
 Real Analysis Exchange
 Vol. 20(2), 1994/5, pp. 753-767

 Štefan Drahovský, Tibor Šalát, and Vladimír Toma, Department of
 Mathematics, Comenius University, 842 15 Bratislava, Slovakia

 POINTS OF UNIFORM CONVERGENCE

 AND OSCILLATION OF SEQUENCES OF
 FUNCTIONS*

 Abstract

 Various types of local convergence of sequences of functions are in-
 vestigated in this paper. This investigation is based on the concept of
 oscillation of sequence of function. Applications of proved results to
 differentiability of real functions are given.

 1 Introduction

 It is known that the pointwise limit of a sequence of functions does not carry
 many important properties of the members of the sequence onto the limit
 function. Consequently, various types of convergence have been introduced
 which are stronger than the pointwise convergence. In the first part we study
 properties of some local types of uniform convergence which are sufficient
 for proving the continuity at one point of pointwise limit of a sequence of
 functions. In the second part we discuss the topological structure of the sets
 of all points of a local type uniform convergence. In the third part we give
 some applications of our results. We give a new proof of the well-known
 theorem according to which the set of discontinuity points of an arbitrary
 function in the first Baire class is a set of the first Baire category. We prove
 that the set of strong differentiability points of any continuous function is a
 G s set. Applying this result we obtain new proofs of the known facts that the
 set of all strong (or uniform symmetric) differentiability points of continuous
 symmetric differentiate function is residual.
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 2 Localizations of uniform and quasiuniform convergence

 We consider a sequence of functions (/„ : X - *• Y)n>i, where X is a topological
 space, and y is a metric space equipped with a metric q. Let

 K := {x € X : (f„(x))n>i converges in Y}

 be the domain of convergence of the sequence (fn)n> i and let the function
 / : K - >• Y be the pointwise limit of this sequence i.e.

 f(x) = lim fn(x) (x € K).
 n - >• oo

 If the sequence (fn)n> i converges uniformly on a set, M C K to the function
 /, we shall write fn / on M .

 A type of convergence weaker than the uniform convergence (see [1] p. 739)
 is locally uniform convergence on a set M C K which means, that

 Va G M 3 a neighbourhood 0(a) : fn =4 / on 0(a) fi M .

 If a sequence (fn)n> i converges uniformly on a set M to the function /,
 then it converges locally uniformly on M to the same function /. The converse
 is not true. For example the sequence (xn)n>i converges locally uniformly on
 the set M = (0,1) but it is not uniformly convergent on M .

 The next definition introduces the local form of uniform convergence (see
 [6] p. 589) and, we shall show that it is sufficient to guarantee the continuity
 of limit function at one point.

 Definition 1 A sequence of functions (/„ : X - ¥ y)n>i is said to converge
 locally uniformly at a point a G K (to the function /) if there is a
 neighbourhood O (a) of the point a such that

 fn=$ f on 0(a) H K.

 It is evident that (fn)n> i converges locally uniformly at each point of the
 domain of convergence K iff (fn)n> i converges locally uniformly on the set
 K. For a set M C A', M ^ K the implication "<=" may fail. This happens
 for the sequence (xn)n>i which is convergent on the set K = (-1,1] and is
 locally uniformly convergent on the set M = { 1 } but does not converge locally
 uniformly at 1 . The locally uniform convergence on a set. M implies the locally
 uniform convergence at some topologically distinguished points of the set M .

 Proposition 1 Let a sequence (fn)n> i converge locally uniformly on a set. M
 and a G M be an interior point of M relative to the domain of convergence
 K . Then (fn)n>i converges locally uniformly at the point a.
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 Proof. By the hypothesis of the locally uniform convergence on the set M
 of (/») n>i to the function /, there is a neighbourhood 0(a) such that

 /n n* / on 0(a) H M.

