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 SOME COMMENTS ON AN

 APPROXIMATELY CONTINUOUS

 KHINTCHINE INTEGRAL

 Abstract

 The Khintchine integral is not comparable to the approximately con-
 tinuous Perron integrēti. That is, there are functions that are integrable
 in one sense but not the other. There have been several attempts to
 define an integration process that includes both of these integrals. This
 paper points out an error in one of these proofs and defines another
 integration process that includes both of the integrals mentioned above.

 Is there an integration process that includes both the Denjoy integral and
 the approximately continuous Perron integral? An affirmative answer to this
 question was given by Kubota [4]. However, a careful reading of his argument
 reveals a logical error. This paper represents another attempt to provide an
 affirmative answer to the opening question.

 The focus of this paper is on integration processes that recover an approx-
 imately continuous function from its approximate derivative. Integrals with
 this property are often referred to as approximately continuous integrals since
 the indefinite integral is approximately continuous rather than continuous.
 The usual starting points for defining integrals of this type are the integrals
 that recover a continuous function from its derivative. There are three such

 integrals, namely the Denjoy, Perron, and Henstock integrals, and they are all
 equivalent. The idea is to modify the definitions of these integrals to obtain an
 integral that recovers an approximately continuous function from its approx-
 imate derivative. The necessary modifications for the Perron and Henstock
 integrals are relatively easy and result in integrals known as the approximately
 continuous Perron integral ( AP integral) and the approximately continuous
 Henstock integral (AH integral) , respectively. It is generally agreed that (with
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 the proper definitions) the AP and AH integrals are equivalent. The situation
 for the Denjoy integral is not as easy. There have been several attempts to
 define an approximately continuous Denjoy integral (see [2], [6], and [7]), but
 none of them is very satisfying in the sense of a natural generalization. One
 is left wondering if maybe the Denjoy integral is an unsuitable starting point
 for such a generalization.
 Another integral that is relevant to this situation is the Khintchine integral.

 The Khintchine integral ( K integral) recovers a continuous function from its
 approximate derivative and includes the Denjoy integral. It is known that
 the AP and AH integrals and the Khintchine integral are not comparable.
 To say that the K and AH integrals are not comparable means that there
 are K integrable functions that are not AH integrable and there are AH
 integrable functions that are not K integrable. The fact that there exist AH
 integrable functions that are not K integrable is easy to see; simply let F be
 any approximately differentiate function that is not continuous and look at
 Fļ p. It is a bit surprising that there are K integrable functions that are not
 AH integrable. An example of such a function can be found in [3].
 In [4], Kubota attempts to define an integral that includes both the K

 and AP integrals. His method is to generalize the Khintchine integral. As
 will be pointed out below, Kubota's proof that his integral includes the AP
 integral contains an error. It is not, at all clear that Kubota's proof can be
 repaired. Rather than embark on a remodeling mission, this paper presents
 several possible definitions for an AK integral, including Kubota's definition.
 We will show that there is an AK integral that includes both the K and AH
 integrals. The question of where Kubota's integral fits will be left unresolved,
 but placed in a simpler context.

 Recall that a function / : [a, 6] - > R is Khintchine integrable on [a, 6]
 if there exists an AC G function F : [a, 6] - ► R such that Fļp = / almost
 everywhere on [a, 6]. To define an AK integral, the condition that F be ACG
 on [a, 6] must be weakened. We will assume that the reader is familiar with the
 definitions and properties of BVG and ACG functions. Many of the properties
 of these functions can be found in the book by Saks [11]. Another source for
 this information is the recent book by Gordon [3] .
 In order to proceed, some basic terminology and notation is needed. A

 portion of a set E is a nonempty set of the form E H I where I is an open
 interval. In the sequel, we will be looking for certain behavior on portions of
 closed sets. Since this will trivially be the case at isolated points, it, is sufficient,
 to consider nonempty perfect sets. Let, P be a nonempty perfect set. It will
 often be convenient to consider perfect portions of P. A perfect portion of P
 is a set of the form P fi [c, d' where P fi (c, d ) ^ 0, c, d £ P, and P fi [c, d' is a
 perfect set. It is always possible to convert a portion of P to a perfect portion
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 of P by shrinking the interval. This terminology, by the way, is not standard.
 Let F : [a, b] -+ R and let E Ç [a, 6]. The symbol F'e represents the

 restriction of the function F to the set E and E represents the closure of E .
 The function F satisfies condition ( N ) on E if fi*(F(A)) = 0 for every set
 ACE of measure zero. (Here fi* (A) represents the outer Lebesgue measure
 of A.) For ease of reference, we record three theorems that will be useful later.
 The proofs of these theorems can be found in the books by Saks and Gordon.

