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 Abstract

 Let A stand for the class of all almost continuous functions from R to

 R and let A(«4) be the smallest cardinality of a family F Ç Rr for which
 there is no g : R -► R with the property that / + g £ A for all / € F.
 We define cardinal number A(V) for the class V of all real functions
 with the Darboux property similarly. It is known, that c < A(.4) < 2C
 [11]. We will generalize this result by showing that the cofinality of
 A(.4) is greater that c. Moreover, we will show that it is pretty much
 all that can be said about A(^4) in ZFC, by showing that A(.4) can
 be equal to any regular cardinal between c+ and 2C and that it can be
 equal to 2C independently of the cofín adit y of 2C. This solves a problem
 of T. Natkaniec [11, Problem 6.1, p. 495].

 We will also show that A(V) = A(.4) and give a combinatorial char-
 acterization of this number. This solves another problem of Natkaniec.
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 1 Preliminaries.

 We will use the following terminology and notation. Functions will be iden-
 tified with their graphs. The family of all functions from a set X into Y will
 be denoted by Yx . Symbol 'X' will stand for the cardinality of a set X. The
 cardinality of the set R of real numbers is denoted by c. For a cardinal number
 /c we will write cf(/c) for the cofinality of k. A cardinal number k is regular, if
 k = cf(/c). Recall also, that the Continuum Hypothesis (abbreviated as CH)
 stands for the statement c =

 A function /: R - ► R is almost continuous (in the sense of Stallings [14]) if
 and only if for every open set U CR2 containing / there exists a continuous
 function g Ç U. So, every neighborhood of / in the graph topology contains a
 continuous function. This concept was introduced by Stallings [14] in connec-
 tion with fixed points. We will use symbol A to denote the family of almost
 continuous functions from R to R .

 For 7CRk define the cardinal A( T) as follows:

 A(^) = min{|.F| : F Ç -d<7 € K® Vf € F f + g € T}
 = min{|F| : F Ç V5 € MK 3/ € F f + g $ ?}

 For a generalization of the next theorem see Natkaniec [11]. Fast [3] proved
 the same result for the family of Darboux functions.

 Theorem 1.1 c < A(>t) < 2C.

 □

 At the Joint US-Polish Workshop in Real Analysis in Łódź, Poland, in July
 1994 A. Maliszewski gave a talk mentioning several problems of his, Z. Grande
 and T. Natkaniec [4]. Natkaniec asked whether or not anything more could be
 said about the cardinal A(.4). (See also Natkaniec [11, Problem 6.1, p. 495]
 or [12, Problem 1.7.1, p. 55].) In what follows we will show that pretty much
 nothing more can be said (in ZFC), except that the cf(A(.4)) > c.

 We will also study the family V Ç R1 of Darboux functions. Recall that a
 function is Darboux if and only if it takes every connected set to a connected
 set, or (in the case of a real function) satisfies the intermediate value property.
 Note that A Ç V. This is because if for example f(a) < c < f(b) and c
 is omitted by / on (a, 6), then take the /i-shape set H (see Figure 1). The
 complement of H is an open neighborhood of the graph of / which does not
 contain a graph of a continuous function. It is known (Stallings [14]) that the
 inclusion A C V is proper.

 It is obvious from the definition that if T Ç Q Ç RK then k(T) < A(£). In
 particular, A(.4) < A(V). At the Joint US-Polish Workshop in Real Analysis
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 Figure 1: /i-shape set H

 in Łódź, Poland, in July 1994, T. Natkaniec asked the authors whether it is
 possible that A(.4) < A(P). We will give a negative answer for this question
 by showing (in ZFC) that A(.4) = A(V).

 We will finish this section with the following technical fact, see Natkaniec
 [11, Thm. 1.2, p. 464].

 Theorem 1.2 (Kellum) There exists a family B of closed sets (called a block-
 ing family ) with the properties that:

 • for every f E we have

 feA if and only if VB G B f H B ¿ 0;

 • for every B G B the projection prr(i?) of B onto the x-axis (equivalently,
 the domain of B) is a non- degenerate interval.