 As a is an interior point of M relative to A', there is a neighbourhood V(a) of
 a such that V(a) ClK C M. For the neighbourhood W (a) := 0(a) fl V(a) we
 have W(a)C'K C 0(a) fi M C K and so

 /n =*/ on W(a)DKi

 and this means that (fn)n> i converges locally uniformly at the point a. □
 Let us denote LU (fn)n> i the set of all points of locally uniform convergence

 of the sequence (fn)n> i- If we denote int^M the relative interior of a set
 M C K relative to the domain of convergence K , we can state Proposition 2
 in the form

 întjçM C LU (fn)n>l

 for each subset M of K such that the sequence (fn)n> i converges locally
 uniformly on the set M .

 It is easy to verify that if a sequence fn (n > 1) of functions continuous at
 a point a converges locally uniformly at the point a to the function /, then /
 is continuous at a.

 The continuity of limit function of a sequence of functions continuous at a
 point can be guaranteed even by a weaker form of locally uniform convergence.
 To show this we introduce the following Definition 2 due to C. Goffman (for
 real functions defined on M, cf. [3] p. 149).

 Definition 2 We say that a sequence (fn : X -> y)n>i converges uni-
 formly at a point a £ X if

 (1) Vč > 0 30(a) 3n0 E N Vm, n > n0 Vx G 0(a) : g(fn(x)ì fm(z)) < s.

 Remark 1 (a) In the previous definition , the convergence of the sequence
 (fn) n> i is not assumed. Therefore it would be better to use the term
 "(fn)n>' is uniformly Cauchy sequence at a point a." In what
 follows we shall consider mainly the sequences which converge on their
 definition domain , so we can use the Goffman's term.

 (b) In [6] p. 589 the author introduced a little different definition of uniform
 convergence at a point by the following condition

 (2) Ve > 0 30(a) 3n0 € N 9 Vn > n0 Vx € 0(a) 0 K :
 Q(fn(x),f(x)) < £.
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 For sequences (/n)n> i which converge pointwise on X to the function
 f, definition (1) is obviously equivalent with definition (2). Because of
 this we shall suppose in the sequel that the convergence domain K is the
 whole space X (when it is not specified otherwise).

 The following theorem is a generalization of Lemma 5 of [3] p. 149.

 Theorem 1 Let fn-¥fonX and suppose that (fn)n> l converges uniformly
 at a point a G X. If infinitely many functions fn are continuous at a, then f
 is continuous at a.

 Proof. Let e > 0. The uniform convergence at the point a yields

 30(a) 3n0 G N Vn > n0 Vz G 0(a) : g(fn(x)ì f(x)) < |.

 According to our assumption we can choose s > no such that fs is continuous
 at the point a. Therefore

 3V(a) V* € V(a) : *(/,(*),/,(«))<

 Then for each x G 0(a) fi V (a) we have:

 e(f{a),f{x)) < ß{f(a),f,{a)) + e{f,(a),f,[x)) + e(f»(x),f(x)) <
 e e e

 <3 + 3 + 3_£r'

 The continuity of / at a follows. □
 Let us compare the relationship between the locally uniform convergence

 and the uniform convergence at a point. The locally uniform convergence at a
 point a of a sequence (fn)n> i which converges on X to the function / means
 the validity of the assertion

 (3) 30(a) Ve > 0 3 n0 Vn > n0 Vx G 0(a) : g(fn(x), f(x)) < e.

 When we compare this formula with (2) which is equivalent to Definition 2,
 we see that uniform convergence at a point is weaker than the locally uniform
 convergence at the point. Let us denote by U(fn)n> i or 17(F) the set of
 all points a G X at which the sequence (fn)n> i =: F converges uniformly.
 Comparing the two definitions we see that

 (4) LU(fn)n>l C U(fn)n>l

 holds for each sequence (fn)n> i- These two sets can be very different. The
 following example shows that inclusion in (4) can be strict even for continuous
 functions.
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 Example 1 We shall construct a sequence of functions (fn)n> i which will
 uniformly converge at each irrational number x G [0, 1] and, will not converge
 locally uniformly at any point.

 Proof. Recall the well-known Riemann function R : [0, 1] - ► M defined as
 follows: R(x) = i if x is rational number, x = (the irreducible form of x)
 and, R(x) = 0 if x is irrational number.
 Let (rn)n>i be one-to-one sequence of all rational numbers of the interval

 [0, 1]. For every n > 1 put

 dn := i min{|r¿ - rj' : 1 <i< j <n).