 oo

 Theorem A If F is AC G on [a,b], then [a, 6] = |J En where each En is
 n = l

 closed and F is AC on each En .

 Theorem B Let F : [a, 6] - ¥ R, let E Ç [a, 6] be closedf and suppose that
 F'e is continuous on E. Then F is ACG on E if and only if every nonempty
 perfect subset of E contains a portion on which F is AC.

 Theorem C Let F : [a, 6] - > R, let E Ç [a, 6] be closed , and suppose that F is
 BVG on E and F'e is continuous on E . Then F is ACG on E if and only
 if F satisfies condition (N) on E.

 Here are three different candidates for a definition of an AK integral. Each
 one represents a modification of the ACG condition. The first definition is the
 one given by Kubota in [4].

 Definition 1 A function F : [a,ò] - y R is ACGc on [a, 6] if it satisfies the
 following properties :

 (i) F is approximately continuous on [a,6];
 oo

 (ix) [a, 6] = (J En where each En is closed and F is AC on each En.
 n = 1

 A function f : [a, 6] -¥ R is AKC integrable on [a, b] if there exists an ACGc
 function F : [a, b] - y R such that Fļp = f almost everywhere on [a, 6].

 Definition 2 A function F : [a, 6] - ► R is ACGP on [a, b] if it satisfies the
 following properties :

 (i) F is approximately continuous on [a, 6];
 oo

 (ii) [a, 6] = (J En where each En is measurable and F is AC on each En ;
 n= 1

 (Hi) every nonempty perfect set in [a, 6] contains a portion on which F is AC.

 A function f : [a, b] - ► R is AKp integrable on [a, 6] if there exists an ACGP
 function F : [a, b]-¥ R such that Fļp = f almost everywhere on [a, 6].
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 Definition 3 A function F : [a, b] - >• R is BVGn on [a, 6] if it satisfies the
 following properties:

 (i) F is approximately continuous on [a, 6];

 (ix) F is BVG on [ a, 6 ];

 (Hi) F satisfies condition (N) on [a, 6].

 A function f : [a, 6] - ¥ R is AKw integrable on [a, 6] if there exists a BVGki
 function F : [a, 6] -> R such that Fļp = / almost everywhere on [a, 6].

 By the Baire Category Theorem, every function that is ACGc on [a, 6] is
 also ACGp on [a, 6]. Since a function that is AC on a set is BV and satisfies
 condition (N) on that set, every function that is ACGP on [a, 6] is also BVGn
 on [a, 6]. (In particular, in all three cases, the function F is BVG on [a, b] and
 hence approximately differentiate almost everywhere on [a, 6].) Consequently,
 with an obvious abuse of notation,

 K C AKC Ç AKP C AKn.

 Since an indefinite K integral must be continuous, the first inclusion is cer-
 tainly proper. Are the other two inclusions proper?
 Before answering this question, we should pause to make certain that the

 integrals defined above are unique except for an additive constant. In other
 words, if F and G are BV G at on [a, b] and if = G'ap almost everywhere on
 [a, 6], does it necessarily follow that F and G differ by a constant? To resolve
 this issue, it is sufficient to prove the following theorem.

 Theorem 1 Suppose that F : [a, 6] - > R is BVGn on [a ,b'. If Fļp > 0 almost
 everywhere on [a,b], then F is nondecreasing on [a, 6].

 This theorem is a simple consequence of a general monotonicity theorem
 proved by Bruckner. See [1] for a proof of the following result.

 Monotonicity Theorem Let V be a function- theoretic property that satisfies
 the following two conditions:

 (i) Any continuous BV function that satisfies property V on [a,ò] is non -
 decreasing on [a, 6].

