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1 Introduction

It is well known that there exist Darboux functions which are not derivatives
(see [4], page 97). However, as it was proved in [6], each bounded Darboux
function is the “Darboux derivative” (see 2.4 below) of its indefinite integral
with respect to a suitable measure and a differentiation system associated with
f. The existence of Darboux derivatives which are not Darboux functions was
proved in [5] and [9]; moreover, as for Darboux functions, the sum of Darboux
derivatives may be not a Darboux derivative.

In this paper we associate to each Darboux derivative f the linear space
Ay of all the Darboux derivatives with respect to the differentiation system
associated with f. We prove that A; contains each function F o f where F
is continuous on the range of f, and so contains each polynomial in f (see
Remarks 4 and 5). Moreover sufficient conditions for a function g to belong
to Ay are also given (see Propositions 3.8 - 3.10).

We observe that if f(z) = z for each = € [a,}], then Ay is the set of all
the Lebesgue integrable functions which are the derivatives of their integrals
at every z € [a, b].

2 Preliminaries

2.1 Measure Associated to a Function

Let f : [a,b] > I (where I is a bounded subinterval of R) be a real bounded
nowhere constant function with f([a,b]) = I and set F; = {f"(B) : B C
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I is a Borel set}. It is clear that F; is a o-algebra. Now for each F € F; set
¥y (F) = p(B), where p is Lebesgue measure on R and B is a Borel subset of
I such that F = f~1(B). It is easy to verify that 1 is a finite measure on ;.
Then we can extend it to the complete o-algebra M of all the ¥} -measurable
sets, where ¢} is the outer measure induced by 1; on the o-algebra of all the
subsets of [a, b].

Let ; denote this extension and call it the measure associated to f. It is
a finite, complete and completely additive measure on M;. Moreover ¥(F) =
¥y (F) for each F € F;. Denoting outer Lebesgue measure by u*, in [7] it was
proved that:

i) ¢}(A4) = p*(f(A)) for each set A C [a,b],

ii) if A is yj-measurable, then f(A) is p*-measurable,
iii) if A= f~!(T) and T is p*-measurable, then A is ¢;-measurable.
Moreover, it is well known [2] that to each set A C [a, b] there is a set A* € M;
with A* D A and ¢} (4) = ¥ (A*); A* is called a 9;-measure cover of A.
2.2 Integral with Respect to a Measure

If g is a real bounded ¢;-measurable function, it is also ;-integrable (see [2]
page 149); i.e., there exists a unique set function ¢§ on M; such that:

*) ¢§ is completely additive,
(**) f M € My, h,k € R and Vz € M we have h < g(z) < k, then

h-9p(M) < ¢5(M) < k-4;(M).

We call ¢5(M) the integral of g on M with respect to ¥ and set 5 (M) =
Jap 9d¥;. ExtePd ¢7 to each subset A of [a,b] as follows: ¢379(A) = ¢%(A"),
where A* is a 1y-measure cover of A. If g = f, put ¢5 = ¢y and ¢}f = ¢7.

2.3 Darboux Systems

For any z,,z3 € [a,b] (z1 # z2), denote by I(;, .,) the closed interval [z, z5]
if z; < z2, and the closed interval [z, z,] otherwise. If f(z,) # f(z2), then set

Qi,zz =f- (I(f(zl) f(z:))) nI(z; ,T2) The system QJ {Q,wz T1,ZT2 € [a b]
and f(z1) # f(z2)} is called the system associated with f. Given a sequence

{Qi; on} we say that it converges to zo in the Darboux sense with respect
to f, and we write Qi, ,,,Lzo, when z], = zo,z), = zo and f(z) —
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f(zo), f(z!!) = f(zo). We say that the system Q/ is the Darboux system
associated to f when for each z € [a, b] there is a sequence {Q,, 2 } converging

to z in the Darboux sense with respect to f and ¥} (Q’,..) #0foreachn € N.

3, zll

2.4 Darboux Derivatives

A real bounded function g defined on [a, b] will be called a Darboux derivative
if there exists a real bounded nowhere constant function f on [a, }], a o-algebra
& of subsets of [a, ] and two set functions ¢ and ¢ on & such that:

a) the system Q7 associated with f is a Darboux-system and Qf C £,

B) for each z € [a,b], there exist a sequence {Q%}nen C QF with Qf AP
and ¢(QZ) # 0, for each n €N,

f
v) 9(z) = lim %g% = Dp(z,¢,¥, Q) for each z € [a,d] and for each
QL n

Q% D = with %(Qf) £ 0.

The class of all Darboux derivatives will be denoted by Ap. It is not empty
since each bounded nowhere constant Darboux function f is the Darboux
derivative of its w,-mtecral with respect to the measure ¢, and the system
Q7 associated to f (see [6]).