 Now we can define the n-th function as follows

 0, if X € [0, 1] ' U [ri - dn, Ti + dn],
 fn(x) = < r ,, «'=1

 r [l - ,, Ä(r,-), if a: € [r,- - dn,r¡ + d„j.

 The sequence (/n)n> i converges pointwise to R and the behaviour of (/n)n> i
 near the points rt- (i = 1,2,...) is analogous to the behaviour of the sequence
 (xn)n>i nearby the point 1. Because of this, the sequence (fn)n> i does not
 converge locally uniformly at any rational number. Therefore this sequence
 does not converge locally uniformly at any point x G [0, 1] as in each neigh-
 bourhood of x there is a rational number. We show that in each irrational

 number x G [0,1], the sequence converges uniformly. Let e > 0 and x 6 [0, 1]
 be an irrational number. Choose an m G N such that ^ < §• Choose a ko G N
 such that the finite sequence r'i 7*2, . . . , r^0 contains all ^ G [0, 1] with q < m.
 Further we choose a S such that 0 < S < min{|x - rt|/2 : 1 < i < Aro}, so the
 distance of the sets {n, r2, . . . , r^0}, (x - J, x -f S) is positive. Since dn ļ 0,
 there exists a ki > ko such that d/řl < S. Now let k > k 1 and y G (x - í, x + ¿).
 If there is an i < k such that y G [r, - d*, r, -f d*], then ¿ > Aro so Ä(rt) <
 By simple estimation we get

 |A(y)-Ä(y)| = |(l-i^^ii)/?.(r¿)-ñ(7/)| a/; < Ä(r,-)+Ä(») < mmm ¿ < e. a/; mmm

 In the case if y is not in any segment, [rt- - d/-, r, + d*] with 1 < i < k then

 I fk(y) - Ä(y)| = R(y) < ^ m < I z < e- m z

 Thus the sequence (/n)n>i converges uniformly at x. □
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 The concept of quasiuniform convergence of sequences of functions is well-
 known (cf. [11], p. 143). This concept plays an important part in formulation
 of conditions for the continuity of limit functions of sequences of continuous
 functions. By the analogy with Definition 2 we give the following local version
 of quasiuniform convergence.

 Definition 3 A sequence of functions (fn)n> i w said to converge quasi-
 uniformly at a point a (to the function / ) if /n(a) - > /(a) and the
 following assertion holds: Ve > 0 Vm > 0 30(a) 3p > 1 Vx € 0(a) :

 f(x)), . . . , g(fm+p(x), f(x))} < e.

 We show that the concept of quasiuniform convergence at a point enables
 us to give a very weak sufficient condition for continuity of limit function.

 Theorem 2 If all functions fn (n > 1) are continuous at a point a and the
 sequence (fn)n> i converges quasiuniformly at the point a to the function f
 then the function f is continuous at a.

 Proof. Let e > 0. Since f(a) = lim /n(a), there is an integer m £ N such
 71 - ► OO

 that

 (5) Vn > m : <?(/(a), /„(a)) <

 Applying the quasiuniform convergence of (fn)n> i at the point a there is
 a neighbourhood 0(a) such that

 (6) 3p > 1 Vx € 0(a) 3k < p : e{fm+k («), f{x)) <

 The continuity of finite number of functions /m+i , fm+ 2 , • • • > fm+p at the point
 a implies that

 (7) 3V(a) Vx € V(a) D K Vi < p : /m+i(*)) <

 Let X be an arbitrary point from 0(a) DV (a). Owing to (6) we can choose
 k < p such that

 (8) e{fm+k(x), f{x)) <

 Then using (7), (5) and the triangle inequality for g we get

 e{f(a),f{x)) < e(f(a),fm+k(a)) + o{fm+k (a), fm+k(x)) + e(fm+k (x), /(*))

 <3H-
 The continuity of / at a follows. □
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 3 Topological classification of sets of locally uniform and
 uniform convergence points

 In the first section of this paper we have introduced the sets LU(fn)n>i and
 U(fn)n> l- In connection with Definition 3 we put

 Q{fn)n> i := {x G X : (/n)n> i converges quasiuniformly at x}.