 (ii) Any D arboux function in Baire class one which satisfies property V on
 [a, 6] is BVG on [a, b].
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 Then any Darboux function in Baire class one which satisfies property V on
 [a,b] is continuous and nondecreasing on [a, 6].

 In order to use the Monotonicity Theorem to prove Theorem 1 , we make the
 following observations. Define V as follows: a function F has property V on
 [a, 6] if it is BVG on [a, 6], satisfies condition (N) on [a, 6], and satisfies Fļp > 0
 almost everywhere on [a, b]. Suppose that F is a continuous, BV function that
 satisfies property V on [a >b]. It follows that (since F satisfies condition (N) on
 [a, 6]) F is AC on [a, 6] (see [3] or [11])- Since F' = Fļp > 0 almost everywhere
 on [a, 6], the function F is nondecreasing on [a, 6]. Hence, condition (i) holds.
 The second condition is obviously satisfied given the definition of V. The
 theorem now follows since an approximately continuous function is a Darboux
 function in Baire class one.

 We now return to a discussion of the relationships between the AK integrals
 defined above. The next theorem shows that the AKC and AKP integrals are
 equivalent. The following lemma, which originates in a paper by Romanovski
 [10], will be used in the proof.

 Romanovski's Lemma Let T be a family of open intervals in (a, b) and
 suppose that T has the following properties:

 (1) //(a,/?) and (/?, 7) belong to T , then (a, 7) belongs to T.

 (2) //(a,/?) belongs to T, then every open interval in ( a}ß ) belongs to T.

 (3) //(a, ß) belongs to T for every interval [a,/î] Ç (c, d)} then [c,d) belongs
 to J.

 (4) If all of the intervals contiguous to the perfect set E Ç [a, 6] belong to T ,
 then there exists an interval I in T such that I fi E ^ 0.

 Then T contains the interval (a, 6).

 Theorem 2 If F : [a, b] - ► R is ACGP on [a, 6], then F is ACGc on [a, 6].

 Proof. Let T be the collection of all open intervals 7 in (a, 6) such that F is
 ACGc on I. We will show that T satisfies the four conditions of Romanovski's
 Lemma. It is easy to verify that T satisfies conditions (1) and (2). Suppose
 that (a,/?) belongs to T for every interval [a,ß' Ç (c, <i). Let {en} be a
 decreasing sequence in (0, (d - c)/2) that converges to 0. For each n , there

 00

 exists a sequence {££} of closed sets such that [c 4- cni d - en] = (J and
 k = 1

 F is AC on each 2?£. Since

 M= U U ^u{c}u{¿},
 n=l k=l
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 and since F is AC on each of these closed sets, it follows that (c, d) belongs
 to T. This shows that T satisfies condition (3).
 Now suppose that all of the intervals contiguous to the perfect set E Ç

 [a, 6] belong to T. Since F is ACGP on [a, 6], there exists a perfect portion

 P = E fi [c, d] of E such that F is AC on P. Let [c, d] - P = (J (c„, dn). By
 n = 1

 hypothesis, the function F is ACGP on each [cn,dn]. For each n, let { E £} be
 oo

 a sequence of closed sets such that [cn , dn] = (J E* and F is AC on each E ¡1 .
 k = 1

 Now

 M= U ÎJ^UP
 n=l k=l

 and it follows that (c, d) belongs to T . Hence, the family T satisfies condition
 (4). By Romanovski's Lemma, the interval (a, 6) belongs to T. That is, the
 function F is ACGc on [ a,b ]. This completes the proof.

 To examine the relationship between the AKP and AK^ integrals, the
 concept of B{ function is useful. A function F : [a, 6] - ¥ R is a B{ function
 on [a, 6] if every nonempty perfect set i? in [a, b] contains a perfect portion P
 such that F'p is continuous" on P. See O'Malley [9] for some of the properties
 of J3* functions.

 Theorem 3 Suppose that F : [a, b] R is BVG m on [a, 6]. Then F is a B'
 function on [a, 6] if and only if F is ACGP on [a, 6].