Moreover, let f be a bounded nowhere constant function on [a,b] and for
each z,z; with f(z;) # f(z2) set

Ai;zz = {y € I(I(x'x).f(z‘z)); f(:l:) 95 Yy for each z € I(h,rz)}'

Denote by Qp the family of all bounded nowhere constant functions f such
that pu(AL ;,) = 0 for each z1, z; € [a,b], and by A the family of all bounded
nowhere constant functions f such that, for all z1,z2 € [a,b], pa (AL ,,) =0,
where u. is Lebesgue inner measure. It is known (see [5] and [9]) that D C
Qp C A C Ap, where D is the class of all real bounded nowhere constant
Darboux functions defined on [a, b].

3 Main Results

3.1

Here we define a real linear space whose elements are Darboux derivatives with
respect to the system @/ and with respect to the measure ¥ ¢ associated with
a given function f € D.
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Proposition 3.1 Let f : [a,b] = [, L] be a nowhere constant Darbouz func-
tion such that f([a,b]) = [I, L] and let X = {F o f; F € C[l, L]} where C[l, L]
denotes the set of all continuous functions on [l, L]. Then:

i) g € X => g is a Darbouz function,
1) X is a real linear space,
i) geX =>gis qu -measurable,
iv) [,g9dy; = f!(A)F(y)dp, foral A€ My andg=Fof€eX.
PRroOF.
i) Let zp € R and let z,, z2 € [a,b] be such that (F o f)(z1) < (F o f)(z2)
and (F o f)(z1) < 20 < (F o f)(z2). Since F is continuous, there exists
Y0 € I(f(z,),f(z2)) Such that F(yo) = 2o. Since f is a Darboux functxon

there exists zo € I(z,,z,) such that f(zo) = yo. It follows that (F
f)(zo) = F(f(20)) = F(y0) = 20, ie. Fof€D.

ii) Let (Fyo f), (Fao f) € X. Then (Fio f)+ (F2o f) = (Fi+ Fa)o f € X
and K-(Fof)=(K-F)ofeXforal K €R.

iii) To prove the 1;-measurability of F o f, we observe that

(F o /)" I((Fos)(en)(For)(za))) = FHF T (P (s(20)), (s (2]

moreover F~!(I(p(s(z,)),F(f(z2)))) 18 a Borel set, because F, being con-
tinuous, is Borel measurable. Finally f~1[F~ l(I(F(f(zl)) F(f(z2)))] 18 Vs
measurable since f is {y-measurable.

iv) The boundedness and the ¥ ¢-measurability of g imply its ) s-integrability;
moreover the second integral is a completely additive set function on
M;. In fact, if {A,} is a sequence of sets in M; with A; N A; =
@ for i # j, then { f(A,,)} is a sequence of Lebesgue measurable sets
and f(A:i) N f(A;) is a p-nullset for 7 # j, since, for every i there are
a Borel set B; and a ¢;-nullset N; such that A; = f~1(B;) U N; and
F~Y(Bi)NN; = 0. Then

/ F(y)d#=/ F(y) d#—Z/ F(y)dp.
f(UnAn) Unf(An)

neN

Moreover if A € My and if there are h, k € R such that h < (Fo f)(z) < k for
every ¢ € A, then h < F(y) < k for every y € f(A), and by the u-integrability
of F(y) it follows that h-u(f(A)) < [;(4) F(y) du < k-p(f(A)). Then the claim
follows by the equality u(f(A)) = ¥;(A) and by the definition of ¢-integral.
|
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Proposition 3.2 For all F € C[I, L] let ¢;°7 (A) = [, (F o f)d{; (see 2.2).
Then for each z € [a,b] we get (F o f)(z) = Dp(z, ¢'F°f,¢;, Q).

ProOF. Let z¢ € [a,b]. If Qi, o 2, 2o with respect to f, then Qi;z',( 2 20
also with respect to Fo f. Now put Q%/ = F Y (s (z1),5(zny))- Forallz € Q7

in = inf  F(y)<(Fof)(z)< sup  F(y)=sn
Y€l retn L TERWIE

Foj (Q- f)

and, using the &,-integrability of Fo f, it follows that i, < ¢ - f) <

n-

Moreover, observing that for n — oo, {z,,} and {s,} converge to (F o f)(zo)

and that Q‘f is a §;-measure cover of @/, 1z (see 2.1), we obtain

F * ‘F
@ f) I e L
ey ’l,bf (Q Qi’ :”.1”0 ¢f (Qza;t’()

= DD(30>¢;F01; ¢;7 Qj)
[m]

Remark 1 The properties ii), iii), iv) and the conclusion of Proposition 3.2
are also true if f is the Darboux derivative of its s-integral with respect to
¥; and the system Q7.

