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DECOMPOSITION OF Z-APPROXIMATE
DERIVATIVES

Abstract

It is shown that if f: R — R has a finite Z-approximate deriva-
tive fé,,p everywhere in R, then there is a sequence of perfect sets, H,,
whose union is R, and a sequence of differentiable functions, h,, such
that h, = f over Hn and h;, = fz,, over Hn. This result is a com-
plete analogue of that on approximately differentiable functions by R. J.
O’Malley.

The notion of Z-approximate differentiation [2] is based upon the notion of
an Z-density point which was introduced in [5], and which further properties
were studied in [6].

Throughout this paper, B will denote the family of all subsets of R (the
real line) which possess the Baire property, and Z will denote the o-ideal of
all meager sets.

We say that 0 is an Z-density point of a set A € B iff for every increasing
sequence (n,,) of positive integers there exists a subsequence (nm,) such that

X(nm,-4)0[-1,1] — 1 as p — oo
except for a meager set. (The symbol nm, - A stands for {nm, -y :y € A}.)

A point zo is an Z-density point of a set A € B iff 0 is an Z-density point of
—zo+ A. (Similarly, —zo + A = {-zo+y:ye A})
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Let f be any finite function defined in some neighborhood of zy, and having
there the Baire property. We define the Z-approzimative upper derivate as the
greatest lower bound of the set

{a ER: {z : M < q} has zo as an Z-density point}.

T —To

The Z-approrimate lower derivate is defined similarly. If the two derivates
coincide, their common value is called the Z-approzimate derivative of f at zg
and denoted by fz.,,(%0)-

One can easily show that if f is Z-approximately differentiable at zy, then
Zo is an Z-density point of the set {y : |(f(y)—f(0))/(y—20)— f1.op(20)| < €}
for each € > 0.

During the I** Joint US-Polish Workshop, LédZ 1994, M. Evans asked a
question whether the decomposition theorem holds for Z-approximately dif-
ferentiable functions. We will show it does.

For brevity, we introduce the notation A C B for A\ B € Z. Moreover, for
alzeR,h>0,n,keN,i€{l,...,n} and j € {1,...,k} we define

i—1 t -
Li(eh) = (2 + —ho+=h), I;(a,h) = Iz = h,h),

1

(f-Dk+j-1 (t—1)k+7
nk hy e+ nk h)

a.nd Jn_k"j(x, h) = J:kij(z - h, h)

Tij(z, h) = (’7 +

We will prove the assertion of our main result in two stages. Before the
proof we state two lemmas. The first one is an easy consequence of Theorem 1
of [1], and the other is purely technical.

Lemma 1 Suppose A € B and z is an I-density point of A. Then for every
n € N there are k,p € N such that for each h € (0,p~!) and eachi € {1,...,n}
[m]

we can find j1,j2 € {1,...,k} with J,‘,"kijl(z,h) O] J;kija(:c,h) C A.

Lemma 2 Let f be a function with the Baire property which restriction to
some closed set K is continuous, and let m € N. For each = € R define

Am(z) = {y : [f(v) - f(z)| < mly - |}.

Then for each open interval G the set B = {z € K : 2+ G C Am(z)} is
closed.

PROOF. Suppose there is a sequence (z,) in B converging to some z ¢ B,
e, (z+4+G)\ Am(z) ¢ Z. Since An(z) € B, there is a non-degenerate closed
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interval U C (z + G) such that l fly) = f(z)l > m|y — z| for Z-almost every
y € U. On the other hand, since U C (z, + G) C Am(za) for sufficiently
large n, so for I-almqst every ye U

|f(v) = f(=)| = lim |f(y) = f(2a)| < lim mly —zn| = mly - 2],
contrary to the previous inequality. Hence £ € B and B is closed. a

Theorem 1 Suppose f: R — R has a finite I-approzimate derivative fz_,,
everywhere in R. Then R can be expressed as the union of a countable family
of closed sets, E, such that for each E € E and each z € E,

1) lim 1@ = f@)

y—*x,yGE y-z

fI ap(z)'

(At an isolated point of E the conclusion is considered to hold vacuously.)

PRrROOF. It is well known, that Z-approximately differentiable functions are
Baire * 1 [2, Theorem 3]. So there exists a family of closed sets, { K; : | € N},
such that U,eN K; =R and for each | € N the restriction f|K, is continuous.

For each m € N and each z € R define A,,(z) as in Lemma 2. Moreover,
for all m,n,k€N,i€ {1,...,n},j € {1,...,k} and h > 0 define

C:zm(h) = {z : :,(:B h) ( Am(z)} nki] {.‘L‘ nkt] z h) C Am(z)}’
C;zm(h) = {:L' (z h) C Am(z)} mnkt] = {.‘L‘ nkt] 1: h) C Am(z)}’
and for each p € Nlet Epnip be the set

mm h) N U mnl n n ( U mnkij h) n U D""‘k’-" )] ’

he(Op-l)[t-l i=1 j=1

We will prove that the family E = { Emnkp N Ky :m,n,k,p,l € N} fulfills
the requirements of the theorem.

