(g_n, h_n)$ we have to take functions f_n constructed as above such
that $f_n \in C^s$, $f_n^{(r)} \to 0$ for $r = 1, ..., s$ and $|f_n(x) - \min\{g_n(x), h_n(x)\}| < \frac{1}{n}$
if $x \notin U$, $|f_n(x) - g(x)| < \frac{1}{n}$ if $x \in U$. (Obviously these functi that $f_n \in C^s$, $f_n^{(r)} \to 0$ for $r = 1, ..., s$ and $|f_n(x) - \min\{g_n(x), h_n(x)\}| < \frac{1}{n}$
if $x \notin U$, $|f_n(x) - g(x)| < \frac{1}{n}$ if $x \in U$. (Obviously these functions also have an integrable major function on I , e.g. $\psi + g + 1$.)

Lemma 3 If $g \in \mathcal{B}_1$ and $g(x) = 0$ on a dense open set, then

$$
(0,\ldots,0,g,0,\ldots,0)\in\mathcal{T}.
$$

PROOF. Lemma 3 follows easily from Lemma 2 in the case that g is locally integrable since local integrability implies that $(G^p, \ldots, G^1, G^0 = g, 0, \ldots, 0) \in$ \mathcal{T} and $(G^p, \ldots, G^1,0,0,\ldots,0) \in \mathcal{T}$, hence $(0, \ldots, 0, g,0,\ldots,0) \in \mathcal{T}$.

Now let g be arbitrary Baire one function such that $g(x) = 0$ on a dense open set U. Put $K = \mathbb{R} - U$; clearly K is closed and nowhere dense. Define

 $K_0 = K$; if we have already defined K_β for every $\beta < \alpha$ such that $K_\beta \supset K_{\beta'}$ whenever $\beta < \beta' < \alpha$, let us define

$$
M = \bigcap_{\beta < \alpha} K_{\beta}, \quad K_{\alpha} = M - \{x \in M : g_M \text{ is locally bounded at } x\}.
$$

Obviously $K_{\alpha} \subset K_{\beta}$ for $\beta < \alpha$ and since g_M is Baire one, K_{α} is a nowhere dense closed subset of M. Therefore the sets K_{α} must be empty from a certain ordinal on; let α_g be the smallest ordinal α such that $K_{\alpha} = \emptyset$.

Now we show that $(0, \ldots, 0, g, 0, \ldots, 0) \in \mathcal{T}$ by means of transfinite induction with respect to α_g . This is true if $\alpha_g = 0$, since then $g \equiv 0$ is integrable. Assume that the assertion holds for each $\alpha_g < \alpha$ and suppose that $\alpha_g = \alpha$. Put $F = \bigcap K_{\beta} \neq \emptyset$. Obviously g_F is a Baire one function locally bounded $\beta < \alpha$

on \mathbb{R} , so we have $(0, \ldots, 0, g_F, 0, \ldots, 0) \in \mathcal{T}$.

If $K' \subset K - F$ is closed, then easily $K'_{\beta} = (K')_{\beta} \subset K_{\beta} \cap K'$ for each ordinal β , hence

$$
\bigcap_{\beta<\alpha}K'_{\beta}\subset\bigcap_{\beta<\alpha}K_{\beta}\cap K'=F\cap K'=\emptyset,
$$

which implies $K'_\beta = \emptyset$ for a $\beta < \alpha$. So $\alpha_{g_{K'}} < \alpha$ and $(0, \ldots, 0, g_{K'}, 0, \ldots, 0) \in$ $\mathcal T$ by the induction hypothesis.

Let $(c_j, d_j)_{j>0}$ be the system of intervals contiguous to F. Obviously for each $j \ge 0$ there is a sequence $\ldots < x_{-1}^j < x_0^j < x_1^j < \ldots$ such that $x_i^j \to$ d_j , $x_{-i}^j \rightarrow c_j$. Put $M_k = K \cap \bigcup_{j=0}^{k-1} [x_{-(k-j)}^j, x_{k-j}^j]$ for every $k \ge 1$. The sets M_k are closed subsets of $K - F$, hence $(0, \ldots, 0, g_{M_k}, 0, \ldots, 0) \in \mathcal{T}$, i.e.
there is $(h_n^k)_{n \geq 1} \subset C^p : (h_n^k)^{(r)} \to 0$ for every $r = 0, \ldots, p, r \neq r_0$ and $(h_n^k)^{(r_0)} \to g_{M_k}.$