Remark 2 If Fo f is a nowhere constant function on [/, L], from condition i) of
Proposition 3.1 (see [6]), it follows that (F o f)(z) = Dp(z, $¥Fos, ¥Fos, 2F°7)
for each z € [a, b]. Indeed the above derivative depends on the system and on
the measure associated to the function F o f.

3.2

Given a real bounded nowhere constant function f on [a,b] with connected
range, set

Ay = {g: [a,b] = R; g is bounded, ¥;-measurable and
9(z) = Dp(=, ¢;g’ ¢;w Ql) Vz € [a)b]}:
where ¢7°(A) = [, gdy; YA C [a,b] (see 2.2). If f € Ay, we prove that
Afisa hnear space and we give some sufficient conditions in order that a

bounded function g be the derivative of its ¥ s-integral with respect to ¢f and
the system Q7.
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3.2.1

Let C be the class of all real bounded functions defined on [a,b] and having
connected range.

Proposition 3.3 Let f,g € C and suppose that f is_zZ:g-measumble. Then
for each A C [a,b] there is a set A* € Mg, which is a y;-measure cover of A.

PRoOF. For each A there is a Borel subset By C f([a b]) such that A* =
f~1(By) is a Ys-measure cover of A (see [2]). Then A* is yy-measurable. O

Proposition 3.4 Given f, g € C such that f is ﬁg-measurable and g s 1,5,-
measurable, for each set A C [a,b] there ezists a set A* which is a measure
cover of A with respect to ¢y and vq.

PRroOF. Let A C [a,b]. By Proposition 3.3 there exist A} in My which is a
¥;-measure cover of A and A} in M which is a ¢g-measure cover of A. Then
the set A* = AN A3 is the desired set. In fact A C A” and ¢¥3(4) < vy A*) <
¥7(A7) and ¥} (A) < Py(A4%) < ¥g(A3). Then from the properties of A] and
of Aj it follows that 7 (A) = ¢;(A*) and ¢ (A) = ¢4(4*). o

Proposition 3.5 Let f, g € C with f ¢g-measurable and let {An} be a se-
quence of sets such that A, € My N My with ¢;(An) > 0 and P4(4An) > 0
for each n. Suppose that for each n there erist hn, k, € R such that f(A,) C
[hn, kn) and nli»nolo (kn — hy) = 0. Then

8’ (An) _ ds(an)] _,
boldn) ~ U(An)] =7

hm ¥s(An) =0 and hm [

PROOF. ¥ (An) = pu(f(An)) < kn —hy,. Moreover, as f is g-measurable and
bounded, it is 34-integrable on every A,. Then

(1) hatg(An) < 65 (An) < kntg(An).

Since fis ¥ s-integrable,

(2) hn"»z’f(An) < ¢j(An) < kn"z}f(An)-

Now dividing (1) by ¥4(A.) and (2) by ¥;(An), we get hn < igEA"; < kn
9

and h, < 81(An) < k,. Hence, 0 < ¢9(A") - ¢ (4n) < kp—h,. a

Ys(An) ~ P g (An) lz'f(An) -
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Proposition 3.6 If f € Ay is ﬁg-measumble, g€ Cis J/f-measurable and

for each z € [a, b] there exists a sequence {QL} C Q7 such that Q) 2 z with
V" 4(Q4) #0, then f(z) = Dp(z,¢"},9",, Q) for each z € [a,8].

PRroOOF. Let {Q,, -
in the Darboux sense with respect to f with 3* g(Qi . ,n) # 0. Moreover

} be a sequence belonging to @/ and converging to z

let Q*, be a measure cover of Q{,, o» With respect to ¥y and 159 such that
Q*, C f~*(I(s(s1),7(=1)))- By Propositions 3.4 and 3.5

QL) $5(Qa) _ . 45(Q")
= 1 — L TZa%n’ — im n) _ ]
= e @) T @) T R @)

‘f f/ "
= lim LQ;”’"—)=DD( 1wy, Q0).
Q! 2 ¥ o(Qzron)
3.2.2

Given f € A; we prove the following assertion.

Proposition 3.7 Ay is a real linear space.

PROOF. Let f1, fo € Ay. For each z € [a,b] and for each sequence {Q,, x,,}
converging to z in the Darboux sense with respect to f

¢‘fl (Q:' z'”) ¢.f2 (Q:' z‘”)
bi + f: = li ——-—— lim ——
1(z) + fa(=) o, j,ni,, ACH) o, 1”___): V3 QL o)

¢ (f1+!z)(Qz z”)

= lim = Dp(z, 32472 43, 07).
ol 2e Y@Ly !

