Maria Fiorella Lorefice and Giuseppa Riccobono, Department of Mathematics and Applications, University of Palermo, Via Archirafi 34, 90123, Palermo, Italy

LINEAR SPACES OF DARBOUX DERIVATIVES *

1 Introduction

 It is well known that there exist Darboux functions which are not derivatives (see [4], page 97). However, as it was proved in [6], each bounded Darboux function is the "Darboux derivative" (see 2.4 below) of its indefinite integral with respect to a suitable measure and a differentiation system associated with /. The existence of Darboux derivatives which are not Darboux functions was proved in [5] and [9]; moreover, as for Darboux functions, the sum of Darboux derivatives may be not a Darboux derivative.

In this paper we associate to each Darboux derivative f the linear space Δ_f of all the Darboux derivatives with respect to the differentiation system associated with f. We prove that Δ_f contains each function $F \circ f$ where F is continuous on the range of f , and so contains each polynomial in f (see Remarks 4 and 5). Moreover sufficient conditions for a function g to belong to Δ_f are also given (see Propositions 3.8 - 3.10).

We observe that if $f(x) = x$ for each $x \in [a, b]$, then Δ_f is the set of all the Lebesgue integrable functions which are the derivatives of their integrals at every $x \in [a, b]$.

2 Preliminaries

2.1 Measure Associated to a Function

Let $f : [a, b] \to I$ (where I is a bounded subinterval of R) be a real bounded nowhere constant function with $f([a, b]) = I$ and set $\mathcal{F}_f = \{f^{-1}(B) : B \subset$

Key Words: Darboux system, Darboux derivative

Mathematical Reviews subject classification: Primary: 26A15 Secondary: 26A24 Received by the editors July 14, 1994

 ^{&#}x27;This work was supported by M.U.R.S.T and C.N.R.

I is a Borel set}. It is clear that \mathcal{F}_f is a σ -algebra. Now for each $F \in \mathcal{F}_f$ set $\psi_f(F) = \mu(B)$, where μ is Lebesgue measure on R and B is a Borel subset of I such that $F = f^{-1}(B)$. It is easy to verify that ψ_f is a finite measure on \mathcal{F}_f . Then we can extend it to the complete σ -algebra \mathcal{M}_f of all the ψ^*_f -measurable sets, where ψ_f^* is the outer measure induced by ψ_f on the σ -algebra of all the subsets of $[a, b]$.

Let $\bar{\psi}_f$ denote this extension and call it the measure associated to f. It is a finite, complete and completely additive measure on \mathcal{M}_f . Moreover $\bar{\psi}(F) =$ $\psi_f(F)$ for each $F \in \mathcal{F}_f$. Denoting outer Lebesgue measure by μ^* , in [7] it was proved that:

- i) $\psi_f^*(A) = \mu^*(f(A))$ for each set $A \subset [a, b],$
- ii) if A is ψ_f^* -measurable, then $f(A)$ is μ^* -measurable,

iii) if $A = f^{-1}(T)$ and T is μ^* -measurable, then A is ψ_f^* -measurable.

Moreover, it is well known [2] that to each set $A \subset [a, b]$ there is a set $A^* \in \mathcal{M}_f$ with $A^* \supseteq A$ and $\psi_f^*(A) = \bar{\psi}_f(A^*)$; A^* is called a $\bar{\psi}_f$ -measure cover of A.

2.2 Integral with Respect to a Measure

If g is a real bounded ψ_f -measurable function, it is also ψ_f -integrable (see [2] page 149); i.e., there exists a unique set function ϕ_f^g on \mathcal{M}_f such that:

(*) ϕ_f^g is completely additive,

$$
(**) \text{ if } M \in \mathcal{M}_f, h, k \in \mathbb{R} \text{ and } \forall x \in M \text{ we have } h \le g(x) \le k, \text{ then}
$$

$$
h \cdot \bar{\psi}_f(M) \le \phi_f^g(M) \le k \cdot \bar{\psi}_f(M).
$$

We call $\phi_f^g(M)$ the integral of g on M with respect to $\bar{\psi}_f$ and set $\phi_f^g(M)$ = $\int_M g \, d\bar{\psi}_f$. Extend ϕ_f^g to each subset A of $[a, b]$ as follows: $\phi_f^{*g}(A) = \phi_f^g(A^*),$ where A^* is a $\bar{\psi}_f$ -measure cover of A. If $g = f$, put $\phi_f^f = \phi_f$ and $\phi_f^* f = \phi_f^*$.