 In this section we shall investigate the topological structure of these sets.
 The topological structure of the set LU(fn)n> i of all points of locally

 uniform convergence is simple as the next proposition shows.

 Proposition 2 For any sequence (fn : X - ¥ Y)n> i the set LU(fn)n>i is
 open relative to the convergence domain K C X.

 Proof. If a G LU(fn)n>' then there is an open neighbourhood 0{a) such
 that fnz3fon 0(a) fl K . For each point x G 0(a) fi K the set 0(a) fi K
 is a neighbourhood of the point x in the space K and therefore x belongs to
 LU(fn)n> i as well. Consequently we have

 0(a) Ci K C LU(fn)n>l,

 so a is an interior point of LU (fn)n>i relative to K. □
 The construction of the sequence in Example 1 enables us to prove the

 following result which can be considered as a converse of Proposition 2 in a
 special case.

 Proposition 3 For each open set G C M there is a sequence (fn : M - ¥ M)n>i
 convergent on M such that LU(fn)n>i = G.

 oo

 Proof. We can write G = (J (a¿, 6¿), with (a¿, 6¿) fi (aj, bj) = 0 for i ^ j. On
 ¿=i

 oo

 the set S = M ' (J [a¿ , 6t] we can define the function gn by the same method
 ť=i

 a s fn was constructed in Example 1. Over each interval (at , 6,) we can define
 the "trapezoid-like" function for each n > 1 as follows:

 min{2, A', A2} if -00 < a¿ < x < 6t- < +00

 ^ m . __ min{2, B} if -00 = a¿ < x < 6t- < +00
 m min{2, C} if -00 < a¿ < x < 6t = +00

 k 2 if -00 = a¿ < x < bi = +00
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 where

 Aļ = R(af) + 2~fi(a,)2"(x - ai), R(bi) + 27R{bi)2 "(6,- - x) = A2)
 Oj Oj "" 0>ì

 B = Ä(6i) + (2 - iì(6j))2n(òt- - x), and
 C = R(a.i) + (2 - R(di))2n(x - ai).

 Now we can define the function

 ( [X)~ ' _ J if ® € (a.-, 6») for some i
 ( [X)~ ' _ '<7n(*), for x E 5.

 Then it is easy to verify that Zř7(/n)n>i = G. □
 It easily follows from Definitions 2 and 3 that for each sequence (fn)n> i

 which converges pointwise on X, the inclusion

 (9) U(fn)n>lCQ(fn)n>l

 holds. The following example shows that these sets can be very different.

 Example 2 Let X = Y = M and let (ri, r2, . . .) be a one-to-one sequence of
 all rational numbers. Let us define the functions fn (n = 1,2,...) as
 follows

 f ( V - J1, f°rX = rn
 ( {X) - 'o, forx¿rn.

 Obviously fn - > fo pointwise on R, where fo(x) = 0 /or each x G IR. Noře
 ř/iař U(fn)n>i = 0- Indeed , this is a simple consequence of the fact that each
 neighbourhood of an arbitrary point x G M contains the rational numbers rm
 with arbitrarily large indices m and for n ^ m we have

 I fm{rm) ~ fn{rm)' ~ 1-

 We prove that Q(fn)n> i = Observe that for each number io Gl, each its
 neighbourhood V(xo) and arbitrary number m G N, we have

 min{|/m+i(j;) - f0(x)', 'fm+2{x) - /o(*)|} < e

 since the left-hand side of the inequality is zero in both cases : x = rm+ 1 or
 x ^ rm+i. Thus we get