 □

 The paper is organized as follows. We will show that A(V) = A(.4), give
 some other characterizations of this cardinal, and prove that cf(A(.4)) > c in
 Section 2. In Section 3 we will prove that some forcing axioms imply that
 A (.4) can be any regular cardinal between c+ and 2C and that A (.4) can be
 equal to 2C for any value of 2C. The proof of the consistency of the forcing
 axioms used in Section 3 will be left for the Section 4.
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 2 A(D) = A(*4) and its cofinality.

 We will need the following definitions.
 For a cardinal number k < c we define the family

 V{k) C Mk

 of k strongly Darboux functions as the family of all functions / : M - > M such
 that for all a, 6 G M, a < 6, and y G M the set (a, b) fl f~1(y) has cardinality
 at least k.

 It is obvious from the definition that

 (1) Ç ^iK) f°r cardinals k < À < c.

 We will need the following lemmas.

 Lemma 2.1 A(V(c)) > c.

 Proof. Pick a family F Ç MK of cardinality continuum. We will find a
 function g G MK such that f + g £V( c) for all / G jF. Let

 ((«€.*{,%,/{):£ < c)

 be an enumeration of the set of all

 (a, 6, y, f) G M x M x M x F with a < 6,

 such that each four- tuple appears in the sequence continuum many times.
 Define by induction a sequence (xç G M : f < c) such that

 x( € C <£}•

 Then, any function g £ M® such that g(xļ) = Uļ - f(xļ ) for all £ < c has the
 property that f + g £ V(c) for all f G F. □

 Lemma 2.2 A(V) = A(D(ui)).

 Proof. Since CP we have A(2?(cj!)) < A (D). To prove the other
 inequality let k = A(V(u>i)). Then, by (1) and Lemma 2.1,

 K = A{V{LJ1))>A{V(c))>C.

 We will show that k>A(Z>).
 Let F Ç be a family of cardinality k witnessing k = A(D(u;i)):

 (2) V<7€R®3/€F/ + <7^P(W1).
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 It is enough to find family F* Ç IR® of cardinality k such that

 (3) VgeRR3r €F* /* +g^V.

 Define F* = {A G 3 f £ F h =* /}, where h =* / if and only if the set
 { X : h(x) f{x)} is at most countable. Since k > c and for every / G MK
 the set {A G A =* /} has cardinality c, we have |F*| = k. It is enough
 to show that F* satisfies (3). So, choose g G Then, by (2), there exists
 / € F such that / + g £ ^(^ī)- This means, that there are a < 6 and y El
 such that the set (a, 6) fl (/ + <7)-1(2/) is at most countable. Then we can find
 /* =* / such that

 • (r+g)(à) < y,

 • (f* +9)(b) > y , and

 • (/* + g)(x) ± y for every x G (a, b).

 Thus, f* + g & V. □
 Now, we are ready for one of our main theorems.

 Theorem 2.1 A (V) = A(.4).

 Proof. We already know that A(A) < A(X>). So, by Lemma 2.2, it is
 enough to prove that A(V(uji)) < A(.4).
 So, let k = A (.4). Then, by Theorem 1.1, k > c and, by the definition of

 A(.4), there exists a family F Ç ®K of cardinality k witnessing it, i.e., such
 that

 V<7€Mk BfeFf + gtA.

 In particular, by the definition of the family B of blocking sets (from Theorem
 1.2),

 (4) V<7 € M® 3f € F 3B € B (f + g) (~' B = Q.

 It is enough to find a family F" Ç R® of cardinality k such that

 (5) V<7 e M® 3 r e F* r+g<£ V{w1).

 In order to do this, choose a function Aß € M® for every B € B such that

 (x,/ib(x))gS for every x G prr(B).

 Let

 F* = {/-/iB:/EF&ßGß}.
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 Clearly F* has cardinality /c, since |£>| < c < k. We will show that F* satisfies
 (5). Let g G R®. Then, by (4), there exist / G F and B G B such that
 (/ + ^)fìB = 0. In particular,

 [(/ - hB) + g] H (B - hB ) = [(/ + g)nB]-hB = 0,

 where we define Z - hB = {(x, t/ - /ib(x)) : (x> î/) € %} f°r anY ^ Ç R2. But
 (B - fcB) 3 prx(B) X {0}. Hence, [(/ - hB) + g] O [pr X(B) x {0}] = 0. In
 particular, [(/ - hB) + g] *(()) O pr^JB) = 0. So, /* = / - hB G F*, while
 (/ - hB)+g £ 2>(u>i) since, by Theorem 1.2, prx(Z?) contains a non-degenerate
 interval. □

