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 LINEAR SPACES OF DARBOUX

 DERIVATIVES *

 1 Introduction

 It is well known that there exist Darboux functions which are not derivatives

 (see [4], page 97). However, as it was proved in [6], each bounded Darboux
 function is the "Darboux derivative" (see 2.4 below) of its indefinite integral
 with respect to a suitable measure and a differentiation system associated with
 /. The existence of Darboux derivatives which are not Darboux functions was
 proved in [5] and [9]; moreover, as for Darboux functions, the sum of Darboux
 derivatives may be not a Darboux derivative.

 In this paper we associate to each Darboux derivative / the linear space
 Af of all the Darboux derivatives with respect to the differentiation system
 associated with /. We prove that A / contains each function F o / where F
 is continuous on the range of /, and so contains each polynomial in / (see
 Remarks 4 and 5). Moreover sufficient conditions for a function g to belong
 to A/ are also given (see Propositions 3.8-3.10).

 We observe that if f(x) = x for each x £ [a, 6], then A/ is the set of all
 the Lebesgue integrable functions which are the derivatives of their integrals
 at every x € [a, b].

 2 Preliminaries

 2.1 Measure Associated to a Function

 Let f Ě. [cL,b] -¥ I (where I is a bounded subinterval of IR) be a real bounded
 nowhere constant function with /([a, 6]) = I and set Tj = { f~l(B ) : B C
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 I is a Borei set}. It is clear that Tf is a cr- algebra. Now for each F £ Tj set
 ýf(F) = /¿(£), where ļi is Lebesgue measure on M and B is a Borei subset of
 I such that F = f~1(B). It is easy to verify that ipj is a finite measure on Tf.
 Then we can extend it to the complete (7-algebra Mf of all the ^/ -measurable
 sets, where ipj is the outer measure induced by rpf on the <r-algebra of all the
 subsets of [a, 6].

 Let V7 denote this extension and call it the measure associated to f. It is
 a finite, complete and completely additive measure on Mf. Moreover ip(F) =
 ipj(F) for each F G F /. Denoting outer Lebesgue measure by , in [7] it was
 proved that:

 i) = fi*(f(A)) for each set A C [a, 6],

 ii) if A is ^-measurable, then f(A) is /i* -measurable,

 iii) if A = f~x(T) and T is //"-measurable, then A is ^/-measurable.

 Moreover, it is well known [2J that to each set A C [a, 6] there is a set A* G M/
 with A* D A and ý*f{A) = īļ)f{A*)' A* is called a tpj -measure cover of A.

 2.2 Integral with Respect to a Measure

 If g is a real bounded ^/-measurable function, it is also ^/-integrable (see [2]
 page 149); i.e., there exists a unique set function <f>9j on M j such that:

 (*) <f>9j is completely additive,

 (**) if M G Mf, /1, k G M and Vx G M we have h < g(x) < fc, then

 h • ýf(M) < <f>gf{M) < k ■ rpf(M).

 We call <j>9j(M) the integral of g on M with respect to r¡>f and set <f>9(M) =
 fM gdipf. Extend <j>9 to each subset A of [a, 6] as follows: <t>*jg{A) = <f>9( A *),

 where A* is a t/¡/-measure cover of A. If g = /, put <j>^ = <£/ and = <f>j.

 2.3 Darboux Systems

 For any xi,x2 G [a, 6] (xi ^ #2), denote by I(Xllx2) ^ closed interval [xi,X2]
 if xi < a?2, and the closed interval [x2, xi] otherwise. If f(x 1) ^ /(^2), then set
 QÍ1X2 = / 1(hf(x i)»/(*2))) ^ The system Qf = {QjiX2 • xi»x2 G [a,&]
 and /(xi) /(^2)} is called the system associated with /. Given a sequence

 x,/} we say that it converges to xo in the Darboux sense with respect
 n n f v

 to /, and we write QJX, f x„ - kco, when x'n - ► xo,xJJ - > xq and f(x'n) - ¥
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 f(xo),f(Xn) - ► f(x o). We say that the system Qf is the Darboux system
 associated to / when for each x £ [a, b] there is a sequence {Qļ, x„ } converging

 to x in the Darboux sense with respect to / and (Qx, x„) 0 for each n E N.