2.3 Darboux Systems

For any $x_1, x_2 \in [a, b]$ $(x_1 \neq x_2)$, denote by $I_{(x_1,x_2)}$ the closed interval $[x_1,x_2]$ if $x_1 < x_2$, and the closed interval $[x_2, x_1]$ otherwise. If $f(x_1) \neq f(x_2)$, then set $Q_{x_1x_2}^1 = f^{-1}(I(f(x_1),f(x_2))) \cap I(x_1,x_2)$. The system $Q' = \{Q_{x_1x_2}^1 : x_1, x_2 \in [a,b] \}$ and $f(x_1) \neq f(x_2)$ } is called the system associated with f. Given a sequence ${Q_{x',x''}^f}$ we say that it converges to x_0 in the Darboux sense with respect ${Q^f_{x'_n x''_n}}$ we say that it converges to x_0 in the Darboux sense with respect
to f, and we write $Q^f_{x'_n x''_n} \xrightarrow{\mathcal{D}} x_0$, when $x'_n \to x_0, x''_n \to x_0$ and $f(x'_n) \to$ $f(x_0), f(x_n^{\prime\prime}) \rightarrow f(x_0)$. We say that the system \mathcal{Q}^f is the Darboux system associated to f when for each $x \in [a, b]$ there is a sequence $\{Q_{x',x''}^f\}$ converging to x in the Darboux sense with respect to f and $\psi_f^*(Q_{x',x''}^f) \neq 0$ for each $n \in \mathbb{N}$.

2.4 Darboux Derivatives

A real bounded function g defined on [a, b] will be called a Darboux derivative if there exists a real bounded nowhere constant function f on [a, b], a σ -algebra $\mathcal E$ of subsets of [a, b] and two set functions ϕ and ψ on $\mathcal E$ such that:

- α) the system \mathcal{Q}^f associated with f is a Darboux-system and $\mathcal{Q}^f \subset \mathcal{E}$,
- β) for each $x \in [a, b]$, there exist a sequence $\{Q_n^f\}_{n \in \mathbb{N}} \subset \mathcal{Q}^f$ with $Q_n^f \stackrel{\mathcal{D}}{\longrightarrow} x$ and $\psi(Q_n^f) \neq 0$, for each $n \in \mathbb{N}$,
- γ) $g(x) = \lim_{t \to 0^+} \frac{\varphi(\mathcal{Q}_n^t)}{\psi(\mathcal{Q}_n^f)} = D_{\mathcal{D}}(x, \phi, \psi, \mathcal{Q}^f)$ for each $x \in [a, b]$ and for each $Q_n' \rightarrow x \vee (\forall n)$ $Q_2^f \xrightarrow{\mathcal{D}} x$ with $\psi(Q_2^f) \neq 0$.

The class of all Darboux derivatives will be denoted by $\Delta_{\mathcal{D}}$. It is not empty since each bounded nowhere constant Darboux function f is the Darboux derivative of its ψ_f -integral with respect to the measure ψ_f and the system Q^f associated to f (see [6]).

Moreover, let f be a bounded nowhere constant function on $[a, b]$ and for each x_1, x_2 with $f(x_1) \neq f(x_2)$ set

$$
A_{x_1x_2}^f = \{ y \in I_{(f(x_1),f(x_2))}; f(x) \neq y \text{ for each } x \in I_{(x_1,x_2)} \}.
$$

Denote by \mathcal{Q}_D the family of all bounded nowhere constant functions f such that $\mu(A_{x_1x_2}^f) = 0$ for each $x_1, x_2 \in [a, b]$, and by A the family of all bounded nowhere constant functions f such that, for all $x_1, x_2 \in [a, b]$, $\mu_*(A_{x_1x_2}^f) = 0$, where μ_* is Lebesgue inner measure. It is known (see [5] and [9]) that $\mathcal{D} \subset$ $\mathcal{Q}_{\mathcal{D}} \subset \mathcal{A} \subset \Delta_{\mathcal{D}}$, where $\mathcal D$ is the class of all real bounded nowhere constant Darboux functions defined on $[a, b]$.

3 Main Results

3.1

 Here we define a real linear space whose elements are Darboux derivatives with respect to the system \mathcal{Q}^f and with respect to the measure $\bar{\psi}_f$ associated with a given function $f \in \mathcal{D}$.