 To prove the next theorem we need a few more definitions. For a set X CM
 and a cardinal number k < c we define the family

 V(X,k) CM*

 as the family of all functions / : X - y R such that for all a, 6 G X, a < 6, and
 y G R the set (a, 6) H Z"1 (y) has cardinality at least k. Similarly, define the
 cardinal A(T) as before:

 A(J-) = min{|F| : F Ç R*& V# G RX 3/GF/ + ^f}

 (Thus X>(R,/c) = ^(^) ) It- is obvious from the definitions that for k with
 U>i < K < C

 (6) A(X>(R ' Q, k)) = A(2>(R, K))

 and also

 (7) A(D(X, ac)) = A(2>(Y, «)) for all order isomorphic X,Y CR.

 Theorem 2.2 A(.4) = A(D) = A(V(c)).

 Proof. By (1) it is obvious that A(V) = A(D(ui)) > A(V(c)).
 To prove the other inequality let F G Rffi be a family of cardinality k with

 k < A(D). It is enough to find g G RK such that

 (8) / + g G V(c) for every / G F.

 So, let (Sa : a < c) be a sequence of pairwise disjoint dense subsets of R each
 of which is order isomorphic to the set R ' Q of all irrational numbers. By (6)
 and (7) for every a < c we have

 #c < A(V) = A(2>(w!)) = A(V(Rìujì)) = A{V(R ' Q|Wl)) = A{V(Sa,wi))-
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 We can apply the definition of A(Z>(Sa,wi)) to the family

 F's0 = {f'saems":feF}

 to find a function ga ' Sa - ► R such that

 (/|5„) +9c € V(Sa,ui) for every / € F.

 It is easy to see that any g € extending (Ja<c 9<* satisfies (8).
 □

 We will finish this section with one more cardinal equal to A(.4). For any
 infinite cardinal k let

 tK = min{|jF| : F Ç G ac* 3/ G F 'f D g' < k}.

 This cardinal was extensively studied in Landver [7].

 Theorem 2.3 A{A) = A(D) = A(2>(c)) = cc.

 Proof. It is enough to prove that A(X>(c)) = ec. It is also clear that

 ec = min{|F| : F Ç V</ € M® 3/ € F ' f n g' < c}.

 To prove the inequality A(P(c)) < ee let F Ç MK have cardinality k <
 A(D(c)). Then, there exists g : R -> R such that g - f € V(c) for every / G F.
 In particular, |(</ - /)-1(0)| = c, i.e., f(x) = g(x) for continuum many iG®.
 So, I/ H g' = c for all /Gì1, i.e., k < cc. This proves A(P(c)) < cc.

 To prove ec < A(2>(c)) take a family F Ç Rm of cardinality k < cc. We will
 show that k < A(Z>(c)).

 Choose a sequence (S% b Ç (a, 6) : a, b, y G M, o. < b) of pairwise disjoint
 sets of cardinality continuum. Applying k < cc to the family

 Fl„ = {(y-f)'sib-feF}

 we can find gya b : S% h - > R such that |(y - /)|5 v H gya ò| = c for every f £ F.

 In particular, ( y - /)(x) = ie-> (/ + ^a,ò)(x) = V for continuum many
 X G Ç (a, 6). Now, if we take any g G RK extending U(^a,6: €
 R, a < 6} then (/H-^)""1(y) fi (a, 6) has cardinality continuum for every / G F
 and a, 6, j/ G R, a < 6. So, /c < A(V(c)). □

 Corollary 2.1 cf(A(*4)) > c.

 Proof. It is obvious that cf(c*) > k since k can be split into k many sets of
 size k. □
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 3 Forcing axioms and the value of A(.4).

 In this section we will prove the following two theorems.

 Theorem 3.1 Let A > k > o>2 be cardinals such that cf(A) > (¿i and k is reg-
 ular. Then it is relatively consistent with ZFC that the Continuum Hypothesis
 (c = ) is true , 2C = A, and A(*4) = k.