 0 = tf(/n)n>lCQ(/„)„>l=R.
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 We now introduce the concept of the oscillation of a sequence of functions.
 This concept is a modification of a similar idea introduced by Hobson in his
 book [4] pp. 133-135. We show that the structure of sets U(fn)n> i can be
 described by using the notion of oscillation of sequences of functions.
 Let F := (fn)n> i be a sequence of functions on a topological space X with

 values in a metric space Y . For each point a G X and an open neighbourhood
 V(a) =: V and every natural number N we define the number

 u>F(a,V,N):= sup Q(fm(x), fn{x)).
 m,n>N

 xÇV

 We omit the sign F of the sequence if no confusion is possible. If N < N'
 then obviously o;(a, V , N ') < a ;(a, V, N). Therefore there exists

 u >(a,V) := lim uj(a,V,N) = inf u(a, V, N).
 N-+00 N> 1

 Definition 4 Let U (a) be the system of all open neighbourhoods of point a.
 The number

 uif(a) v 7 =: c j(a) v 7 := inf ut(a.V) v 7 v 7 v 7 veit(a) v 7

 is said to be the oscillation of the sequence F = (fn)n> i at the point a.

 Using the oscillation of a sequence we can give a characterization of the
 points of uniform convergence.

 Theorem 3 A sequence F := (/n)n> i convergent pointwise on X converges
 uniformly at a point a £ X if and only ifu>(a) = 0.

 Proof. If the sequence F converges uniformly at a point a then according to
 Definition 3 the next assertion is true:

 V 5 > 0 3V € U (a) 3N Vm, n > N Vx G V : *(/m(*), fn{x) < e.

 From this we get immediately: u/(a, V, N) < e, cj(a,V) < e , a ;(a) < e. As
 £ > 0 was arbitrarily small we have u(a) = 0.

 Conversely if a; (a) = 0. then for each e > 0, there is a neighbourhood V
 of a such that u(a, V) < e. By the definition of u(a, V) there is a natural
 number N such that cj(a, V, N) < e. Thus we have established the validity of
 the assertion

 Ve > 0 3V 3N G N Vm, n > N Vx G V : ff(/n(®), /m(*)) < e.

 This implies the uniform convergence of (fn)n>i at the the point a. □
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 Corollary 1 For each sequence F = (/n)n> i with the convergence domain X
 we have

 U{F) = {xeX :uF{x) = 0}.

 Lemma 1 Let tj > 0, and F = (/n : X - ► Y)n>i a sequence of functions
 ( not necessarily continuous). Then the set

 Mr) := {x e X : u>f{x) < VÌ)

 is open in X .

 Proof. We shall prove that each point xo G is an interior point of Mv.
 Since cj(xo) < rj) there is a neighbourhood V of xo such that u>(xo, V) < 77. By
 the definition of u;(xo, V) there is an integer N > 1 such that

 U>(x0, V, N) = sup 0(/m(*),/n(s)) < »7-
 m,n>N

 x£V

 Since for each x 6 V the open set V is neighbourhood of x, we have

 lj(x, V , N) < 77, cj(x, 1/) < rj, u(x) < 77

 for each x G V. Hence V C which shows that xo is an interior point of the
 set Mf) and consequently M ^ is open set. □

 Lemma 2 For each sequence F := (/n : X -¥ y)n>i with the convergence
 domain X) the set U(F) is of type G¿ in X.

 Proof. As a consequence of Theorem 3 we have

 00

 u(F) = n uk,
 k = 1

 where Uk := {x G X : u(x) < ^}, k > 1. It follows from Lemma 14 that each
 Uk is an open set in X and the assertion follows. □

 We have seen in Example 2 that the set U (F) can be empty. Therefore,
 the problem appears when U(F) 0. We show that this is the case when X
 is a complete metric space.

 Theorem 4 Let (X, d) be complete metric space and (Y, q) be a metric space.
 Suppose that all functions fn : X Y, (n > 1) are continuous on X and
 converge pointwise on X. Then U(fn)n> 1 is a dense set in X.

 Proof.
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 1) In the first part of the proof we shall show that U(fn)n> i is non empty.
 For each positive integer N put

 En := {* € X' Vm, n > N : g(fm (*),/„(*) < e }.