Proposition 3.1 Let $f : [a, b] \rightarrow [l, L]$ be a nowhere constant Darboux function such that $f([a, b]) = [l, L]$ and let $\mathcal{X} = \{F \circ f : F \in C[l, L]\}$ where $C[l, L]$ denotes the set of all continuous functions on $[l, L]$. Then:

- i) $g \in \mathcal{X} \Longrightarrow g$ is a Darboux function,
- ii) $\mathcal X$ is a real linear space,
- iii) $g \in \mathcal{X} \Longrightarrow g$ is $\bar{\psi}_f$ -measurable,
- iv) $\int_A g d\bar{\psi}_f = \int_{f(A)} F(y) d\mu$, for all $A \in \mathcal{M}_f$ and $g = F \circ f \in \mathcal{X}$.

PROOF.

- i) Let $z_0 \in \mathbb{R}$ and let $x_1, x_2 \in [a, b]$ be such that $(F \circ f)(x_1) < (F \circ f)(x_2)$ and $(F \circ f)(x_1) < z_0 < (F \circ f)(x_2)$. Since F is continuous, there exists $y_0 \in I_{(f(x_1),f(x_2))}$ such that $F(y_0) = z_0$. Since f is a Darboux function, there exists $x_0 \in I_{(x_1, x_2)}$ such that $f(x_0) = y_0$. It follows that (F or $f)(x_0) = F(f(x_0)) = F(y_0) = z_0$, i.e. $F \circ f \in \mathcal{D}$.
- ii) Let $(F_1 \circ f)$, $(F_2 \circ f) \in \mathcal{X}$. Then $(F_1 \circ f) + (F_2 \circ f) \equiv (F_1 + F_2) \circ f \in \mathcal{X}$ and $K \cdot (F \circ f) \equiv (K \cdot F) \circ f \in \mathcal{X}$ for all $K \in \mathbb{R}$.
- iii) To prove the $\bar{\psi}_f$ -measurability of $F \circ f$, we observe that

$$
(F \circ f)^{-1}(I_{((F \circ f)(x_1),(F \circ f)(x_2))}) = f^{-1}[F^{-1}(I_{(F(f(x_1)),F(f(x_2))))}];
$$

moreover $F^{-1}(I_{(F(f(x_1)),F(f(x_2))))})$ is a Borel set, because F, being continuous, is Borel measurable. Finally $f^{-1}[F^{-1}(I_{(F(f(x_1)),F(f(x_2)))}]$ is $\bar{\psi}_f$ measurable since f is $\bar{\psi}_f$ -measurable.

iv) The boundedness and the $\bar{\psi}_f$ -measurability of g imply its $\bar{\psi}_f$ -integrability; moreover the second integral is a completely additive set function on \mathcal{M}_f . In fact, if $\{A_n\}$ is a sequence of sets in \mathcal{M}_f with $A_i \cap A_j =$ \emptyset for $i \neq j$, then ${f(A_n)}$ is a sequence of Lebesgue measurable sets and $f(A_i) \cap f(A_j)$ is a μ -nullset for $i \neq j$, since, for every i there are a Borel set B_i and a $\bar{\psi}_f$ -nullset N_i such that $A_i = f^{-1}(B_i) \cup N_i$ and $f^{-1}(B_i)\cap N_i = \emptyset$. Then

$$
\int_{f(\cup_n A_n)} F(y) d\mu = \int_{\cup_n f(A_n)} F(y) d\mu = \sum_{n \in N} \int_{f(A_n)} F(y) d\mu.
$$

Moreover if $A \in \mathcal{M}_f$ and if there are $h, k \in \mathbb{R}$ such that $h \leq (F \circ f)(x) \leq k$ for every $x \in A$, then $h \leq F(y) \leq k$ for every $y \in f(A)$, and by the μ -integrability of $F(y)$ it follows that $h \cdot \mu(f(A)) \leq \int_{f(A)} F(y) d\mu \leq k \cdot \mu(f(A))$. Then the claim follows by the equality $\mu(f(A)) = \bar{\psi}_f(A)$ and by the definition of $\bar{\psi}_f$ -integral. □

780 M. Lorefice and G. Riccobono

□

Proposition 3.2 For all $F \in C[l, L]$ let $\phi_f^{F \circ f}(A) = \int_A (F \circ f) d\bar{\psi}_f$ (see 2.2). Then for each $x \in [a, b]$ we get $(F \circ f)(x) = D_{\mathcal{D}}(x, \phi_f^{*F \circ f}, \psi_f^*, \mathcal{Q}^f).$