 So for example if 2 < n < 17, then it is consistent that

 c = Ni < A(.4) = Nn < Nit = 2C.

 Theorem 3.2 Let X be a cardinal such that cf(A) > Then it is rela-
 tively consistent with ZFC that the Continuum Hypothesis (c = Hi) holds and
 A(A) = A = 2C.

 It follows from Theorem 3.2 that A (.4) can be a singular cardinal, e.g.
 A(*4) = where c+ = uj2- We do not know how to get A(*4) strictly smaller
 than 2C and singular.
 The technique of proof is a variation on the idea of a Generalized Martin's

 Axiom (GMA). In this section we will formulate the forcing axioms and show
 that they imply the results. The proof of the consistency of these axioms will
 be left for Section 4.

 For a partially ordered set (P,<) we say that G Ç P is a IP-filter if and
 only if

 • for all p,q G G there exists r G G with r < p and r < q, and

 • for all />, q 6 IP if p € G and q > p, then q € G.

 Define D Ç P to be dense if and only if for every p € P there exists q € D
 with q < p.

 For any cardinal k and poset P define MA*(P) (Martin's Axiom for P) to
 be the statement that for any family V of dense subsets of P with 'V' < k
 there exists a P-filter G such that D fi G ^ 0 for every D G V.

 ¿From now on, let P be the following partial order

 P={p|p:X->R,XCM, and 'X' < c}

 i.e., the partial function from 1 to M of cardinality less than c. Define p < q
 if and only if q Ç p, i.e., p extends q as a partial function.

 Lemma 3.1 MAK(P) implies A(«4) > k.
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 Proof. We know by Theorem 2.3 that A(.4) = cc > c. Thus, it is enough
 to prove that MA*(P) implies ec > k for k > c. Note that for any IP-filter G
 since any two conditions in G must have a common extension, (J G is a partial
 function from K to M. Moreover, it is easy to see that for any x E M the set

 Dx = {p E P : X E dom(p)}

 is dense in P and that (J G : R - > M for any P-filter G intersecting all sets Dx .
 Let (Sa : a < c) be a partition of M into pairwise disjoint sets of size c.

 Also for any / € MR and a < c the set

 Df,<* = {p € P : 3x E (dom(p) fl Sa) p{x) = f{x)}

 is dense in P. Given any F Ç M® with |F| < k let

 V = {Dx : x € M}U {Df)CX : / € F,a < c}.

 Notice that 'V' = c < k. Applying MAK(P) we can find a P-filter G such that
 G meets every DEV. Letting g = (J G: M - ► M we see that 'f O g' = c for
 every f ET . □
 The proof of Lemma 3.1 is a kind of forcing extension of the inductive
 argument used in the proof of Theorem 1.1.
 Notice also, that Theorem 3.2 follows immediately from Lemma 3.1, The-
 orem 1.1 and the following theorem.

 Theorem 3.3 Let X be a cardinal such that cf(A) > u'. Then it is relatively
 consistent with ZFC+CH that 2e = À and that MA'(1P) holds.

 Thus, we have proved Theorem 3.2 modulo Theorem 3.3. Theorem 3.3 will
 be proved in Section 4.
 Lemma 3.1 shows also one inequality of Theorem 3.1. To prove the reverse
 inequality we will use a different partial order (P*, <). It is similar to P but
 in addition has some side conditions.

 P* = {(p, E) : p € P and EÇ R® with i¿?| < c}.

 Define the ordering on P* by

 (Pi E) < (g, F) iff p < q and E D F
 and Vx G dom(p) ' dom (ç) Vf E F p(x) ^ f{x).

 The idea of the last condition is that we wish to create a generic function
 g E MK with the property that for many / we have g(x) ^ f(x) for almost all
 x. Thus, the condition ( q , F) 'promises' that for all new x and old f E F it
 should be that g(x) ^ /(z).

 For a cardinal number k define LusK(P*) to be the statement:
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 There exists a sequence ( Ga • < k) of PMilters, called a /c-Lusin
 sequence, such that for every dense set D Ç P*

 |{of < K ! Ga n D = 0}| < K.