Define $f_n(x) = 0$ if $x \notin M_{n+1}$ and for $k = 1, 2, ..., n$ define $f_n(x) =$ $h_n^k(x)$ if $x \in [x_{-(k-j)}^j + \delta_n, x_{-(k-j)+1}^j - \delta_n] \cup [x_{k-j-1}^j + \delta_n, x_{k-j}^j - \delta_n]$ $(j =$ $(0,\ldots,k-1)$, where $\delta_n = \frac{1}{2n} \min\{x_i^j - x_{i-1}^j : |i| + j \leq n\}$. For the others x define $f_n(x)$ such to $f_n \in C^p$ and $f_n^{(r)}(x_i^j) = 0$ for $r \neq r_0$, $f_n^{(r_0)}(x_i^j) = g(x_i^j)$ whenever $|i| + j \leq n$. Obviously $f_n^{(r)} \to 0$ for $r \neq r_0$, $f_n^{(r_0)} \to g_{K-F}$, hence $(0, \ldots, 0, g_{K-F}, 0, \ldots, 0) \in \mathcal{T}$. Since also $(0, \ldots, 0, g_F, 0, \ldots, 0) \in \mathcal{T}$, we have $(0,\ldots,0,g_{K-F}+g_F=g_K=g,0,\ldots,0)\in\mathcal{T}.$ □

PROOF OF SUFFICIENCY. Let $g_0^{(p)}(x) = \cdots = g_p(x)$ a.e. on a dense open set U. Since $g_p \in \mathcal{B}_1$, g_p is locally bounded on a dense open set and so we can suppose that g_p (and hence each g_r) is locally bounded at every $x \in U$. Put $h_r =$ $(g_r)_U, k_r = (g_r)_{\mathbb{R}-U}$ for $r = 0, \ldots, p$. By Lemma 3 $(0, \ldots, 0, k_r, 0, \ldots, 0) \in \mathcal{T}$, so to finish the proof it suffices to show that $(h_0, \ldots, h_p) \in \mathcal{T}$.

Let $\{(a_k,b_k)\}_k$ be the system of components of U and let $c_k \in (a_k,b_k)$. Obviously from the assumptions of Theorem 1 and from the fact that every g_r is locally bounded on U we have that each h_{r-1} is an indefinite integral of h_r on every (a_k, b_k) . Hence by Lemma 1 there are sequences $(l_n^k)_{n \geq 1} \subset$ C^p such that $(l_n^k)^{(r)} \xrightarrow{n} h_r$ on (a_k, b_k) for every $r = 0, \ldots, p$. Now define functions l_n as follows: Put $l_n(x) = 0$ for $x \in \mathbb{R} - U$, $l_n(x) = l_n^k(x)$ for $x \in [a_k + \frac{b_k - a_k}{2n}, b_k - \frac{b_k - a_k}{2n}]$ and on $(a_k, a_k + \frac{b_k - a_k}{2n})$, $(b_k - \frac{b_k - a_k}{2n}, b_k)$ define l_n such that $l_n \in C^p$ and $l_n^{(r)}(a_k) = l_n^{(r)}(b_k) = 0$ for every $r = 1, \ldots, p, k \in \mathbb{N}$ (existence of such functions is obvious). It is now easy to see that $f_n^{(r)} \to h_r$ for each $r = 0, \ldots, p$, and hence $(h_0, \ldots, h_p) \in \mathcal{T}$.

References

- [1] D. L. Cohn, Measure Theory, Birkhäuser, Boston (1980).
- [2] I. P. Natanson, Theory of Functions of a Real Variable, Moscow (1957) $(Russian)$.
- [3] G. Petruska and M. Laczkovich, Baire 1 functions, approximately contin uous functions and derivatives, Acta Math. Acad. Sci. Hung. 25 (1974) 189-212.
- [4] D. Preiss, Limits of derivatives and Darboux-Baire functions, Rev. Roum. Math. Pures et Appl. 14 (1969) 1201-1206.
- [5] G. Petruska and M. Laczkovich, A theorem on approximately continuous functions, Acta Math. Acad. Sci. Hung. 24 (1973) 383-387.
- [6] D. Preiss, Limits of approximately continuous functions, Czech. Math. J. 21 (1971) 371-372.