PROOF. Let $x_0 \in [a, b]$. If $Q_{x'_x x''_y}^f \xrightarrow{\mathcal{D}} x_0$ with respect to f, then $Q_{x'_x x''_y}^f \xrightarrow{\mathcal{D}} x_0$ also with respect to $F \circ f$. Now put $Q_n^{*f} = f^{-1}(I_{(f(x'_n),f(x''_n)))}$. For all $x \in Q_n^{*f}$

$$
i_n = \inf_{y \in I_{(f(x'_n), f(x''_n))}} F(y) \le (F \circ f)(x) \le \sup_{y \in I_{(f(x'_n), f(x''_n))}} F(y) = s_n
$$

and, using the ψ_f -integrability of $F \circ f$, it follows that $i_n \leq \frac{1}{\sqrt{n}}$. $\sqrt{n*}$ $\psi_f(\bm{Q_n}^{\star})$ Moreover, observing that for $n \to \infty$, $\{i_n\}$ and $\{s_n\}$ converge to $(F \circ f)(x_0)$ and that Q_n^{*f} is a $\bar{\psi}_f$ -measure cover of $Q_{x',x''}^f$ (see 2.1), we obtain

$$
(F \circ f)(x_0) = \lim_{n \to \infty} \frac{\phi_f^{F \circ f}(Q_n^{*f})}{\bar{\psi}_f(Q_n^{*f})} = \lim_{\substack{Q_{x'_n x''_n}^f \to x_0 \\ \psi_f^*(Q_{x'_n x''_n}^f)}} \frac{\phi_f^{*F \circ f}(Q_{x'_n x''_n}^f)}{\psi_f^*(Q_{x'_n x''_n}^f)}
$$

= $D_{\mathcal{D}}(x_0, \phi_f^{*F \circ f}, \psi_f^*, \mathcal{Q}^f).$

Remark 1 The properties ii), iii), iv) and the conclusion of Proposition 3.2 are also true if f is the Darboux derivative of its $\bar{\psi}_f$ -integral with respect to $\bar{\psi}_f$ and the system \mathcal{Q}^f .

Remark 2 If $F \circ f$ is a nowhere constant function on $[l, L]$, from condition i) of Proposition 3.1 (see [6]), it follows that $(F \circ f)(x) = D_{\mathcal{D}}(x, \phi_{F \circ f}^*, \psi_{F \circ f}^*, \mathcal{Q}^{F \circ f})$ for each $x \in [a, b]$. Indeed the above derivative depends on the system and on the measure associated to the function $F \circ f$.

3.2

Given a real bounded nowhere constant function f on $[a, b]$ with connected range, set

$$
\Delta_f = \{g : [a, b] \to \mathbb{R}; g \text{ is bounded, } \bar{\psi}_f\text{-measurable and}
$$

$$
g(x) = D_{\mathcal{D}}(x, \phi_f^{*g}, \psi_f^*, \mathcal{Q}^f) \ \forall x \in [a, b]\},
$$

where $\phi_{f}^{*g}(A) = \int_A g d\psi_f^* \ \forall A \subset [a, b]$ (see 2.2). If $f \in \Delta_f$, we prove that Δ_f is a linear space and we give some sufficient conditions in order that a bounded function g be the derivative of its $\bar{\psi}_f$ -integral with respect to $\bar{\psi}_f$ and the system \mathcal{Q}^f .

Linear Spaces of Darboux Derivatives 781

3.2.1

Let C be the class of all real bounded functions defined on $[a, b]$ and having connected range.

Proposition 3.3 Let $f, g \in \mathbb{C}$ and suppose that f is $\bar{\psi}_g$ -measurable. Then for each $A \subset [a, b]$ there is a set $A^* \in \mathcal{M}_g$, which is a $\bar{\psi}_f$ -measure cover of A.

PROOF. For each A there is a Borel subset $B_f \subset f([a, b])$ such that $A^* =$ $f^{-1}(B_f)$ is a $\bar{\psi}_f$ -measure cover of A (see [2]). Then A^* is $\bar{\psi}_g$ -measurable. \Box

Proposition 3.4 Given $f, g \in \mathbb{C}$ such that f is $\bar{\psi}_g$ -measurable and g is $\bar{\psi}_f$ measurable, for each set $A \subset [a, b]$ there exists a set A^* which is a measure cover of A with respect to $\bar{\psi}_f$ and $\bar{\psi}_g$.