 Thus we have a Lusin sequence of PMilters. This is also known as a kind
 of Anti-Martin's Axiom. See vanDouwen and Fleissner [2], Miller and Prikry
 [10], Todorcevic [15], and Miller [9] for a similar axiom.

 Lemma 3.2 Suppose c < k, k is regular , and LusK(F*). Then A(*4) < k.

 Proof. Let ( Ga : a < k) be a /c-Lusin sequence of P*-filters and let

 5a = [J{p:3F (p,F)€G0}.

 Then ga is a partial function from M into R . Similarly to the last proof, let

 At = {(p, F) G TP*: X G dom(p)}.

 To see that Dx is dense let ( q , F ) be an arbitrary element of P* and suppose it
 is not already an element of Dx. The set Q = {/(x) : f € F} has cardinality
 less than c so there exists y G M ' Q. Let p = q U {(x, y)}. Then (p, F) < (q> F)
 and (p, F) € Dx. Thus, each Dx is dense in P*. Hence,, since c < k and k is
 regular, we may assume the each ga is a total function.
 For each / G MK define

 D(f) = {(PiE)e p*: / G E}.

 Note that for any (p, F) if we let E = Fuj/}, then (p, F) < (p, E ). Hence
 D(f) is dense.

 Next, note that by the nature of definition of < in P*, if (p, F) G G, where
 G is a P*-filter, and g = |J{p: 3F (p, F) G G}, then for any / G F we have
 g{x) ^ /(x) except possibly for the x in the domain of p. Therefore for any
 / G there exists a < k such that 'gaC'f' < c. Thus, the family {ga : a < k}
 shows that A (.4) = tc < k as was to be shown. □

 Lemma 3.3 For any regular k we have LusK(F*) - >MAK( P*) - >MAK(1P).

 Proof. This first implication needs that k is regular but is true for any partial
 order. Given a family V of dense subsets of P* of cardinality less than k and
 (Ga • ex < k) a Lusin sequence for P* it. must be that for some a < k that Ga
 meets every element of V.
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 The second implication follows from the fact that in some sense P is 'living
 inside' of P*. Let r : M - ► M be a map with of |r~1(y)| = c for every y G M.
 Define

 TT : IP* - y IP by ir(p , F) = r op.

 Notice that if (p, E) < (q,F) then tt (p,E) < 7r(q,F). This implies that n(G)
 is a P-filter for any P*-filter G. Furthermore, we claim that if D Ç IP is dense,
 then 7r_1(Z>) is dense in IP*. To see this, let (p, F) G IP* be arbitrary. Since
 D is dense, there exists q < 7r(p, F) with q £ D. Now, find s G P extending p
 such that ros = q D rop and s(x) ^ f(x) for every x G dom(s) 'dom(p) and
 f £ F. This can be done by choosing

 s(x) € r-1(ç(x)) ' {f(x) : f 6 F}

 for every x £ dom(g) 'dom(p). Then, ( s,F ) < (p, F) and (s,F) G Ç
 ir-x{D).

 This gives us the second implication, since if V is a family of dense subsets
 of P with [D' < K and G is a P*-filter meeting each element of {n~1(D) : D G
 î>}, then tt(G) is a P-filter meeting each element of V. □

 It follows from Lemmas 3.1, 3.2, and 3.3 that LusK(P*) implies A(*4) = k.
 In particular, Theorem 3.1 follows from the following theorem.

 Theorem 3.4 Let X > k > u>2 be cardinals such that cf(A) > lj i and k
 is regular. Then it is relatively consistent with ZFC+CH that 2e = À and
 LusK( P*) holds.

 Theorem 3.4 will be proved in Section 4.

 4 Consistency of our forcing axioms.

 In this section we will prove Theorems 3.3 and 3.4. For Theorem 3.3, start
 with a model of GCH and extend it by forcing with the countable partial
 functions from À to u>i. For Theorem 3.4 start with a model of

 2" = u;i + 2"1 = A

 and do a countable support iteration of P* of length k. P* is isomorphic to
 the eventual dominating partial order. For the expert this should suffice. The
 rest of this section is included for our readers who are not set theorists. For

 similar proofs see for example Kamo [5] and Uchida [16].
 We begin with some basic forcing terminology and facts. (See Kunen [6].)

