Josip E. Pečarić, Department of Mathematics, University of Zagreb, 41000 Zagreb, Croatia

Gh. Toader, Department of Mathematics, Technical University, 3400 Cluj-Napoca, Romania

THE PRESERVATION OF THE CONVEXITY OF FUNCTIONS

1 Introduction

Let us consider the classes of continuous, convex, starshaped and superadditive functions defined respectively by:

$$C(b) = \{f: [0, b] \rightarrow \mathbb{R}, f(0) = 0, f \text{ continuous}\}\$$

$$K(b) = \{ f \in C(b) \mid f(tx + (1-t)y) \le tf(x) + (1-t)f(y), \\ \forall t \in (0,1), \ \forall x, y \in [0,b] \}$$

$$St(b) = \{ f \in C(b) \mid f(tx) \le tf(x), \ \forall t \in [0,1], \ x \in [0,b] \}$$

$$S(b) = \{ f \in C(b) \mid f(x+y) \ge f(x) + f(y), \ \forall x, y, x+y \in [0, b] \}.$$

In [2] it is proved that all these classes are preserved by the arithmetic integral mean A defined by

$$A(f)(x) = \frac{1}{x} \int_0^x f(t) dt$$
, for $x > 0$, $A(f)(0) = 0$.

Moreover, if for a given set F of functions we set

$$MF = \{f \in C(b) \mid A(f) \in F\},$$

in [2] it is proved that for any positive b the following strict inclusions hold:

$$K(b) \subset MK(b) \subset St(b) \subset S(b) \subset MSt(b) \subset MS(b)$$
.

Simple proofs of these relations are also given in [5].

Mathematical Reviews subject classification: 26A51 and 26D15 Received by the editors February 14, 1994 References [3] and [4] consider the integral operator W_g , defined by

(1)
$$W_g(f)(x) = \frac{1}{g(t) - g(0)} \int_0^x g'(x) f(t) dt, \quad W_g(f)(0) = f(0)$$

where g is a given differentiable function. In [5] it is proved that if W_g preserves one of the classes K(b), St(b), or S(b), then the function g is necessarily of the form $g(x) = kx^u$ for some u > 0 and some $k \neq 0$. If we denote the resulting operator by A_u

(2)
$$A_{u}(f)(x) = \frac{u}{x^{u}} \int_{0}^{x} t^{u-1} f(t) dt$$

and if for a given set F of functions we set $M^uF = \{f \in C(b) : A_u(f) \in F\}$, then it is proved that for any positive numbers b and u the following inclusions hold:

$$K(b) \subset M^{\mathbf{u}}K(b) \subset St(b) \subset S(b)$$
 $\cap \cap$
 $M^{\mathbf{u}}St(b) \subset M^{\mathbf{u}}S(b)$

A similar result was proved for some classes of generalized convexity of order two in [6] and [7] and for convexity, starshapedness and superadditivity of higher order in [8].

Analyzing all these results, we can produce a general scheme that we want to consider in what follows.

2 A Class of Generalized Convex Functions

Let $D = (d_{jk})_{n,m}$ be a $n \times m$ matrix and $C = (c_j)_n$ be a given n vector with the property that $c_1 + \cdots + c_n = 0$. Let

$$D(b) = \left\{ X = (x_k)_m \mid \sum_{k=1}^m d_{jk} x_k \in [0, b], \ j = 1, \dots, n \right\}$$

and then, for any X from D(b), the functional $L_{CD}(\cdot)(X):C(b)\to\mathbb{R}$ defined by

$$L_{CD}(f)(X) = \sum_{j=1}^{n} c_j f \left\{ \sum_{k=1}^{m} d_{jk} x_k \right\}$$

Using them, we can define a general class of convex functions

$$K_{CD}(b) = \{ f \in C[0, b] \mid L_{CD}(f)(X) \ge 0, \ \forall X \in D(b) \}.$$

By adequate choices of C and D we get the sets of Jensen convex functions and of superadditive functions, usual or generalized, and of any order. For example the condition of superadditivity of $f \in C[0, b]$ is

$$f(x_1 + x_2) - f(x_1) - f(x_2) + f(0) \ge 0, \ \forall x_1, x_2, x_1 + x_2 \in [0, b]$$

and it becomes that given in the definition of S(b) for f from C(b). In [8] we considered also superadditivity of order n > 2. For example $f \in C[0, b]$ is said to be superadditive of order 3 if

$$f(x_1 + x_2 + x_3) - f(x_1 + x_2) - f(x_1 + x_3) - f(x_2 + x_3) + f(x_1) + f(x_2) + f(x_3) - f(0) \ge 0, \ \forall x_1, x_2, x_3, x_1 + x_2 + x_3 \in [0, b].$$

For convexity and starshapedness we must refer to Remark 3.

The condition on C assures that the class $K_{CD}(b)$ is nonempty because it contains the constant functions. But we need a more precise condition. For this let us denote by P_q the set of polynomials of degree at most q.

Definition 1 The class $K_{CD}(b)$ is well defined if there is an integer $q \geq 1$ such that $L_{CD}(f) = 0$ if and only if $f \in P_q$.

