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SMOOTHING A-SEQUENCES

Abstract

It is shown that for every A-sequence A there is an equivalent A-
sequence I' = (v;) such that im sup vi41/v: = 1.

In a recent investigation concerning bounded A-variation as a gap Taube-
rian condition, a question about ABV spaces arose which has not been pre-
viously considered. We quickly recapitulate the essential facts about these
spaces. Let A = {A,} be a nondecreasing sequence of positive real numbers
such that 3~ 1/A, = oo . A function f defined on an interval (finite or in-
finite) is of A-bounded variation if Y_ |f(bn) — f(an)|/An converges for every
sequence {[an, b,]} of nonoverlapping intervals. The class of such functions is
known as ABV. It may be shown that such functions are regulated, i.e., right
and left limits exist at each point. We generally assume that A, 7 oo, for
otherwise, ABV = BV [W],[A].

In the study of the Tauberian theorem we referred to, it seemed necessary
to make the assumption that limsup A,41/A, < 00. A question which arises
naturally 1s

A .
Question 1: Given a class ABV for which limsup :'\"'1 = 00, is there a

T = {y,}, with limsup 7'-;_+1 < 00, such that TBV = ABV?

n
When I'BV = ABV, we shall say that the sequences A and I' are equiva-
lent.
After we answered this question affirmatively, the next to come to mind
was the following question.
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Question 2: For any given A, is there a I equivalent to A such that lim Tnti

In
1?7

A
n+1 1.

A A-sequence is called smooth if

Question 2 was also answered afﬁr’;natively. The method employed for
Question 1 consisted of altering a subsequence of A to form the desired I'. The
method employed for Question 2 is an amplification of the original argument.
This method, although direct, is relatively complicated.

Another question, which also has an affirmative answer, is
Question 3: Is there a computationally simple method by which one can
obtain a smooth I' equivalent to a given A?

This is an appropriate time to remind the reader of a theorem of Perlman
and Waterman [PW]:

Theorem A and I are equivalent if and only if there are positive constants c
and ¢’ such that, for every n,

Zrlll/'ﬂc /
< = .
CESTIN S

We will present our solutions for each question since there is a logical
progression from one to the next and there is something to be learned about
) An+1

An

. A P
and choose a finite ¢ > 1. Then :'\—'H > ¢ for infinitely many values of n. Let

A-sequences from each of them. Let us now suppose that limsup = 00

n
Y1 = A and, for n > 1, let v, = min{cyn—1, An}.
Clearly 7, is nondecreasing and v, < A, for every n. Also,y, o0, since
Yn = An for infinitely many values of n, for otherwise, there is an integer 7
; . . . 1
such that yx = ¢*~*); for k¥ > i and A\x > 7«, implying that 3 3o converges.
' k
Now )
Yn+1 _ min{cys, Ant1}
Yo min{cyn-1,An}

We have either

Toti _ O _
Tn Tn
or
Int1 _ Antl < o,
In Tn Tn
so that limsup ol <ec

Tn
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Also, since i is either Ax or cF=*)\; for some i less than k ,

21 1/ 2._1 (L/As Z::S 1/c*) c
D EVITE S 1/A ST

implying that A and I' are equivalent.

Question 2 can be dealt with by a modification of this method. Choose
¢n v 1. Let 47 = ;. Starting with n = 2 | we define numbers v, successively
by v, = min{)n,cfA1}, where k is the least integer such that cf\; > yn—; ,
until we reach an index n; > 1 such that v,, = A,, and

1

ca—1

<

N -

1

An
Begin anew to define v, for n > n; by the same method with ¢, replacing a
and Ap, replacing A; until we reach an index n > n; such that v,, = A,, and

1t 1
Anz 03—1 22'

We continue in this way to define n;  such that for nx < n < ng4y we have
Yo = min{An, ;1 Ak},
where j is the least integer such that c,’c +1’\"~ > Yn=1) Ynegr = Anpq, and

1 1 1
’ ok+1 °

’\ﬂk+1 Ck42 — 1

Suppose now that 1 < n < n; and v, = cfA;. Then cfA; < )\, and k is the
least integer such that c"z\l > Yn-1- Then yp41 = mm{z\,,.,.l, d A1}, where j
is the least integer such that cJA; > v, = cf)A;, implying that j = k + 1 and
Yns1/Im <c1. Un<nyandy, =An < c’l‘Al where k is the least integer such
that c’l‘/\l > Yn-1, then

Yot1 o min{dngr, cfM} o cfhy
n C’l‘_lz\l - c'l"l,\l

=cqC .

In an analogous fashion for nix < n < ng4; we can show that

Tn+1

n

< Ck41 -
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Finally, I is equivalent to A for

E'fl/n
1<&E—
- 21 1/'\k

i, 1 & 1
A A(ep =1 Anp(Cnpy, =1 n
ST Mamh Tl )=1+0<1/Zi)
Ak
S )

1

as n — co.

In the above we formed I by replacing terms of A by smaller values. There
is another method, that of interlacing two sequences, which is simpler and
furnishes the answer to Question 3.

Note that if there is subsequence {An, } of A such that limsup As,,,/An, =
1, then limA,4; /A, =1, for

/\n+1 < ’\nk+1 )
/\n - /\n,.

We shall interlace the sequences {n?} and A. More precisely, we place
those terms of {n?} which are < A; before \; and arrange them in increasing
order of magnitude. Between \; and A; we place those terms n? such that
A1 < n? < ), arranged in increasing order and we repeat this process for
all pairs Ay and Ag41. Let 4; be the k-th term in this sequence. There is a
strictly increasing sequence of positive integers {nx} such that v,, = A\x and
we always have ng > k. Thus ) 1/v, diverges. If k, = min{k|Ax > 7o},
then k, < n, implying v, < An. Then

Ane £ An £ A1 £ Anyy, implies

il T+ ST /02 ~ 1
PSS 7 /M ‘1+0(1/X1:,\k)

as n — o0, so I' and A are equivalent. Choosing v,, = 1/k?, we have
lim')‘nk“/‘)’n,‘ = ]., SO lim7n+1/7,, =1.
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