 Proof. Suppose first that F is a B{ function on [a, 6]. Let E Ç [a, 6] be a
 nonempty perfect set. Since F is a B* function on [a, 6], there exists a perfect
 portion P = E O [c, d' of E such that F'p is continuous on P. By Theorem
 C, the function F is AC G on P. By Theorem B, there is a portion POI of
 P such that F is AC on P fi I. We may assume that I Ç (c, d) from which
 it follows that P fi I = EC'I. Consequently, there exists a portion of E on
 which F is AC. Therefore, the function F is ACGP on [a, 6].

 Now suppose that F is ACGP on [a, 6] and let E C [a, 6] be a nonempty
 perfect set. By hypothesis, there exists a perfect portion P = E fi [c, d] of
 E such that F is AC on P. Since F is AC on P, the function F'p must be
 continuous on P. It follows that F is a B' function on [a, 6]. This completes
 the proof.

 So where do we stand? Focusing on the indefinite integrals and abusing
 the notation,

 A' Ç AKC = AKP = AKn fi B' Ç AKN.

 In [3] (see Chapter 16 and its exercises) , it is shown that an indefinite AH
 integral is BVG n on [a, 6]. This provides an answer to the opening question
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 in this paper. The AKn integral includes both the K (and hence Denjoy)
 and AH integrals. Kubota (see [4, Theorem 2]) claims that the AKC integral
 includes both the K and AP integrals. However, the proof of this theorem
 contains an error. The error occurs in the third paragraph of the proof and
 its essence is the following assertion.

 • If {Un} is a sequence of ACGc functions defined on [a, 6], then there
 00

 exists a sequence {£*} of closed sets such that [a, 6] = (J Ek and every
 *=i

 Un is AC on each Ek •

 In particular (use the Baire Category Theorem), there exists some interval I
 such that every Un is AC on I. For a counterexample, let {rn} be the sequence
 of rational numbers in [a, 6]. For each n, define Un on [a, 6] by

 JO, if a < X < rn
 Un{x) ļi(® _ rn)2Sin(ff/(a: _ rn)2^, if r„ < x < 6.

 Note that Un is not AC on any interval that contains rn as an interior point.
 The sequence {Í7n} converges uniformly to 0 on [a, 6], but there is no interval
 on which every Un is AC.

 C. M. Lee ([5]) recognized the oversight in Kubota's proof and offered a
 proof that a closed set decomposition existed. However, his proof contains an
 error as well. Assuming familiarity with this proof, the error occurs at the
 top of page 72 where it is stated that M* is uCM on [a, 6]. Let {(an,6„)} be
 a sequence of disjoint open intervals in (0, 1) such that {an} is a decreasing
 sequence that converges to 0 and 0 is a point of dispersion of the set U =

 oo

 U (fln, ¿n)- Let cn be the midpoint of [an, 6n]. Define M : [0, 1] - y R by
 n=l

 u(x) Í2, if X e [o, i] - c
 ^ 1 , if X - Cn

 and letting M be linear on each of the intervals [an , cn] and [cn , 6n] . The
 function M is continuous on (0, 1] and approximately continuous at 0. It
 follows that M is a Darboux function and hence uCM on [0,1]. Now let E be
 the closed set {0} U {cn : n E Z+} and let. M* be the linear extension of M'e
 from E to [0,1]. Then

 J 2, if X = 0
 if * # 0

 is not uCM on [0,1]. Since the assumption that Mm is uCM is crucial for the
 rest of the argument, Lee's proof is not valid.
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 A more recent attempt to correct Kubota's error was made by Lin [8].
 Unfortunately, this proof also contains an unjustified claim. In the proof of
 Lemma 3, Lin says to use X = Eni in Lemma 1. However, the construction
 of Eni is not the same as that required by Lemma 1. For Lemma 1, the set
 X must be the set of all points x £ [a, 6] with a certain property. Here we are
 only taking points from En with a certain property. With A = n, À = 0.5,
 and S = 1/i, the set X contains Eni but may not equal En{.
 We thus have the following two unanswered questions.