PROOF. Let $A \subset [a, b]$. By Proposition 3.3 there exist A_1^* in \mathcal{M}_g which is a $\bar{\psi}_f$ -measure cover of A and A_2^* in \mathcal{M}_f which is a $\bar{\psi}_g$ -measure cover of A. Then the set $A^* = A_1^* \cap A_2^*$ is the desired set. In fact $A \subset A^*$ and $\psi_f^*(A) \leq \bar{\psi}_f A^*$) \leq $\psi_f(A_1)$ and $\psi_g(A) \leq \psi_g(A') \leq \psi_g(A_2)$. Then from the properties of A_1 and of A_2^* it follows that $\psi_f^*(A) = \psi_f(A^*)$ and $\psi_g^*(A) = \psi_g(A^*)$. \Box

Proposition 3.5 Let $f, g \in \mathbb{C}$ with $f \overline{\psi}_g$ -measurable and let $\{A_n\}$ be a sequence of sets such that $A_n \in \mathcal{M}_f \cap \mathcal{M}_g$ with $\bar{\psi}_f(A_n) > 0$ and $\bar{\psi}_g(A_n) > 0$ for each n. Suppose that for each n there exist $h_n, k_n \in \mathbb{R}$ such that $f(A_n) \subseteq$ $[h_n, k_n]$ and $\lim_{n\to\infty} (k_n - h_n) = 0$. Then

$$
\lim_{n \to \infty} \bar{\psi}_f(A_n) = 0 \text{ and } \lim_{n \to \infty} \left[\frac{\phi_g^f(A_n)}{\bar{\psi}_g(A_n)} - \frac{\phi_f(A_n)}{\bar{\psi}_f(A_n)} \right] = 0.
$$

PROOF. $\bar{\psi}_f(A_n) = \mu(f(A_n)) \leq k_n - h_n$. Moreover, as f is $\bar{\psi}_g$ -measurable and bounded, it is $\bar{\psi}_g$ -integrable on every A_n . Then

(1)
$$
h_n \bar{\psi}_g(A_n) \leq \phi_g^f(A_n) \leq k_n \bar{\psi}_g(A_n).
$$

Since f is $\bar{\psi}_f$ -integrable,

(2)
$$
h_n \bar{\psi}_f(A_n) \leq \phi_f(A_n) \leq k_n \bar{\psi}_f(A_n).
$$

Now dividing (1) by $\bar{\psi}_g(A_n)$ and (2) by $\bar{\psi}_f(A_n)$, we get $h_n \leq \frac{\phi_g'(A_n)}{\bar{\psi}_g(A_n)} \leq k_n$ and $h_n \leq \frac{\phi_f(A_n)}{\psi_f(A_n)} \leq k_n$. Hence, $0 \leq \Big|\frac{\phi'_g(A_n)}{\psi_g(A_n)} - \frac{\phi_f(A_n)}{\psi_f(A_n)}\Big| \leq k_n - h_n$. □

M. LOREFICE AND G. RICCOBONO

Proposition 3.6 If $f \in \Delta_f$ is $\bar{\psi}_g$ -measurable, $g \in \mathbb{C}$ is $\bar{\psi}_f$ -measurable and for each $x \in [a, b]$ there exists a sequence $\{Q_n^f\} \subset Q^f$ such that $Q_n^f \xrightarrow{\mathcal{D}} x$ with $\psi^*_{g}(Q_n^f) \neq 0$, then $f(x) = D_{\mathcal{D}}(x, \phi^*_{g}, \psi^*_{g}, Q^f)$ for each $x \in [a, b]$.

PROOF. Let $\{Q_{x'_n x''_n}\}$ be a sequence belonging to Q^f and converging to x in the Darboux sense with respect to f with $\psi^*_{g}(Q^f_{x'_*x''_*}) \neq 0$. Moreover let Q_{n}^{*} be a measure cover of $Q_{x'_{n}x''_{n}}^{f}$ with respect to ψ_{f} and ψ_{g} such that $Q_{n}^{*} \nsubseteq f^{-1}(I_{(f(x'_{n}),f(x'_{n})))})$. By Propositions 3.4 and 3.5

$$
f(x) = \lim_{Q_{x'_n x''_n} \to x} \frac{\phi_{f}(Q_{x'_n x''_n}^f)}{\psi_{f}(Q_{x'_n x''_n}^f)} = \lim_{n \to \infty} \frac{\phi_{f}(Q^*_{n})}{\bar{\psi}_{f}(Q^*_{n})} = \lim_{n \to \infty} \frac{\phi_{g}^f(Q^*_{n})}{\bar{\psi}_{g}(Q^*_{n})}
$$

$$
= \lim_{Q_{x'_n x''_n} \to x} \frac{\phi_{g}^{*f}(Q_{x'_n x''_n}^f)}{\psi_{g}(Q_{x'_n x''_n}^f)} = D_{\mathcal{D}}(x, \phi_{g}^{*f}, \psi_{g}^*, \mathcal{Q}^f).
$$

$3.2.2$

Given $f \in \Delta_f$ we prove the following assertion.

