Franciszek Prus-Wiśniowski and Daniel Waterman, Department of Mathematics, Syracuse University, 215 Carnegie Hall, Syracuse, NY 13210-1150

(e-mail: wisniows@math.syr.edu, waterman@summon.syr.edu)

SMOOTHING Λ -SEQUENCES

Abstract

It is shown that for every Λ -sequence Λ there is an equivalent Λ -sequence $\Gamma = (\gamma_i)$ such that $\limsup \gamma_{i+1}/\gamma_i = 1$.

In a recent investigation concerning bounded Λ -variation as a gap Tauberian condition, a question about ΛBV spaces arose which has not been previously considered. We quickly recapitulate the essential facts about these spaces. Let $\Lambda = \{\lambda_n\}$ be a nondecreasing sequence of positive real numbers such that $\sum 1/\lambda_n = \infty$. A function f defined on an interval (finite or infinite) is of Λ -bounded variation if $\sum |f(b_n) - f(a_n)|/\lambda_n$ converges for every sequence $\{[a_n,b_n]\}$ of nonoverlapping intervals. The class of such functions is known as ΛBV . It may be shown that such functions are regulated, i.e., right and left limits exist at each point. We generally assume that $\lambda_n \nearrow \infty$, for otherwise, $\Lambda BV = BV$ [W],[A].

In the study of the Tauberian theorem we referred to, it seemed necessary to make the assumption that $\limsup \lambda_{n+1}/\lambda_n < \infty$. A question which arises naturally is

Question 1: Given a class ΛBV for which $\limsup \frac{\lambda_{n+1}}{\lambda_n} = \infty$, is there a $\Gamma = \{\gamma_n\}$, with $\limsup \frac{\gamma_{n+1}}{\gamma_n} < \infty$, such that $\Gamma BV = \Lambda BV$?

When $\Gamma BV = \Lambda BV$, we shall say that the sequences Λ and Γ are equivalent.

After we answered this question affirmatively, the next to come to mind was the following question.

Key Words: Λ-variation

Mathematical Reviews subject classification: Primary 26A45

Received by the editors September 8, 1994

Question 2: For any given Λ , is there a Γ equivalent to Λ such that $\lim \frac{\gamma_{n+1}}{\gamma_n} = 1$?

A Λ -sequence is called *smooth* if $\frac{\lambda_{n+1}}{\lambda_n} \to 1$.

Question 2 was also answered affirmatively. The method employed for Question 1 consisted of altering a subsequence of Λ to form the desired Γ . The method employed for Question 2 is an amplification of the original argument. This method, although direct, is relatively complicated.

Another question, which also has an affirmative answer, is **Question 3:** Is there a computationally simple method by which one can obtain a smooth Γ equivalent to a given Λ ?

This is an appropriate time to remind the reader of a theorem of Perlman and Waterman [PW]:

Theorem Λ and Γ are equivalent if and only if there are positive constants c and c' such that, for every n,

$$c \le \frac{\sum_{1}^{n} 1/\gamma_k}{\sum_{1}^{n} 1/\lambda_k} \le c'.$$

We will present our solutions for each question since there is a logical progression from one to the next and there is something to be learned about Λ -sequences from each of them. Let us now suppose that $\limsup \frac{\lambda_{n+1}}{\lambda_n} = \infty$

and choose a finite c > 1. Then $\frac{\lambda_{n+1}}{\lambda_n} > c$ for infinitely many values of n. Let $\gamma_1 = \lambda_1$ and, for n > 1, let $\gamma_n = \min\{c\gamma_{n-1}, \lambda_n\}$.

Clearly γ_n is nondecreasing and $\gamma_n \leq \lambda_n$ for every n. Also, $\gamma_n \nearrow \infty$, since $\gamma_n = \lambda_n$ for infinitely many values of n, for otherwise, there is an integer i such that $\gamma_k = c^{k-i}\lambda_i$ for k > i and $\lambda_k \geq \gamma_k$, implying that $\sum \frac{1}{\lambda_k}$ converges.

Now

$$\frac{\gamma_{n+1}}{\gamma_n} = \frac{\min\{c\gamma_n, \lambda_{n+1}\}}{\min\{c\gamma_{n-1}, \lambda_n\}}.$$

We have either

$$\frac{\gamma_{n+1}}{\gamma_n} = \frac{c\gamma_n}{\gamma_n} = c$$

or

$$\frac{\gamma_{n+1}}{\gamma_n} = \frac{\lambda_{n+1}}{\gamma_n} \le \frac{c\gamma_n}{\gamma_n} = c$$

so that $\limsup \frac{\gamma_{n+1}}{\gamma_n} \leq c$.

Also, since γ_k is either λ_k or $c^{k-i}\lambda_i$ for some i less than k,

$$1 \le \frac{\sum_{1}^{n} 1/\gamma_{k}}{\sum_{1}^{n} 1/\lambda_{k}} \le \frac{\sum_{i=1}^{n} (1/\lambda_{i} \sum_{k=0}^{n-i} 1/c^{k})}{\sum_{1}^{n} 1/\lambda_{i}} \le \frac{c}{c-1},$$

implying that Λ and Γ are equivalent.

