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A NOTE ON ADDITIVE FUNCTIONS OF
INTERVALS

Abstract
If F is a continuous function of intervals in R™, then its distribution
function is continuous. The converse is true if m = 1 but false if m > 2.
In the present note we prove these facts and we explain why the one-
dimensional case is an exception.

An interval is always a nonempty compact interval in R™, i.e., the product

m

[al7b1; .. ~;am;bm] = H[ai: bt]

i=1

where a;,b; € R and a; < b; for i = 1,...,m. A figure is the union of
a nonempty finite family of intervals. The closure, interior, boundary, and
m-dimensional Hausdorff measure H™ of a figure A C R™ is denoted by
A~, A°, 3A and |A|, respectively; the perimeter of A is the (m—1)-dimensional
Hausdorff measure H™~? of its essential boundary 8" (A) = 8[(A~)°], and it is
denoted by ||4||. A figure A with |A| = 0 (equivalently, A° =0 or §*(A4) = 0)
is called degenerate. We say figures A and B overlap if AN B is nondegenerate.

Throughout this note, we select a fixed interval A = [a1,b1;...;am,bm].
A function F defined on the family of all subfigures of A is called an additive
function in A whenever

F(BUC) = F(B) + F(C)

for each pair B, C of nonoverlapping subfigures of A. Clearly, each additive
function in A vanishes on every degenerate subfigure of A. If F is an additive
function in A and z = (z1,...,Tm) is a point in A, we let

f(z) = F([alrzl; sy Omy, -Tm])
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and call the function f : z — f(z), defined on A, the distribution function of
F. A standard calculation shows that for each interval [c1,d1; . ..;cm,dm] C A,

we obtain
F(le1,di;. - iem,dm]) = D _(—1)®) f(2)

where the summation is taken over all points £ = (z1,...,Zm) such that for
i=1,...,m, either z; = ¢; or z; = d;, and o(z) is the cardinality of the set
{# : zi = ¢;}. Since F is uniquely determined by its values on intervals, it is
also uniquely determined by its distribution function.

In the theory of conditionally convergent integrals, a prominent role is
played by additive functions that are continuous in the following sense (cf. [1,
Section 11.2]).

Definition 1 An additive function F in A is continuous if given € > 0, there
is an 7 > 0 such that |F(B)| < ¢ for each figure B C A with ||B|| < 1/¢ and
|B] <n.

It is easy to see that the distribution function of a continuous additive
function in A is continuous. The converse is true if m = 1 but false if m >
2. We prove these facts, and explain why the one-dimensional case is an
exception.

Proposition 2 Assume m = 1, and let f be the distribution function of an
additive function F in A. If f is continuous, then so is F.

ProoF. Choose an £ > 0 and use the uniform continuity of f to find ann > 0
so that |f(z)— f(y)| < €% for each z,y € A with |[z—y| < n. If B is a subfigure
of A, then B = |J;_,[ck,dx] where ¢; < d; < -+ < cn < d, are points of 4,
and ||B|| equals twice the number of nondegenerate intervals [ck, dk]. Thus

F(B) =Y _[f(dx) - flex)] < €¥||Bll <

k=1

whenever ||B|| < 1/¢ and |B| < 7. O

Example 3 We assume m = 2; the construction for m > 2 is similar. Let
A=10,1)% and for k =1,2,... and t € [0,1], set

£(8,0) = £(0,) = F27*,27%) =0 and F27**1,27%) = 1/k.
Since f is a continuous function on a closed set

C={(t0),(0,2),(27%,27%), (27", 27%) : t € [0,1], k= 1,2,.. .}
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contained in A, it has a continuous extension to the whole of A, still denoted
by f. Define an additive function in A by setting

F(la,8]  [e,d]) = f(a, ) + £(b,d) — f(a,d) — f(b,¢)

for each interval [a,b] x [¢c,d] C A, and observe that f is the distribution
function of F. To see that F is not continuous, let Ax = [27%,2%+1] x [0,27%]

fork=1,2,.... As
(=<}
Z:F(Ak =§k

for each integer n > 1 there is a integer p, > n such that Y %2, F(Ax) > 1. If
B, = Ui~,, Ak, then

| -

o0
nB,,n < 4y 27h=8.27",

=n

Z 2—2L 4-n

k=n

forn=1,2,.... It follows that F is, indeed, discontinuous.

In dimension one, the connection between an additive function F in A and
its distribution function f can be cast differently. For a figure B C A, denote
by vp its exterior unit normal, i.e., the function associating to each z € §*B
the number 41 or —1 according to whether z is the right or left end-point of
a nondegenerate connected component of B. Now viewing f as a vector field
in A, we see that F(B) = [,. f - vp dH°®. With this interpretation of f, the
next proposition (cf. [1, Proposition 11.2.8]) illuminates Proposition 2.

Proposition 4 Let v be a continuous vector field in A, and for each figure
B C Alet F(B) = [,.pv-vpdH™ '. Then F is a continuous additive
function in A.

PROOF. As the additivity of F is clear, choose an £ > 0 and find a vector field
w whose coordinates are polynomials and such that |v(z) — w(z)| < €2/2 for
all z € A. Let a be a positive bound of |divw| on A, and set n = ¢/(2a). If
B C A is a figure with ||B|| < 1/¢ and |B| < 70, the divergence theorem and

Schwartz inequality give ‘
/ divw d’H""
B

/ (v—w)oqu'H'"'l’+
9*(B)

52
1Bl +alBl <,

IF(B) <

IN
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end the proof is completed. a

The author wishes to acknowledge useful discussions with Washek Pfeffer
regarding this note.
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