 For a model M of set theory ZFC and a partial order set (S, <) a filter G Ç §
 is S -generic over M if G intersects every dense DCS belonging to M. The
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 fundamental theorem of forcing states that for every model M of ZFC and
 every partial order § from M there exists model M[G] of ZFC (called an §-
 generic extension of M) such that G is S-generic over M and M[G' is the
 smallest model of ZFC such that M Ç M[G] and G G M[G ]. Thus, the
 simplistic idea for getting MAK(P) is to start with model M of ZFC , take P
 from M and look at the model M[G], where G is IP-generic over M . Then,
 G intersects "all" dense subsets of IP and we are done. There are, however,
 two problems with this simple approach. First, "all" dense subsets of IP means
 "all dense subsets from M" and we like to be able to talk about all dense

 subsets from our universe, i.e., from M[G ]. Second, our partial order is a set
 described by some formula as the set having some properties. There is no
 reason, in general, that the same description will give us the same objects in
 M and in M[G].

 The second problem will not give us much trouble. For the generic exten-
 sions we will consider, the definition of P will give us the same objects in all
 models we will consider. In the case of the partial order P* this will not be
 the case, but the new orders P* will be close enough to the old so that it will
 not bother us.

 To take care of the first of the mentioned problems, we will be constructing
 a Lusin sequence (Ga : a < k) by some kind of induction on a < k: our final
 model can be imagined a s N = M[Go][Gi] . . . [Ga] • • • and we will make sure
 that every dense subset D G N of P* is taken care of from some stage a < k.

 We need some more definitions and facts. Given a partial order we say
 that p , q are compatible if there exists r such that r < p and r < q. A partial
 order is well-met provided for any two elements p, q if p and q are compatible,
 then they have a greatest lower bound, i.e., there exists r such that r < p and
 r < q and for any s if s < p and s < q, then s < r. Notice that both partial
 orders P and P* used in Lemmas 3.1 and 3.2 are well-met. For the case of P*

 if (p, E ) and (ç, F) are compatible, then (pUg^UF) is there greatest lower
 bound. A subset L of a partial order is linked if any two elements of L are
 compatible. A partial order is -linked provided it is a union of u>i linked
 subsets. Assuming the Continuum Hypothesis note that the poset P used in
 the proof of Lemma 3.1 has cardinality hence it is u^i-linked. Note that for
 any p G P if we define

 Lp = {(q,F)eF' :q = p},

 then Lp is a linked subset of P*, hence P* is also u;i-linked. A subset A of a
 partial order is an antichain if any two elements of A are incompatible. We say
 that a partial order has the u^-chain condition (u>2 -cc) if every its antichain
 has cardinality less than u>2- Clearly u^-linked implies the cj2-chain condition.
 Finally we say a partial order is countably closed if any descending cj-sequence
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 (Pn : n E w) (i.e., pn+i < Pn all n) has a lower bound. Notice that both of our
 partial orders are countably closed.
 All partial orders we are going to consider here will be countably closed and

 will satisfy u^-chain condition. In particular, it is known that if the generic
 extension M[G] of M is obtained with such partial order, then M[G ] and M
 have the same cardinal numbers, the same real numbers, the same countable
 subsets of real numbers and the same sets Rx for any countable set X G M .
 In particular, P will be the same in M [G] as in M .
 Let us also notice that every dense set contains a maximal antichain and if

 A is a maximal antichain, then D = {p : 3q G A p < q) is a dense set. Thus
 a filter G is S-generic over a model M if and only if it meets every maximal
 antichain in M .

 Proof of Theorem 3.3. Take a model M of ZFC+GCH. For a set X
 in M let

 Sjr = {p G Fx : p(x) = 0 for all but countably many x G X}.

 Define an ordering on Sx by p < q if and only if p(x) < q(x) for every x G X.
 Now, let A be as in Theorem 3.3 and let G be a §a generic over M. We

 will show that MAa(P) holds in M[G'.
 It is easy to see that §a is countably closed. It is also known that

 satisfies u>2-cc and that 2Wl = À in M[G'. (See Kunen [6, Ch. VII, Lemma
 6.10 and Thm. 6.17].)

 Now, for a < A let Ga = {p(<*) : P € G}. Then, each Ga is a filter in P.
 We will show that for every family V of dense subsets of P with 'T>' < A there
 exists a < K such that Ga intersects every D from V.