 Since (/n)n> i converges pointwise on X, we have
 oo

 X = U^r.
 N=1

 Owing to the continuity of functions /n, each set En (N > 1) is closed.
 Applying the Baire category theorem to the complete space X, there
 exist a number N such that En is not nowhere dense in X, it means
 ítúEn ^ 0- Therefore there is an open ball B(aiS)1 ( S > 0) such that

 (10) B(a,S) C En-

 We can choose in the previous consideration e = 1 and using (10) there
 is a number N' and a ball B(ai,6i) in (X, d) such that

 5(a i,¿i) C Eni,

 so we have

 Vm, n > Ni Vx e B{aiì&i) : ¿?(/m(x), fn(x)) < 1.

 We can repeat the previous construction considering instead of X the
 complete subspace

 Xx =B{aiĄ) ex.
 For this complete space there is a number N2 and a ball (in Xi) -8(02,^2)
 with 62 < 4^, for which

 B{a2,S2) C B{aiĄ)
 and such that the assertion

 Vm, n > N2 Vx € B(a2,¿2) : ß{fm(x), fn(x)) < |

 holds. In this way (by induction) we can construct a decreasing sequence
 of balls

 B(a i,<Ji) D B(a2ìS2) D • • O 5(^,4) D £(a*+i , 4+i) 3 •
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 such that

 B(ak+1,Sk+1) C B(a„Ą), Sk+1 < y (Vfc € N),

 and a sequence ( Nk)k>i of positive integers such that

 Vm, n > Nk Vx G B(ak,Sk) : e{fm(x), fn{*)) < 1-

 According to the well-known Cantor theorem there exists a point
 oo

 a G Pi B(aj,Sj).
 i= i

 (cf. [11] p. 82, Exercise 1). We show that a G U(fn)n> i- Let e > 0. We
 take a natural number k such that < £■ Since a G ¿k+i) C
 B(aļCiSk)) the ball B(ak,6k) is a neighbourhood of the point a and the
 following assertion is true

 Vx G B(akl6k) Vm, n > Nk : ¿?(/m(z), /n(*)) < ļ < e.

 So the sequence (/n)n>i converges uniformly at the point a.

 2) Now we prove the density of U(fn)n> i in each open ball 5(p,¿) in X.

 The set Z := B(p, |) is a closed metric subspace of X. Applying the
 first part of the proof to the complete metric space (Z, d) and to the
 functions gn := fn'Z , we can find a point q G Z such that (<7n)n>i
 converges uniformly at the point q. From this the uniform convergence
 of (fn)n> i at q follows immediately. Hence i/(/n)n>i has the nonempty
 intersection with each ball in X and therefore it is dense in X and the

 theorem follows. □

 It is well-known that a dense Gs set in complete metric space is residual
 (cf. [7] p.49). Combining Theorem 4 with Lemma 2 and the condition (9) we
 obtain the following corollary.

 Corollary 2 Under the assumptions of Theorem 4 each of the sets U(fn)n> i
 and Q(fn)n> i is dense and residual in X .

 4 Applications to points of continuity, strong differentia-
 bility and uniform differentiability

 Combining Corollary 2 with Theorem 1 we obtain a well-known theorem on
 continuity points of functions in the Baire class one.
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 Corollary 3 Let X be a (non-void) complete metric space and Y be a metric
 space. If the functions /„ : X - > Y (n > 1) are continuous , and converge
 pointwise to f then the set Cj (the set of all continuity points of f) is residual
 in X.

 It follows from Theorem 1 that under the assumptions of Corollary 3 the
 inclusion U(fn)n>i C Cj holds. This inclusion can be strict as the next
 example shows.

 Example 3 Let us choose X = Y = M with the Euclidean metric , and
 fn(x) = for X E X. Then the pointwise limit f of the sequence is
 zero function and we have 0 G C/. But at the point 0 the sequence does not
 converge uniformly. This is because for € = | and for each neighbourhood
 U( 0) there are points of the form x = ±1 /n in which we have | fn{x) - f(x) I =
 |/n(±^)| = ' it £. Therefore the convergence at the point 0 is not uniform.