Remark 1 The determination of the value of q for C and D given is a problem of functional equations. Of course, necessary conditions are $L_{CD}(e_k) = 0$ for $k = 0, \ldots, q$, and $L_{CD}(e_{q+1}) \neq 0$ where $e_k(x) = x^k$ for $k \geq 0$. But it is a difficult problem to prove that they are also sufficient or to find simpler conditions. For some results and references see [1, pages. 129-131]. For example if $L_{CD}(f)(X) = \sum_{j=1}^n c_j f(x_1 + (j-1)x_2)$, the value of q is less than 1 plus the order of multiplicity of the root t = 1 in the equation $c_1 + c_2 t + \cdots + c_n t^{n-1} = 0$.

3 Main Results

We want to determine those functions g that give an integral operator W_g , defined by (1), which preserves the class $K_{CD}(b)$. We have the following result.

Theorem 1 If the class of functions $K_{CD}(b)$ is well defined and W_g preserves it, then there is a positive number u such that $g(x) = vx^u \ \forall x \in [0, b]$.

PROOF. For any p from P_q , because p and -p belong to $K_{CD}(b)$, we have $W_g(p)$ and $W_g(-p)$ also in $K_{CD}(b)$ and this is equivalent to $L_{CD}(W_g(p))(X) = 0 \ \forall X \in D(b)$. Thus $W_g(p)$ is in P_q as $K_{CD}(b)$ is well defined. Let $W_g(e_k) = p_k$ for $k = 1, \ldots, q$. Differentiating these relations we get

(3)
$$\frac{g'(x)}{g(x) - g(0)} = \frac{p'_k}{e_k(x) - p_k(x)} \text{ for } x \in (0, b], \ k = 1, \dots, q$$

or, if we set $p_k(x) = a_{k0} + a_{k1}x + \cdots + a_{kq}x^q$, we have for $1 \le k < h \le q$

$$\left(x^{h} - \sum_{j=0}^{q} a_{hj}x^{j}\right) \sum_{j=1}^{q} j a_{kj}x^{j-1} = \left(x^{k} - \sum_{j=1}^{q} a_{kj}x^{j}\right) \sum_{j=1}^{q} j a_{hj}x^{j-1}.$$

For h = q equating the coefficients of x^{2q-1} we get $a_{kq} = 0$ for k < q. Then for h = q - 1 and the power 2q - 3, we deduce also $a_{k,q-1} = 0$ for k < q - 1 and by induction $a_{kj} = 0$ for k < j. Thus $p_1(x) = a_{10} + a_{11}x$ and from (3),

with
$$k = 1$$
, we have $\frac{g'(x)}{g(x) - g(0)} = \frac{a_{11}}{x - (a_{10} + a_{11}x)}$ which gives the result.

Using such a weight function we denote the resulting operator by A_u . It is given by (2). Also we introduce the following class of functions

$$M^{u}K_{CD}(b) = \{ f \in C(b) \mid A_{u}(f) \in K_{CD}(b) \}.$$

Theorem 2 If tX belongs to D(b) for any $t \in [0,1]$ and any $X \in D(b)$, then for any positive u we have $K_{CD}(b) \subset M^u K_{CD}b$.

PROOF. Substituting $t = xs^{1/u}$ in $A_u(f)$ we get $A_u(f)(x) = \int_0^1 f(xs^{1/u})ds$. So for any X from D(b)

$$L_{CD}(A_{u}(f))(X) = \sum_{j=1}^{n} c_{j} A_{u}(f) \left(\sum_{k=1}^{m} d_{jk} x_{k} \right)$$

$$= \sum_{j=1}^{n} c_{j} \int_{0}^{1} f \left(s^{1/u} \sum_{k=1}^{m} d_{jk} x_{k} \right) ds$$

$$= \int_{0}^{1} \sum_{j=1}^{n} c_{j} f \left(\sum_{k=1}^{m} d_{jk} x_{k} s^{1/u} \right) ds$$

$$= \int_{0}^{1} L_{CD}(f)(X s^{1/u}) ds \ge 0$$

because f is from $K_{CD}(b)$ and $s^{1/u}X$ from D(b).

Remark 2 The condition $[0,1] \times D(b) \subset D(b)$ holds, for example, if the matrix D is positive.

Remark 3 If instead C and D we use families of vectors C and of matrices D, all the above results remain valid. So we obtain similar theorems for various sets of convex or of starshaped functions. For example, the function $f \in C[0, b]$ is starshaped if $tf(x) - f(tx) + (1-t)f(0) \ge 0 \ \forall x \in [0, b]$ for every $t \in [0, 1]$, that is, we have a set of conditions.

References

- [1] J. Aczél, Lectures on functional equations and their applications, New York, London, 1966.
- [2] A. M. Bruckner and E. Ostrow, Some function classes related to the class of convex functions, Pacific J. Math. 12 (1962), 1203-1215.
- [3] I. Lacković, On convexity of arithmetic integral mean, Univ. Beograd. Publ. Elektrotehn. Fak. 381-409 (1972), 117-120.
- [4] C. Mocanu, Monotony of weight-means of higher order, Anal. Numér. Théor. Approx. 1 (1982), 115-127.
- [5] Gh. Toader, On the hierarchy of convexity of functions, Anal. Numér. Théor. Approx. 15 (1986), 167-172.
- [6] Gh. Toader, On a general type of convexity, Studia Univ. Babes-Bolyai, Math. 31 (1986), 4, 37-40.
- [7] Gh. Toader, On a generalization of the convexity, Mathematica 30 (53), (1988), 83-87.
- [8] Gh. Toader, A hierarchy of convexity of higher order of functions, Mathematica 35 (58), (1993), 1, 93-98.