 2.4 Darboux Derivatives

 A real bounded function g defined on [a, 6] will be called a Darboux derivative
 if there exists a real bounded nowhere constant function / on [a, 6], a a- algebra
 £ of subsets of [a, 6] and two set functions <¡> and ip on S such that:

 a) the system Qf associated with / is a Darboux-system and CÍ,

 ß) for each x £ [a, b], there exist a sequence {£J¿}neN C Q? with -ï x
 and V>(Qn) ^ 0, for each n £ N,

 7) g{x) = lim = Dp(z, <ļ>, Qf) for each x £ [a, 6] and for each
 Qfn Ax WW

 Qfn^x with ý{Qfn) î 0.

 The class of all Darboux derivatives will be denoted by Ap . It is not empty
 since each bounded nowhere constant Darboux function / is the Darboux
 derivative of its ^/-integral with respect to the measure ipj and the system
 QJ associated to / (see [6]).

 Moreover, let / be a bounded nowhere constant function on [a, b] and for
 each xi,x2 with f(x 1) /(x2) set

 = {2/ £ ^(/(xi),/(x2))i f{x) î y f°r ea°h x

 Denote by Q-p the family of all bounded nowhere constant functions / such
 that ii(AļļX2) = 0 for each xi, x2 £ [a, 6], and by A the family of all bounded
 nowhere constant functions / such that, for all xi,x2 € [aib]1 fim(AļļX2) = 0,
 where /1* is Lebesgue inner measure. It is known (see [5] and [9]) that V C
 Qv C A C Ap, where V is the class of all real bounded nowhere constant
 Darboux functions defined on [a, 6].

 3 Main Results

 3.1

 Here we define a real linear space whose elements are Darboux derivatives with
 respect to the system Q * and with respect to the measure ipf associated with
 a given function / £ V.
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 Proposition 3.1 Let f : [a, 6] - ► [l,L] be a nowhere constant Darboux func-
 tion such that /([a, 6]) = [/, L] and let X = {F o /; F G C[/, L]} tuńere C[/, L]
 denotes the set of all continuous functions on [l,L]. Then :

 i) g G X => g is a Darboux function,

 ii) X is a real linear space ,

 Hi) g € X => g is xj>f -measurable,

 iv) SaS^J = ff(A) F(y) dfi, for all A £ Mf and g = F o f G X.
 Proof.

 i) Let 20 e R and let xi, G [a, b] be such that (F o /)(x i) < (F o /)(x 2)
 and (F o /)(xi) < z0 < (F o f)(x 2). Since F is continuous, there exists
 yo G I(f(xl)tj(x2)) such that F(yo) = z0. Since / is a Darboux function,
 there exists xo G /(Xi r2) such that /(xo) = t/o • It follows that (F o
 f)(x 0) = F(/(x0)) = F(y0) = z0i i.e. FofeV.

 ii) Let (jFi o /), {F2 of) £X. Then (Fx o f) + ( F2 o /) = (Fì + F2) o f G *
 and /i-(Fo/) = (A' • F) o f e X foi all K G M.

 iii) To prove the ^/-measurability of F o /, we observe that

 (F o /)-1(/((JFo/)(ar1),(/='o/)(a:2))) = /_1 [■F'"1(/(F(/(X1)),F(/(X2))))];

 moreover F~l(I(F(f{x1))tF(f(x2)))) is a Borei set, because F, being con-
 tinuous, is Borei measurable. Finally f~1[F~1{I(F(f(x1)),F(f(x2)))] is im-
 measurable since / is ^/-measurable.

 iv) The boundedness and the immeasurability of g imply its ^/-integrability;
 moreover the second integral is a completely additive set function on
 Mj. In fact, if {An} is a sequence of sets in Mj with Ai fl Aj =
 0 for i ^ j , then {f(An)} is a sequence of Lebesgue measurable sets
 and f(Ai) H f{Aj) is a /i-nullset for i ^ j , since, for every i there are
 a Borei set B{ and a i¡/-nullset Ni such that A% = /~1(S, ) U Ni and
 f-l(Bi)DNi = Q. Then

 f F(y) dp = f F(y)dp=J2 f
 »^/(un> ln) 4n) n£N f(An)