Proposition 3.7 Δ_f is a real linear space.

PROOF. Let $f_1, f_2 \in \Delta_f$. For each $x \in [a, b]$ and for each sequence $\{Q_{x', x''}^f\}$ converging to x in the Darboux sense with respect to f

$$
f_1(x) + f_2(x) = \lim_{\substack{Q'_{x'_n, x''_n} \to x}} \frac{\phi^{*} f_1(Q'_{x'_n, x''_n})}{\psi^* f(Q'_{x'_n, x''_n})} + \lim_{\substack{Q'_{x'_n, x''_n} \to x}} \frac{\phi^{*} f_2(Q'_{x'_n, x''_n})}{\psi^* f(Q'_{x'_n, x''_n})}
$$

=
$$
\lim_{\substack{Q'_{x'_n, x''_n} \to x}} \frac{\phi^{*} f_1(f_1 + f_2)(Q'_{x'_n, x''_n})}{\psi^* f(Q'_{x'_n, x''_n})} = D_{\mathcal{D}}(x, \phi^{*}_f(f_1 + f_2), \psi^*_f, Q^f).
$$

Moreover for each $k \in \mathbb{R}$ and $f_1 \in \Delta_f$

$$
(k \cdot f_1)(x) = k \cdot f_1(x) = k \cdot \lim_{Q'_{x'_n x''_n} \to x} \frac{\phi_f^{*} f_1(Q'_{x'_n x''_n})}{\psi_f^*(Q'_{x'_n x''_n})}
$$

=
$$
\lim_{Q'_{x'_n x''_n} \to x} \frac{\phi_f^{*}(k f_1)(Q'_{x'_n x''_n})}{\psi_f^*(Q'_{x'_n x''_n})} = D_{\mathcal{D}}(x, \phi_f^{*}(k f_1), \psi_f^*, \mathcal{Q}^f).
$$

Proposition 3.8 Let $f \in \Delta_f$ and suppose that:

- 1) g is a bounded, $\bar{\psi}_f$ -measurable function defined on [a, b],
- 2) for sequences $\{x'_n\}$ and $\{x''_n\}$ converging to x such that $f(x'_n) \neq f(x''_n)$ and $\{f(x'_n)\}, \{f(x''_n)\}$ converge to $f(x)$ there exist two sequences $\{\bar{x}'_n\}$ and $\{\bar{x}_n^{\prime\prime}\}$ converging to x such that $g(\bar{x}_n^{\prime}) \neq g(\bar{x}_n^{\prime\prime})$ and $\{g(\bar{x}_n^{\prime})\}$, $\{g(\bar{x}_n^{\prime\prime})\}$ converge to $g(x)$, with $g(f^{-1}(I_{(f(x'_n),f(x''_n)))}) \subset I_{(g(\bar{x}'_n),g(\bar{x}''_n))}$.

Then $g \in \Delta_f$.

PROOF. Let $\{Q_{x,x'}^f\} \subset Q^f$ be a sequence converging to x in the Darboux sense with respect to f and $\psi_f^*(Q^f_{x'_n x''_n}) \neq 0$ for each $n \in \mathbb{N}$. If the set $f^{-1}(I(f(x'_n),f(x''_n)))$ is not a $\bar{\psi}_f$ -measure cover of $Q^f_{x'_n,x''_n}$, then there exists such a set Q_{n}^{*f} contained in $f^{-1}(I(f(x'_{n}),f(x'_{n})))$. Consequently, without loss of generality, for each $t \in Q_n^{*f}$ we can write $g(\bar{x}_n') \leq g(t) \leq g(\bar{x}_n'')$ and, by the $\bar{\psi}_f$ integrability of g, it follows that $g(\bar{x}'_n)\psi_f(Q^*_{n}^f) \leq \phi_f^g(Q^*_{n}^f) \leq g(\bar{x}''_n)\psi_f(Q^*_{n}^f)$.