 1. Is every BVGn function a Bļ function?

 2. Is every indefinite AH (or AP) integral a B{ function?

 If the answer to the first question is yes, then the answer to the second is yes
 as well. If the answer to the first question is no, it is still possible for the
 second question to have an affirmative answer. In this case, Kubota's result
 will have been shown to be correct, but with a different proof. At this time,
 both of these questions remain open.
 We close with one final related result. The typical example of an indefinite

 AH integral is an approximately continuous function that is approximately
 differentiable nearly everywhere (except for a countable set) . In this particular
 case, the function is also an indefinite AKC integral. The proof of this result
 is a modification of an argument given by Tolstoff [12].

 Theorem 4 Let F : [a, 6] - ¥ R be approximately continuous on [a, 6]. If F
 is approximately differentiable nearly everywhere on [a, 6], then there exists a

 oo

 sequence {En} of closed sets such that [a, 6] = (J En and F¡En is continuous
 n = l

 on En for each n. Consequently , the function F is a B' function.

 Proof. Define sets A, B} and C as follows:

 A = {x £ (a, 6) : FĻ(x) > -1};
 B = {z € (a, b) : FĻ{x) < 1};

 C={i6 (a, 6) : F^p(x) does not exist} U {a, 6}.

 For each x G A, let

 Rt = {te (a,b ) : F(tj ~ ^(X) > -l}.
 Note that x is a point of density of Rx. Consequently, for each x € A there
 exists Tjx > 0 such that (x - t]X) x -f t]x) C (a, 6) and

 fi(Rx H [x - /1, x]) 1 fi(Rx H [x, x + /1]) 1
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 for all 0 < h < T)x. For each positive integer n, let An = {x G A : r)x > 1/n}.
 We will show that F |j is continuous on An for each n.

 Fix n. We first show that

 lim F(x) = F(z)
 X€^n

 for each z G An . To avoid the trivial case, suppose that z is a limit point of
 An. Suppose that

 Jim F(x)¿F(z).
 x£An

 Then there exists a sequence {x*} in An such that {x*} converges to z, but
 {F(x/e)} does not converge to F(z). Of the many similar cases, we will assume
 that the sequence {x^} is decreasing and that lim F(xk) > F(z). (The limit

 k - ► oo

 in this case may be oo.) We may also assume that there exists a positive
 number S < 1/n such that F(xk) > F(z) + 2 S for all k and {x*} Ç (z, z -f S).
 For each k > 2, let Hk = RXk H [x^x^J. If t G Hk , then

 F(t) - F{xk) ^ l .
 t - xk

 which in turn implies that

 F(t) > F(xk) -(t- xk) > F(z) + 2 6-6 = F(z) + 6.
 OO

 It follows that F(t) > F(z) -f S for all t G [j Hk • Now for each integer q > 2,
 k = 2

 9 9 fc=7+l

 1 / v / 1
 > - - - * - 2^ (**-* / ~ Xfe)/2 v / = Õ- 2 - * Äi Õ- 2

 This shows that the set {ť G [a, 6] : 1-^(0 - F(^)| < does not have z as a
 point of density. This contradicts the fact that F is approximately continuous
 at z. Hence,

 lim F(x) = F(z)
 x€An

 for each z G An .
 Now suppose that z G An and let. {xk} be a sequence in An that converges

 to z. We will show that the sequence {F(xk)} converges to F(z). By the result
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 in the previous paragraph, for each positive integer k there exists yk € An such
 that

 ~ X/ř' k and < k'
 Since {yk} is a sequence in An that converges to z, the result in the previous
 paragraph shows that {F(yk)} converges to F(z). It follows that {F(xk)}
 converges to F(z) and we conclude that F is continuous at z. Since z was
 an arbitrary point in Ani the function F'-% is continuous on An.

 oo

 We have thus shown that A Ç (J An where F is continuous on An for
 n = l n

 oo

 each n. Similarly, it can be shown that B Ç (J Bn where F'g n is continuous
 n = 1 n

 on Bn for each n. Since C is a countable set, it can be written as a countable
 oo

 union of single points; C = |J {cn}. Now
 n = 1

 [a,b] = UlnUUĪnUŪ M,
 n = 1 n = l n = l

 and the restriction of F to each of these closed sets is continuous on that closed

 set. This completes the proof.
 I would like to thank the referee for pointing out two additional references.
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