 Moreover if A G Mf and if there are /1, k G M such that h < (Fo/)(x) < for
 every x E A, then h < F (y) < k for every y G f{A ), and by the /¿-integrability

 ofF(y) it follows that h -n(f(A)) < fj^F{y)dļi < k fi(f(A)). Then the claim
 follows by the equality ¡i(f(A)) = ýf(A) and by the definition of ^/-integral.
 □
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 Proposition 3.2 For ail F G C[l , L] let (A) = fA (F o f ) dxjjj (see 2.2).

 Then for each x G [a, b] we get (F o /)(x) = <Dp(x, , i/jj, Q ^).

 Proof. Let xo € [a, 6]. If Qļt x„ xo with respect to /, then QĻ x„ •-* xo

 also with respect to Fof. Now put Q = /~1(^(/(x/n ),/(«'«')))• For * € @r/

 in = inf F(y) <(Fo /)(x) < sup F(y) = sn
 f€/</(*'n )./(*'„'» y€/(/ (x'n ),/«'»

 and, using the ^/-integrability of Fof, it follows that zn < - ! -
 ýfiQn )

 Moreover, observing that for n - ► oo, {în} and {sn} converge to (F o /)(xo)
 and that Q*J is a ^¡/-measure cover of QĻ x„ (see 2.1), we obtain

 ¿í0/ (<?;') J- *'rFof(Ql'x«) x"xJ
 (fo/)(i0)= lim ! , = lim J-

 n^oo 4>f{Q*¿) , Ql¡ ^xo rí>'f(QÍ'nXn) .
 xnxn

 = Dv(x0,<ťfF°i,rf,Qf)-

 □

 Remark 1 The properties ii), iii), iv) and the conclusion of Proposition 3.2
 are also true if / is the Darboux derivative of its ^/-integral with respect to
 rp f and the system Qf .

 Remark 2 If Fof is a nowhere constant function on [/,£], from condition i) of
 Proposition 3.1 (see [6]), it follows that (Fo/)(x) = DTf{x,<f>*Fof1ipp0jiQFo^)
 for each x G [a, b]. Indeed the above derivative depends on the system and on
 the measure associated to the function Fof.

 3.2

 Given a real bounded nowhere constant function / on [ a,b ] with connected
 range, set

 A / = {g : [a, b] - y M; g is bounded, ^/-measurable and

 g{x) = Dv{z,<j>*f9,il>'f,QJ) Vx € [a, 6]},

 where <1>*f9(A) = fAgdip*j VA C [a, 6] (see 2.2). If / G A/, we prove that
 A/ is a linear space and we give some sufficient conditions in order that a
 bounded function g be the derivative of its 1/7 -integral with respect to V7 and
 the system Qf .
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 3.2.1

 Let C be the class of all real bounded functions defined on [a, 6] and having
 connected range.

 Proposition 3.3 Let /,<7 G C and suppose that f is '¡)g-measurable. Then
 for each A C [a,i>] there is a set A* G Mg , which is a ip j -measure cover of A.

 Proof. For each A there is a Borei subset Bj C /([<*,&]_) such that A* =
 f~1(Bf) is a ^/-measure cover of A (see [2]). Then A* is ^-measurable. □

 Proposition 3.4 Given / jGC such that f is īpg -measurable and g is řpf-
 measurable , for each set A C [a, b] there exists a set A* which is a measure
 cover of A with respect to rpf and rj>g.