Moreover for each k € R and f; € Ay

¢.fl(Q.1: a:")

(k-fi)(@) =k filz) =k lim —L——FaTi
1)(z) 1(z) Q,I,I,n—n QL)

= lim % Qera) (kh)(Qi'n”n')=

Dp(z, 6% 43, Q7).
Q:I = '2')"' d); (Q‘{,n:'n’)
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Proposition 3.8 Let f € Ay and suppose that:
1) g is a bounded, y;-measurable function defined on [a, ],

2) for sequences {z,} and {z!.} converging to z such that f(z}) # f(zll)
and {f(z},)}, {f(z})} converge to f(z) there ezist two sequences {z.}
and {Z\} converging to = such that g(Z,) # g(z.!) and {g(z,)}, {9(z2)}
converge to g(z), with 9(f (Iis(z4).1220)) C Tig(an),a(2))-

Then g € Ay.

PROOF. Let {Qig :;‘,} C @’ be a sequence converging to z in the Dar-
boux sense with respect to f and ¢;(Qf ,,) # 0 for each n € N. If the

set f~1(I(s(z1),7(z1))) is.not a Py-measure cover of Qz, zu, then there exists
such a set Q‘f contained in f~! (I(s(z2), f(,u))) Consequently, without loss of
generality, for each t € Q%7 we can write 9(z7,) < g(t) < g(27) and, by the V-
integrability of g, it follows that g(‘n)qbf(Q‘f) < ¢9(Q‘f) < g(z”)¢f(Q‘f)

) =f
Hence, g(z7,) < % < g(z2), and
@) o
nll>oo d’f(Q‘f) ) D‘D(z»d’ .sy,;lt’ fo Qf)

O

Proposition 3.9 If f € Ay, g € C satisfy the conditions of Propositions 3.6
and 3.8, then for each z € [a,b] we have g(z) = Dp(z, é5, Vg, Q).

PROOF. Let {Qz, z,,} be a sequence converging to z in the Darboux sense

with respect to f. By Proposition 3.4 there exists, for each n, a set Q‘;’, C
f‘l(I(,(,,;),f(,u))) which is a measure cover of Qf, ] with respect to 1y and

¢9(QL ) w@ﬂll%wg #(Qz,z)
¥ QL) T @D T de(@) T ¥3(@QL L)
Proposition 3.5,

g, such that . Then by

. ¢‘g(Qz' z! ) . ¢g(Qz’ x”)
g(z) = llm ———-——— = lim ——
Q = u_)’" ¢‘f (Qz’ z‘”) Q:/ =N _‘D)z ¢.g(Qzaz’4)
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Proposition 3.10 Let f € Ay, g € Ay and suppose that:

1) g is ¢;-measurable,

2) for each Q Lol 2y = with respect to f, there is Qf, 0 2D, ¢ with respect
to g such that there ezists, for each n, a ¢g-measum cover Q;, of Q%, " g
and ¢v,-measure cover of Q,_., e

Then g€ Ay.
PRroOF. By conditions 1) and 2) and by Proposition 3.5 it follows that

o $5(Q2a) $5(Q°n) _ . $7(Q7)
= lim ——="= lim =2 = lim
N e e, Ti@ey) e B (@) T T (@)

. ¢}g(Qc x")
= llm —
Q) e ¥7 (@1 2)

= Dp(z, 37,4}, Q7).

0
Remark 3 If f(z) = z for all z € [g,}], then Ay contains only the bounded
and p*-measurable functions g(z) which are the derivatives of their u-integrals
at each z € [a, ] (see [1], pages 37-38).

Remark 4 If f € Ay, f > 0, then Ay contains the ring
. n .
H={fn(z)= Zi=1a,~f’ (z);a; € R,n € N},
where fi(z) = (f(z))'.

PROOF. Since Ay is a linear space, it is enough to show that f(z) is
in A, In fact, for each =i, z; € [a,b] we have (f)" (I(si(sy),ri(z2)) =

i (I(f(x, J(z2)))- Then Ffi(z) is wf-measurable and Q-‘h-‘:z = Q,lh for each

z1, z2 € [a,b]. Moreover, if {Q,, x,,} is a sequence converging in the Darboux
sense with respect to f, then it Isa sequence converging in the Darboux sense
with respect to f* and the conditions of Proposition 3.9 are verified. O

Remark 5If f € Ay, g € A, and if g > 0 satisfies the conditions of Proposi-
tion 3.8 (or the conditions of Proposition 3.10), then the ring

G={g(e)=_ bes"();bx €R,nEN}

is contained in Aj.
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PROOF. For each z1,z2 € [a,b] and k € N we have (¢%) ™ (Iigx(z,),9%(z2))) =

97 (I{g(z1),9(z2)))- Then g* is y-measurable and Qg‘;,, = Qf,., for each
k

z1, 2 € [a,b]. Moreover Qf.,n o 2, 2 with respect to g when an - 2.

with respect to g. Finally condition 2) of Proposition 3.10 (or condition 2) of

Proposition 3.8) is verified for g*. Hence g* € A;.
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