 In order to argue for it we need two more facts about forcing Sx- (See
 Kunen [6, Ch. VII]: Thm. 1.4 and 2.1 for (A) and Lemma 5.6 for (B).)

 (A) If X, Y G M are disjoint and G is Sj^uy-generic over M, then Gx =
 Gn§x is §x-generic over M, Gy is §y-generic over M[Gx ], and

 M[Gx][Gy] = M[G'.

 (B) if AC M then there exists X E M with 'X' < 'A' + such that
 A G M[Gxl

 Now, let G a be § a generic over M and let V G M [G a] be a family of
 dense subsets of P with 'V' < A. Let U be a family of maximal antichains,
 one contained in each element of V. Then, |j4| < for each A G since P
 satisfies a>2-cc. So, by (B), there is X Ç A from M of cardinality 'W' • uji < A
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 such that % G M[Gx]> Choose a £ ' 'X. Then since Ga is IP-generic over
 M[Gx ] it follows that G meets each element of 7i hence of V. □

 Next we prepare to prove Theorem 3.4. As mentioned in the beginning of
 the section, we will try to prove it by defining some sequence (Sa: a < k) of
 partial orders and try to obtain our final model as NK = M[GK] where every
 G a is an §a-generic over an appropriate initial model. This technique is called
 iterated forcing and needs a few words of introduction.
 We can define in M an iterated forcing (§a : a < k) by induction on a. At

 successor stages we define

 sa+i = §axrM[Go1.

 where is P* in the sense of M[Ga]. (Since we add new elements of
 Mk the partial order P* changes as our models increase.) We can't really do
 it precisely this way, because IPa+i must be in M . However, it is possible to
 find its approximation, Pa, in M, called a name for and use this instead.
 (See Kunen [6, Ch. VII sec. 5]).
 For limit ordinals A < k, define to a set of functions / with domain À

 such that fia G §<* for each a < A and /(a) = I for all but countable many a.
 Here we use I to denote the largest element of any partial order. Countable
 support iterations originated with Laver [8]. For details see Baumgartner [1]
 or Kunen [6, Ch. VII sec. 7].
 The proof that follows will involve a basic lemma used to show various

 generalizations of Martin's Axiom hold for one cardinal up. (See Baumgartner
 [1] and Shelah [13]). In particular, we will need the following theorem.

 Theorem 4.1 (Baumgartner) Assume the Continuum Hypothesis. Suppose
 (§a : a < k) is a countable support iteration of countably closed well-met
 cji -linked partial orders. Then for every a < k we have that is countably
 closed and satisfies the u>2-chain condition.

 Actually we need only a very weak version of this theorem, for example,
 something analogous to [6, Theorem VII, 7.3] of Kunen.
 Now, we are ready for the proof of Theorem 3.4.
 Proof of Theorem 3.4. Take a model M of ZFC-f CH in which 2C = A,

 and k is a regular cardinal with U2 < k < X. Let §a be a countable support
 iteration {Pq,: a < /c}, where Pa = p*MtG 1 for all a < k. Here for a < k let
 Ga = GK |a. Then Ga is §a-generic filter over M .
 Let GK be an S^-generic filter over M . We will show that LusK(P*) holds

 in M[GK].
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 In the model M[Ga] the partial order P*MtG°] can be decoded from §a
 and we can also decode a filter Ga which is p*MfG ^-generic over M[Ga ]. We
 claim that the sequence ( Ga : a E /c) is a Lusin sequence for P* in M[GK ].
 So, let D € M[GK ] be a dense subset of P* and let A € M[G] be a maximal

 antichain contained in DÇ P*. Then, |-A| < since P* satisfies tJ2-cc. So,
 by the fact similar to (B) above, there is ß < k such that A 6 M[G ^]. Then,
 for every a > /?, the filter Ga is generic over M[Ga] D M[G&] and so, Ga
 intersects both A and D. Therefore, the set

 {a < k : Ga H D = 0} = {a < k : Ga fi A = 0} Ç ß

 has cardinality less then k. □

 It is worth mentioning that some generalizations of the these theorems are
 possible where the Continuum Hypothesis fails.
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