Hence,
$$
g(\bar{x}'_n) \leq \frac{\phi_j^g(Q^*)}{\bar{\psi}_f(Q^*)} \leq g(\bar{x}''_n)
$$
, and

$$
\lim_{n \to \infty} \frac{\phi_j^g(Q^*)}{\bar{\psi}_f(Q^*)} = g(x) = D_{\mathcal{D}}(x, \phi^*_{f}^g, \psi^*, Q^f).
$$

Proposition 3.9 If $f \in \Delta_f$, $g \in \mathbb{C}$ satisfy the conditions of Propositions 3.6 and 3.8, then for each $x \in [a, b]$ we have $g(x) = D_{\mathcal{D}}(x, \phi_g^*, \psi_g^*, \mathcal{Q}^f)$.

PROOF. Let $\{Q_{x',x''}^j\}$ be a sequence converging to x in the Darboux sense with respect to f. By Proposition 3.4 there exists, for each n, a set $Q^*_{n} \subset f^{-1}(I_{(f(x'_{n}), f(x'_{n})))}$ which is a measure cover of $Q_{x'_{n}x''_{n}}^{f}$ with respect to $\bar{\psi}_{f}$ and $\overline{\psi}_g$, such that $\frac{\phi^* g(Q_{x'_k x''_k}^{f}(Q_{x'_k x''_k}^{f})}{\phi^* g(q_{x'_k x''_k}^{f})} = \frac{\phi^g_f(Q_{x'_k x''_k}^{f})}{\phi^* g(q_{x'_k x''_k}^{f})}$ and $\frac{\phi_g(Q_{x'_k x''_k}^{f})}{\phi^* g(q_{x'_k x''_k}^{f})} = \frac{\phi^* g(Q_{x'_k x''_k}^{f})}{\phi^* g(q_{x'_k x''_k}^{f})}$. Then by Proposition 3.5,
 $\phi^* g(Q_{x'_k x'_k})$ $\phi^* g(Q_{x'_k x'_k})$ and $\overline{\psi}_g$, such that $\phi^* g(Q_{x'_k x''_k}) = \frac{\phi^g_g(Q^* f)}{\overline{\psi}_f(Q^* f)}$ and $\phi^* g(Q^* f) = \frac{\phi^* g(Q^* f)}{\overline{\psi$ $\frac{f(Q_{x'_n x''_n})}{f(Q_{x'_n x''_n})} = \frac{\varphi_f(Q_{n})}{\bar{\psi}_f(Q_{n})}$ and $\frac{\varphi_g(Q_{n})}{\bar{\psi}_g(Q_{n})} = \frac{\varphi_g(Q_{x'_n x''_n})}{\psi_g^*(Q_{x'_n x''_n})}$. Then by

$$
g(x) = \lim_{Q'_{x'_n x''_n}} \frac{\phi^* f(Q'_{x'_n x'_n})}{\psi^* f(Q'_{x'_n x''_n})} = \lim_{Q'_{x'_n x''_n}} \frac{\phi^* g(Q'_{x'_n x''_n})}{\psi^* g(Q'_{x'_n x''_n})}.
$$

□

О

Proposition 3.10 Let $f \in \Delta_f$, $g \in \Delta_g$ and suppose that:

- 1) g is $\bar{\psi}_f$ -measurable,
- 2) for each $Q_{x'_k x''_l}^f \xrightarrow{\mathcal{D}} x$ with respect to f, there is $Q_{\bar{x}'_k \bar{x}''_l}^g \xrightarrow{\mathcal{D}} x$ with respect to g such that there exists, for each n, a $\bar{\psi}_g$ -measure cover Q_n^* of $Q_{\bar{x}_a^t\bar{x}_b^u}$ and $\bar{\psi}_f$ -measure cover of $Q^f_{x'_x x''_y}$.
- Then $g \in \Delta_f$.

PROOF. By conditions 1) and 2) and by Proposition 3.5 it follows that

$$
g(x) = \lim_{\substack{Q_{x'_n x''_n} \to x \\ Q_{x'_n x''_n}} \frac{\phi_g^*(Q_{\bar{x}'_n \bar{x}''_n}^g)}{\psi_g^*(Q_{\bar{x}'_n \bar{x}''_n}^g)} = \lim_{n \to \infty} \frac{\phi_g(Q_{n})}{\psi_g(Q_{n})} = \lim_{n \to \infty} \frac{\phi_g^*(Q_n^*)}{\psi_f(Q_n^*)}
$$

$$
= \lim_{\substack{Q_{x'_n x''_n} \to x \\ Q_{x'_n x''_n}} \frac{\phi_g^*(Q_{x'_n x''_n}^g)}{\psi_f^*(Q_{x'_n x''_n}^g)} = D_{\mathcal{D}}(x, \phi_f^{*g}, \psi_f^*, Q^f).
$$

Remark 3 If $f(x) = x$ for all $x \in [a, b]$, then Δ_f contains only the bounded and μ^* -measurable functions $g(x)$ which are the derivatives of their μ -integrals at each $x \in [a, b]$ (see [1], pages 37-38).