 Let us recall the concept of strong differentiability of functions which has
 been studied by many authors, (cf. [2], [5]). A function / : [a, 6] - > M
 is strongly differentiate at a point xq G [a, b] iff there exists the finite
 double limit

 Ä-fO

 The number f*(x o) is called the strong derivative of / at x0. The set of all
 points of strong differentiability of / will be denoted by D*(f). A function
 / : [a, 6] - » M can be extended to the interval [6, b -I- 1] putting f(x) = f(b) for
 b < X < b + 1. Then for each n = 1,2,... and every x G [a, b] we can define
 the functions /n(x) := n(f(x + £■) - f(x)). These functions can be used to
 characterize the set D * (/) .

 Theorem 5 Let f : [a, b] - > M be a continuous function and denote by D the
 set of all differentiability points of f. Then D*(f ) = D fi í/(/n)n>i-

 Proof. The inclusion "C" is true because for each point x0 G [a, 6] the
 equality

 lim
 Ä lim
 h-¥ 0

 implies

 n- ► oo n

 and it means that the sequence (fn)n> i converges uniformly at the point xo
 to the derivative f*(x o). To prove the inclusion "D" let us suppose that
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 (/») n> i converges uniformly at a point xo G D. By our assumption that / is
 continuous, each function fn(n > 1) is continuous at xo and so is the derivative
 /'. The continuity of f at the point xo implies the strong differentiability of
 / at the point xo (see [2] Th.2). □

 From Theorem 5 and the Lemma 2 we get the following result.

 Corollary 4 /// : [a,ò] - ¥ M is a continuous function then the set D*(f) of
 all points of strong differentiability of the function is a Gs subset of the set D
 of all differentiability points of f .

 Corollary 5 Let f : [a, 6] - > M be differentiate function. Then the set D*(f)
 of all strong differentiability points of f is residual in [a, 6].

 Proof. The differentiability of / implies that the sequence fn := n(/(x -f
 - f{x)) converges on [a, 6] and it follows from Corollary 2 that U(fn)n> i

 is residual in [a, 6]. Since D*(f) = U(fn)n> i the theorem follows. □
 When / is a function different i able on an interval [a, 6] then, according to

 [10], the strong differentiability is equivalent to the uniform differentiability
 introduced in [8] and therefore the set of all points of uniform differentiability
 of / is equal to D*(f). So we get the following result of [8],Th. 4.

 Corollary 6 If f : [a, 6] - > M is differentiate on [a, 6] then the set of all
 points of uniform differentiability of f is residual set in [a, 6].

 The notion of symmetric differentiability is well-known. In the paper [5]
 the authors introduce the notion of uniform symmetric differentiability of a
 function /. Let us denote by U Ds (/) the set of all points of uniform symmetric
 differentiability of function / : [a, 6] - > M. We can give a new proof of the
 following theorem which was proved by S.N.Mukhopadhyay in [9] (cf. also [5]
 Th.II)

 Theorem 6 If f : [a, b] - ¥ M is a continuous symmetrically differentiate
 function then the set U Ds (/) of all points of uniform symmetric differentia-
 bility of f is residual set in [a, 6].

 Proof. Let us continuously extend the function / to the interval [a - 1,6 + 1]
 defining f(x) = /(a) if a - 1 < x < a and f(x) = f(b) if 6 < x < 6 + 1. If we
 define the sequence

 A f(x + - ) - fix - - *2 ) /»(*) := A f(x + - "V ) - fix
 n

 then (/n)n> i converges pointwise on [a, 6] to the symmetric derivative fs.
 Due Corollary 2 the set, U(fn)n> i is residual in [a, 6]. Owing to Theorem 1
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 fs is continuous at every point of the set i7(/n)n>i- But / is uniformly
 symmetrically differentiable at each point of continuity of f* (see [5] Th. 1.2).
 So we have U(fn)n>i C UDs(f) and theorem follows owing to the residuality
 of the set U(fn )n> i • □
 It is proved in [10] that a continuous symmetrically differentiable function

 has the strong derivative at a point if an only if it has the uniform symmetric
 derivative at the point. Thus we have a stronger version of Corollary 5.

 Corollary 7 If f : [a, b] - > R is continuous symmetrically differentiable func-
 tion then the set of all points of strong differentiability of f is residual set in
 [a,b).
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