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 THE PRESERVATION OF THE

 CONVEXITY OF FUNCTIONS

 1 Introduction

 Let us consider the classes of continuous, convex, starshaped and superadditive
 functions defined respectively by:

 C(b) = {/ : [0, 6] - ¥ M, /(0) = 0, / continuous}

 K(b) = {/ € C(b) I f(tx + (1 - t)y) < tf(x) + (1 - t)f(y),
 ¥<€(0,1), Vx, y € [0, 6]}

 St(b) = {/ € C(b) I f{tx) < tf(x), V< € [0, 1], X E [0, 6]}

 S{b) = {f eC(b) ' f(x + y) > f(x) + f(y), Vx, y, x + y G [0, b]}.

 In [2] it is proved that all these classes are preserved by the arithmetic integral
 mean A defined by

 A(f)(x) = ~ [ for «>0, A(f)(0) = 0. x Jo

 Moreover, if for a given set F of functions we set

 MF = {feC(b) 'A(f) £F},

 in [2] it is proved that for any positive 6 the following strict inclusions hold:

 K(b) C MK(b) C St(b) C 5(6) C MSt(b) C MS{b).

 Simple proofs of these relations are also given in [5].
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 References [3] and [4] consider the integral operator Wg , defined by

 (1) Wg(f)(x) = g(t)^g{0) jf 9' (x)f(t) dt, Wg(f)( 0) = /(0)

 where g is a given differentiable function. In [5] it is proved that if Wg preserves
 one of the classes K(b ), St(b)i or 5(6), then the function g is necessarily of the
 form g(x) = kxu for some u > 0 and some k ^ 0. If we denote the resulting
 operator by Au

 (2) = ž x Jo fť-1 m * x Jo

 and if for a given set F of functions we set MUF = {/ G C(6) : Au(f ) 6 F},
 then it is proved that for any positive numbers b and u the following inclusions
 hold:

 K(b) C MuK{b) C St(b) C 5(6)
 n n

 MuSt(b) C Mu5(6)

 A similar result was proved for some classes of generalized convexity of
 order two in [6] and [7] and for convexity, starshapedness and superadditivity
 of higher order in [8].

 Analyzing all these results, we can produce a general scheme that we want
 to consider in what follows.

 2 A Class of Generalized Convex Functions

 Let D = ( djk)n,m be a n x m matrix and C = ( c¿)n be a given n vector with
 the property that c' +

 D(b) = = (ifc)m I ¿ djkxk 6 [0, b), j = 1, ... , n|
 and then, for any X from D(b), the functional Lcd{ )(X) '■ C{b) -» IR defined
 by

 LcD(f)(X) = y£cif'īldi*x*' i=i U= i J

 Using them, we can define a general class of convex functions

 KCD(b) = {/ e C[0, 6] I LcD(f)(X ) >0, VX € D(6)}.
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 By adequate choices of C and D we get the sets of Jensen convex functions
 and of superadditive functions, usual or generalized, and of any order. For
 example the condition of superadditivity of / G C[ 0, 6] is

 f(x 1 + x2) - f{x i) - /(x2) + /(0) > 0, V xi,xļ, xi + e [0,6]

 and it becomes that given in the definition of 5(6) for / from C(b). In [8] we
 considered also superadditivity of order n > 2. For example / G C[0, 6] is said
 to be superadditive of order 3 if

 /(x i + x2 + x3) - /(x i + x2) - f{x i + X3) - f(x 2 + x3) -f /(xi)+

 + /(*2) + /(x3) -/(0) > 0, Vxi, x2,x3, xi + x2 + x3 G [0,6].

 For convexity and starshapedness we must refer to Remark 3.
 The condition on C assures that the class Kcd( 6) is nonempty because it

 contains the constant functions. But we need a more precise condition. For
 this let us denote by Pq the set of polynomials of degree at most q .

 Definition 1 The class Kcd{ 6) is well defined if there is an integer q > 1
 such that Lcd(I) = 0 if and only if f G Pq.

 Remark 1 The determination of the value of q for C and D given is a problem
 of functional equations. Of course, necessary conditions are LcD^k) = 0 for
 k = 0,...,g, and LcD{čq+i) î 0 where eu{x) = xk for k > 0. But it is
 a difficult problem to prove that they are also sufficient or to find simpler
 conditions. For some results and references see [1, pages. 129-131]. For
 example if Lcd(Í){X) = 2j=i Cjf(x 1 + (j - l)x2)i the value of q is less than
 1 plus the order of multiplicity of the root t = 1 in the equation C' + c2t +

 3 Main Results

 We want to determine those functions g that give an integral operator Wg,
 defined by (1), which preserves the class Kcd (6). We have the following result.

 Theorem 1 If the class of functions Kcd{ 6) is well defined and Wg preserves
 it , then there is a positive number u such that g(x) = vxu Vx G [0, 6].

 Proof. For any p from Pqi because p and - p belong to /'cz?(6), we have
 Wg{p) and Wg{- p) also in Kcü(b) and this is equivalent to Lcd{W9(p))(X) =
 0 VX G D{b). Thus Wg(p ) is in Pq as I<cD{b) is well defined. Let Wg(tk) = Pk
 for k = 1, . . . , q. Differentiating these relations we get

 (3) g(x) -g( 0) ek{x) i - s(x) for X 6(0,6], fe=l,...,g g(x) -g( 0) ek{x) i - pi s(x)
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 or, if we set p*(x) = a*o + &kix H

 (xh- ^VhjX3 J ^jakjX*'1 = (xk - ^2 akjXj j ^ja^x*'1.
 ' J= 0 / j = i ' j- 1 / i = 1

 For A = g equating the coefficients of x2q~l we get akq = 0 for k < q. Then
 for h = q - 1 and the power 2g - 3, we deduce also afc,g-i = 0 for k < q - 1
 and by induction = 0 for k < j. Thus pi(x) = aio + fluì and from (3),

 a' (x) ' with k = 1, ' we have , x ' v a" * which gives & the result. □
 ' , x o) v *-(flio+aii*) * &

 Using such a weight function we denote the resulting operator by Au. It
 is given by (2). Also we introduce the following class of functions

 MuKCD(b) = if € C(b) I Au(f) € KCD(b)}.

 Theorem 2 IftX belongs to D(b) for any t E [0, 1] and any X £ D(b), then
 for any positive u we have Kcü{b ) C MuKcDb -

 Proof. Substituting t = xs1/" in Au(f) we get Au(f)(x) = f(xs1¡u)ds.
 So for any X from D(b)

 LCD(Au(f))(X) = ¿^(/>(¿^***1
 j = 1 'fc = 1 /

 n -i / m '

 = / ^s1/u^difcxfcj ds

 = J0 ^¿difcXfcsl/Uj ds

 = t LCD{f)(Xs1/u)ds> 0
 Jo

 because / is from Äcd(&) and from £>(&).

 Remark 2 T/ie condition [0, l]xD(6) C D(b) holds , for example, if the matrix
 D is positive.

 Remark 3 If instead C and D we use families of vectors C and of matrices
 D, all the above results remain valid. So we obtain similar theorems for various
 sets of convex or of star shaped functions. For example, the function f G C[ 0, 6]
 is starshaped iftf(x) - f(tx) + (1 - t)f( 0) > 0 V x £ [0, b] for every t £ [0, 1],
 that is , we have a set of conditions.
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