Remark 4 If $f \in \Delta_f$, $f \ge 0$, then Δ_f contains the ring

$$
\mathcal{H} = \{f_n(x) = \sum_{i=1}^n a_i f^i(x); a_i \in \mathbb{R}, n \in \mathbb{N}\},\
$$

where $f^{i}(x) = (f(x))^{i}$.

Since Δ_f is a linear space, it is enough to show that $f'(x)$ is PROOF. in Δ_f . In fact, for each $x_1, x_2 \in [a, b]$ we have $(f^i)^{-1}(I_{(f^i(x_1), f^i(x_2))})$ = $f^{-1}(I_{(f(x_1),f(x_2))})$. Then $f^{i}(x)$ is $\bar{\psi}_f$ -measurable and $Q^{f^{i}}_{x_1x_2} = Q^{f}_{x_1x_2}$ for each $x_1, x_2 \in [a, b]$. Moreover, if $\{Q_{x'_k x''_k}\}$ is a sequence converging in the Darboux sense with respect to f, then it is a sequence converging in the Darboux sense with respect to f^i and the conditions of Proposition 3.9 are verified. о

Remark 5 If $f \in \Delta_f$, $g \in \Delta_g$ and if $g \ge 0$ satisfies the conditions of Proposition 3.8 (or the conditions of Proposition 3.10), then the ring

$$
\mathcal{G} = \{g_n(x) = \sum_{k=1}^n b_k g^k(x); b_k \in \mathbb{R}, n \in \mathbb{N}\}
$$

is contained in Δ_f .

PROOF. For each $x_1, x_2 \in [a, b]$ and $k \in \mathbb{N}$ we have $(g^k)^{-1}(I_{(g^k(x_1), g^k(x_2))}) =$ $g^{-1}(I(g(x_1),g(x_2)))$. Then g^k is $\bar{\psi}_f$ -measurable and $Q_{x_1x_2}^{g^k} = Q_{x_1x_2}^{g}$ for each $x_1, x_2 \in [a, b]$. Moreover $Q_{x'_k x''_k}^{g^k} \xrightarrow{\mathcal{D}} x$ with respect to g^k when $Q_{x'_k x''_k}^{g^l} \xrightarrow{\mathcal{D}} x$ with respect to g . Finally condition 2) of Proposition 3.10 (or condition 2) of Proposition 3.8) is verified for g^k . Hence $g^k \in \Delta_f$.

References

- [1] A. M. Bruckner, Differentiation of Real Functions, Springer-Verlag, Berlin, Heildelberg, New York (1978).
- [2] H. Hahn, A. Rosenthal, Set functions, Albuquerque, N. Mexico (1948).
- [3] P. Halmos, Measure Theory, D. Van Nostrand Company, Toronto (1954).
- [4] H. Lebesgue, *Leçons sur l'integration*, Gautier Villars, Paris (1928).
- [5] M. F. Lorefice, E. Giacalone , Funzioni a codominio connesso e misure associate: le funzioni di Darboux, Atti Sem. Mat. Fis. Univ. Modena, 28 (1979), 294-301.
- [6] M. F. Lorefice, I. Maniscalco, Una proprietà delle funzioni di Darboux, Atti Acc. Sc. Lett. Arti, Palermo, S. IV, 38 (1978), 339-347.
- [7] G. Riccobono, Proprietà della misura associata ad una funzione a codo $minio$ connesso, Atti Acc. Sc. Lett. Arti, Palermo, S. V, 6 $(1985/86)$, 87-98.
- [8] M. F. Lorefice, G. Riccobono, Darboux- derivate e funzioni quasi di Dar boux, Atti Sem. Mat. Fis. Univ. Modena, 35 (1987), 207-216.
- [9] M. F. Lorefice, G. Riccobono, Alcune classi di Darboux- derivate Atti Acc. Sc. Lett. Arti, S. V, Palermo 8 (1988), 301-308.
- [10] M. F. Lorefice, G. Riccobono, Sulla somma di funzioni di Darboux, Atti Sem. Mat. Fis. Univ. Modena, 39 (1991), 193-199.