 Proof. Let A C [a , 6] . By Proposition 3.3 there exist A' in Mg which is a
 ^¡/-measure cover of A and A' in M / which is a ^-measure cover of A. Then
 the set A* = A' OA^ is the desired set. In fact A C A* and ipj(A) < ī>/A*) <
 ipf(Al) and rpg{A) < xjjg(A*) < x¡)g{A'). Then from the properties of A' and
 of A' it follows that ißj(A) = '¡>j(A*) and ýg(A) = ipg(A*). □

 Proposition 3.5 Let /, g G C with f rpg -measurable and let {-An} be a se-
 quence of sets such that An G M/ (~)Mg with rļ>j(An) > 0 and rpg(An) > 0
 for each n. Suppose that for each n there exist hn,kn G M such that f(An) Ç
 [hn,kn] and lim (kn - hn) = 0. Then

 n-foo

 lim %¡>f(An) = 0 and n-»00 lim ýg(An) ~ t4t4 = °- n-»00 ýg(An) ýj{An)_

 Proof. rp/(An) = fi(f(An)) < kn - hn. Moreover, as / is ^-measurable and
 bounded, it is V^-integrable on every An. Then

 (1) Ki>g(An) < (An ) < knī>g(An).

 Since / is ^/-integrable,

 (2) hn$j(An) < <t>j{An) < knýf(An).

 Now dividing (1) by ī>g(An) and (2) by ī>J(An), we get hn < < kn
 Vg'An)

 J u ^ ¿/(An) ^ , ti n ^ ¿gi-An) <ļ>j(An) -J ' and J hn u < ^ /) [ < ^ kn. , Hence, ti 0 n < ^ • - -J ' <kn- hn. □
 i'; (An) ^g(An) 4>f(An)



 782 M. Lorefice and G. Riccobono

 Proposition 3.6 If f G A/ is ýg -measurable , g E C is 'ļ> j -measurable and

 for each x G [a, 6] there exists a sequence {Q¿} C Q J such that Q ¿ x with
 ý*g(Qn) ź 0; then f(x) = Dv{x, <ķ*Ļ Qf) for each x G [a, 6].

 Proof. Let {QĻ x,,} be a sequence belonging to Qf and converging to x
 in the Darboux sense with respect to / with ý* (Q^ , „) ^ 0. Moreover

 Xnf »

 let Qmn be a measure cover of q1, x„ with respect to xpf and jpg such that
 Q*n Ç By Propositions 3.4 and 3.5

 /(*) = lim * = iim t}{f¡*n' = lim "ļ

 Ks(QÍ>t") ,

 Q^x// - ^ ^vvx/nx;;j

 3.2.2

 Given / G A/ we prove the following assertion.

 Proposition 3.7 A / ¿5 a real linear space.

 PROOF. Let /i, /2 G A/. For each x G [a, 6] and for each sequence {Qx, x„}
 converging to x in the Darboux sense with respect to /

 / x ^ 1. ^*/1 (Qx' n X;/) n ^*/2(Qx'x") w n
 /1 (x) / x + /2(2) ^ = 1. lim

 ^ .„a. *?(<&...») , A. *?(<&..«) . n ' ■Łn *n n

 (/1+/2) //")/ '

 = ,lim» Vw VfW«' T QÍ,xll->* VfW«'
 n n

 Moreover for each € M and /1 € Ay

 n t 'i ' A- 1 t i ' À- i i- n (A- • /j)(x) t 'i ' = A- 1 • f^x) t i ' = À- i • i- lim , "

 Q / //
 xnxn

 □
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 Proposition 3.8 Let / G A/ and suppose that:

 1) g i s a bounded , ý j -measurable function defined on [a, 6],

 2) for sequences {xj>} and {xj(} converging to x such that f(x'n ) ^ /(x^)
 and {/(xJJ}, {/(xn)} converge to f{x) there exist two sequences {x^}
 and {x'¿} converging to x such that g(x'n) ^ g(x'¿) and {^(x'J}, {^(¿íí)}
 converge to g(x), with gif-1 (/(/(«;),/(.»)))) C ^(i'Jl3(x»))-

 Then g £ Af.