First observe that by Lemma 2, each set Epnip N K is closed. We will
show that [JE = R. Take an z € R and an m > |fz _(z)|. Since f is
Z-approximately differentiable at z, z is an Z-density point of A,,(z). Now
use Lemma 1 to find n, p1 € N such that for each h € (0,p;") there are
iy,i3 € {1,...,n} with I, (z,h)UI; (z,h) C Am(z). Using Lemma 1 again,
we can find k, p2 € N such that for each h E (0,p3') and each i € {1,...,n}
there are ji,j2 € {1,...,k} for which J} .. (z,h)UJ5,,; (=, h) C Am(z) Set
p = max{p1,p2}. Then evidently £ € Emnkp. Since (JleN K = R, we get
UE=R.
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It remains only to show that f is differentiable relative to each Emnrp N K
and differentiates to f7_,,. Fixan E = EmnkpNK; € Eandanz € E. Let (z,)
be a sequence of points of E converging to x. It will not hurt the generality
of the argument to assume that £ = 0, f(0) =0 and z, \, 0.

Note that for each y;,y2 € E with 0 < |y; — y2| < p~! we have

(2) |f(y2) = f(wn)| < mly2 — w1l

Indeed, let y; < y2. By the definition of the set E, there is an i € {1,...,n}
with y; € CP ;(y2 — v1). Further there exists a j € {1,...,k} such that
Y2 € Dy pii(v2 — y1). Hence we can find a z € A (y2) N Am(y1) N (1, ¥2). So

|£(y2) = Fwr)| < |F(w2) = F(2)| + | F(2) = F(w1)|
<mlyy — z| + m|z — y1| = mly2 — 1

Now fix an arbitrary € > 0. Set V = {y : |f(y)/y — fé_ap(O)l <¢e}. Then
0 is an Z-density point of V.

Take an arbitrary integer s > 1/¢ and put t = ns. By Lemma 1, we can
find a p, > p such that for each h € (0,p;*) and each j € {1,...,t},

(3) IEO0,R)NV ¢ 1.

Let ¢ be such that z, < p; ! for r > rg. Since z, € Emnkp, for each such r
there exists an i € {1,...,n} with I_;(z,,z,/s) C Am(z;). So by (3), we can
choose ay- €V N Am(:rr) ((1- e)zr,:c,) Now

. f(zr) / : flzr) = fly)]| s Yr
lim sup| Z722 — f.0 0)| < limeup) = =8 timup (1 - 21
+ lim sup f( 0 _ fz_ap(O)’ =+ | f1.0p(0)] - hm sup(l - 2’.’.)
r—00 Ty

<m-e+e+ |fé_ap(0)| e = (m+14|f7.,,(0)]) €

Since € > 0 can be arbitrary, the above inequality completes the proof. a

The theorem below is the so-called decomposition theorem. (The sequence
(h,,, H,) is called a decomposition of f. The corresponding sequence (h.,, H,)
is a decomposition of f7_ ap ) It is completely analogous to that for approxi-
mately differentiable functions by R. J. O’Malley (3, Theorem 2].

Theorem 2 If f: R — R has a finite I-approzimate derivative, f}_ap, at
every point of R, then there is a sequence of perfect sets, H,, and a sequence
of differentiable functions, h,, such that
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(3) UneN Hﬂ = IR:
(ii) hn(z) = f(z) over H,, and

(i1) hy,(z) = f1.4p(2) over Hy.

ProoF. We will first obtain sets H,. Let E, be the sets defined in Theo-
rem 1. Each closed set can be written as the sum of a countable family of
non-degenerate closed intervals, a countable family of nowhere dense perfect
sets and a countable set, so we may assume that each E, is either a non-
degenerate closed interval, a nowhere dense perfect set or a singleton.

If E, is a non-degenerate closed interval or a nowhere dense perfect set,
then we set H, = E,. Since by (1), f is differentiable over H,, we are able to
apply the theorem of Petruska and Laczkovich [4]. This theorem guarantees
the existence of a differentiable function, h,, such that h, = f over H,. Then
by (1), ky, = f1.ap OVer Hi.

So assume that E, is a singleton. We will be done if we construct a nowhere
dense perfect set H, O E, such that

4) im0 =T@ _ g

y—=7,y€EH, y—=z

holds for each =z € H,,.

Let E, = {z}. It will not hurt the generality of the argument to assume
that z = 0 and f(0) = 0. Set A\g = co. We will construct by induction two
sequences of non-empty nowhere dense perfect sets, P and Q, and a sequence
of positive numbers, Ax, such that the following conditions hold:

o A \\0 as k — oo,

o for each k € N there are r¢,l; € N such that Py C E;, N (\g, Ak—1) and
Qk C Ei, N (—Ak-1,—Ak),

o |f(¥)/y- fé_ap(0)| < k™! for each k € N and each y € P U Q.

Suppose we have already constructed non-empty nowhere dense perfect
sets P;,Q1,..., Pc—1,Qr-1 and numbers A\; > --- > Ag—; > 0 which satisfy
the above requirements. Set V = {y : If(y)/y - fi_ap(0)| < k~'}. Then 0 is
an Z-density point of V. By Lemma 1, we can find a p > z\,:_ll such that

ILO0,p")NVEZT and I;(0,p~)NV ¢TI

Since {J,en En = R, so by Baire Category Theorem, there are r¢,lx € N such
that V' N (p‘1/2 p‘l) NE, ¢Zand VN(-p~?, —p‘1/2) NE;, ¢ Z. Hence we
can find non-empty nowhere dense perfect sets P C VN E,, N (p~t/2,p7 1)
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and Qx C VNE, Nn(=p~1,—p~1/2). Set Ay = p~1/2. It is clear that the
conditions above are satisfied.

Set H, = E, U UkeN(Pk U Qk). Then evidently H,, is nowhere dense and
perfect, and the condition (4) holds. This completes the proof. a
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