Question 2 can be dealt with by a modification of this method. Choose $c_n \searrow 1$. Let $\gamma_1 = \lambda_1$. Starting with n=2, we define numbers γ_n successively by $\gamma_n = \min\{\lambda_n, c_1^k \lambda_1\}$, where k is the least integer such that $c_1^k \lambda_1 > \gamma_{n-1}$, until we reach an index $n_1 > 1$ such that $\gamma_{n_1} = \lambda_{n_1}$ and

$$\frac{1}{\lambda_{n_1}} \cdot \frac{1}{c_2 - 1} < \frac{1}{2} .$$

Begin anew to define γ_n for $n > n_1$ by the same method with c_2 replacing c_1 and λ_{n_1} replacing λ_1 until we reach an index $n_2 > n_1$ such that $\gamma_{n_2} = \lambda_{n_2}$ and

$$\frac{1}{\lambda_{n_2}} \cdot \frac{1}{c_3 - 1} < \frac{1}{2^2} \ .$$

We continue in this way to define $n_k \nearrow$ such that for $n_k < n \le n_{k+1}$ we have

$$\gamma_n = \min\{\lambda_n, c_{k+1}^j \lambda_{n_k}\},\,$$

where j is the least integer such that $c_{k+1}^j \lambda_{n_k} > \gamma_{n-1}, \ \gamma_{n_{k+1}} = \lambda_{n_{k+1}}$ and

$$\frac{1}{\lambda_{n_{k+1}}} \cdot \frac{1}{c_{k+2} - 1} < \frac{1}{2^{k+1}} \ .$$

Suppose now that $1 \leq n < n_1$ and $\gamma_n = c_1^k \lambda_1$. Then $c_1^k \lambda_1 \leq \lambda_n$ and k is the least integer such that $c_1^k \lambda_1 > \gamma_{n-1}$. Then $\gamma_{n+1} = \min\{\lambda_{n+1}, c_1^j \lambda_1\}$, where j is the least integer such that $c_1^j \lambda_1 > \gamma_n = c_1^k \lambda_1$, implying that j = k+1 and $\gamma_{n+1}/\gamma_n \leq c_1$. If $n < n_1$ and $\gamma_n = \lambda_n < c_1^k \lambda_1$ where k is the least integer such that $c_1^k \lambda_1 > \gamma_{n-1}$, then

$$\frac{\gamma_{n+1}}{\gamma_n} \le \frac{\min\{\lambda_{n+1}, c_1^k \lambda_1\}}{c_1^{k-1} \lambda_1} \le \frac{c_1^k \lambda_1}{c_1^{k-1} \lambda_1} = c_1.$$

In an analogous fashion for $n_k \leq n < n_{k+1}$ we can show that

$$\frac{\gamma_{n+1}}{\gamma_n} \le c_{k+1} .$$

Finally, Γ is equivalent to Λ for

$$1 \leq \frac{\sum_{1}^{n} 1/\gamma_{k}}{\sum_{1}^{n} 1/\lambda_{k}}$$

$$\leq \frac{\sum_{1}^{n} \frac{1}{\lambda_{k}} + \frac{1}{\lambda_{1}(c_{1} - 1)} + \sum_{1}^{\infty} \frac{1}{\lambda_{n_{k}}(c_{n_{k+1}} - 1)}}{\sum_{1}^{n} 1/\lambda_{k}} = 1 + O\left(1/\sum_{1}^{n} \frac{1}{\lambda_{k}}\right)$$

as $n \to \infty$.

In the above we formed Γ by replacing terms of Λ by smaller values. There is another method, that of interlacing two sequences, which is simpler and furnishes the answer to Question 3.

Note that if there is subsequence $\{\lambda_{n_k}\}$ of Λ such that $\limsup \lambda_{n_{k+1}}/\lambda_{n_k} = 1$, then $\lim \lambda_{n+1}/\lambda_n = 1$, for

$$\lambda_{n_k} \le \lambda_n \le \lambda_{n+1} \le \lambda_{n_{k+1}}$$
 implies $\frac{\lambda_{n+1}}{\lambda_n} \le \frac{\lambda_{n_{k+1}}}{\lambda_{n_k}}$.

We shall interlace the sequences $\{n^2\}$ and Λ . More precisely, we place those terms of $\{n^2\}$ which are $\leq \lambda_1$ before λ_1 and arrange them in increasing order of magnitude. Between λ_1 and λ_2 we place those terms n^2 such that $\lambda_1 < n^2 \leq \lambda_2$ arranged in increasing order and we repeat this process for all pairs λ_k and λ_{k+1} . Let γ_k be the k-th term in this sequence. There is a strictly increasing sequence of positive integers $\{n_k\}$ such that $\gamma_{n_k} = \lambda_k$ and we always have $n_k \geq k$. Thus $\sum 1/\gamma_n$ diverges. If $k_n = \min\{k \mid \lambda_k > \gamma_n\}$, then $k_n \leq n$, implying $\gamma_n \leq \lambda_n$. Then

$$1 \le \frac{\sum_{1}^{n} 1/\gamma_{k}}{\sum_{1}^{n} 1/\lambda_{k}} \le \frac{\sum_{1}^{n} 1/\lambda_{k} + \sum_{1}^{\infty} 1/n^{2}}{\sum_{1}^{n} 1/\lambda_{k}} = 1 + O\left(1/\sum_{1}^{n} \frac{1}{\lambda_{k}}\right)$$

as $n \to \infty$, so Γ and Λ are equivalent. Choosing $\gamma_{n_k} = 1/k^2$, we have $\lim \gamma_{n_{k+1}}/\gamma_{n_k} = 1$, so $\lim \gamma_{n+1}/\gamma_n = 1$.

References

- [A] M. Avdispahić, Concepts of generalized bounded variation and the theory of Fourier series, Internat. J. Math. Math Sci. 9 (1986), 223-244.
- [PW] S. Perlman and D. Waterman, Some remarks on functions of Λ-bounded variation, Proc. Amer. Math. Soc. 74 (1979), 113-118.
- [W] D. Waterman, On A-bounded variation, Studia Math. 57 (1976), 33-45.