 Proof. Let {Qļ, s„} C be a sequence converging to x in the Dar-
 boux sense with respect to / and ^ 0 for each n G N. If the

 J XnXn

 set /~1(^(/(x/n),/(x/fi))) is not a ^/-measure cover of Qļ, xtli then there exists

 such a set contained in /~1(^(/(r,n),/(x;n/)))- Consequently, without loss of
 generality, for each t G OļJ we can write g(x'n) < g(t) < g(x'ń) and, by the xpj-

 integrability of g , it follows that g(x'n)4f{Q*ļ) < 4>9s(Q*Sn) < 9{*n)h(Q*h)-
 <t>9ÁQ*l )

 Hence, $(*{,) < . < g(ž»), and
 i>}{Q*n)

 = 5(X) = DV(X' W'*'» QJ)'

 a

 Proposition 3.9 // / 6 A/,(y 6 C satisfy the conditions of Propositions 3.6
 and 3.8 , then for each x G [a, b] we have g(x) = Dp(i, <ļ>mgi ipļ,Qf).

 Proof. Let {Qi> xn} be a sequence converging to x in the Darboux sense
 with respect to /. By Proposition 3.4 there exists, for each n, a set Q C
 /~1(/ (/(x'n),/(x'¿))) which is a measure cover of Qfx, x„ with respect to V¡/ and

 7 . 1 . **?(<&..«) " " WÍ) , MQ'Í) " ™ ,
 iba, 7 such . that . - - - , " " = -=¿

 ýf(Q n) ýg(Q n) 4>1(Qx'x") Tt TŁ ' fl ft Tt TŁ

 Proposition 3.5,

 / ' i- n i-
 g(x) / ' = i- lim - - - n = lim i- -

 q' xn Q'X, n xn xnxn

 □
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 Proposition 3.10 Let f e Aj, g E Ag and suppose that :

 1) g is 'ļ)f -measurable,

 2) for each QÍ, r„ -ï x with respect to f, there is Q', x with respect
 xn*n _ nrn

 to g such that there exists, for each n, a ýg-measure cover Q* of Qf'nx'n'

 and ip f -measure cover of Q*x, x„.

 Then g G A/.

 Proof. By conditions 1) and 2) and by Proposition 3.5 it follows that

 / ' r lim r <f>g{Q*n) r lim tfiQn) g(x) / ' = r lim ' = lim r /V! { = lim r / x
 Q9 n^°° 1>g(Qmn) n^°° tPfiQn) x

 *n*n

 = ,'im» iw i =D* w
 n n

 □

 Remark 3 If /(x) = x for all x 6 [a , 6] , then A / contains only the bounded
 and ^-measurable functions g(x) which are the derivatives of their //-integrals
 at each x 6 [a, b] (see [1], pages 37-38).

 Remark 4If/£A/,/>0, then A/ contains the ring

 K = {fn{x) = ^.=ia,/'(x);ať € E, n 6 N},

 where /'(x) = (/(x))ł.
 Proof. Since A/ is a linear space, it is enough to show that /'(x) is
 in Ay. In fact, for each x1? x2 € [a,b] we have (/,)"1(/(/¿(*1),/¿(*2))) =
 f~1(IU(x i),/(x2)))- Then f{x) is 1/7 -measurable and Q{'ī2 - QllX2 for each
 xi> x2 € [a, 6] . Moreover, if {QÍ< x„} is a sequence converging in the Darboux
 sense with respect to /, then it is a sequence converging in the Darboux sense
 with respect to /' and the conditions of Proposition 3.9 are verified. □

 Remark 5If/€A/,<7EAg and if g > 0 satisfies the conditions of Proposi-
 tion 3.8 (or the conditions of Proposition 3.10), then the ring

 Q - I'M®) = Ylk= 1bkSk(x)>bi' € ®,n € N}

 is contained in Ay .
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 Proof. For each x1}x2 € [a, 6] and k G N we have (ý*)"1 (I(gk{xl)ìgk(x2))) =

 9~l(hff(xi)M'2)))' Then 9k is ^/-measurable and Qļ'X2 = QļiXļ for each
 xi, X2 € [a, b]. Moreover Q9X, x„ -¥ x with respect to gk when Qgx, x„ x
 with respect to g. Finally condition 2) of Proposition 3.10 (or condition 2) of
 Proposition 3.8) is verified for gk . Hence gk G A/.
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