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 A GENERALIZATION OF THE BANACH

 ZARECKI THEOREM

 Abstract

 It is well known that the following theorem due to Banach and
 Zarecki: AC = VB fl (N)nC, on a closed set. In [l] we showed that this
 theorem is no longer true if AC and VB are replaced by Foran's condi-
 tions A(2) and B( 2), respectively. In the present paper, we introduce
 the classes ACoo and VBoo , which contain strictly the classes AC and
 VB, respectively. Then we show that ACoo = VBoo n (N), for bounded
 measurable functions on a measurable set.

 Definition 1 Let F : [a, 6] -> R, P C [a, b]. Let 0{F' P) = sup{F(y) - F(x) :
 x,y€ P). Let 0°°(F; P) = inf^x 0(F; Pi) : (J~ x Pi = P}.

 Clearly, 0°°(F; P) < 0(F; P).

 Proposition 1 Let F : [a, 6] - ► 1,P C [a, 6]. If F is bounded on P then
 0°°(F;P)=|F(P)|.

 Proof. We will show that 0°°(F;P) < |F(P)|. For e > 0, there exists an
 open set G, such that F(P) C G - U°î j J, , and |F(P)| + e > |G|, where
 J i , i = 1,2,..., are the components of G. Let P,- = P H F_1(7,). Then
 F(P) = = Ufi ^ {Pi) C hence 0(F; P.) < |J,|. It follows
 that 0~(F;P) < ZZiO(F-,P) < 'J¡' = 'G | < |F(P)| + e. Since e is
 arbitrary, 0°°(F;P) < |F(P)|.

 We will show that |F(P)| < 0°°(F;P). For e > 0 there exists a se-
 quence of sets {P,}, » = 1,2,..., such that P = U^P,- , and 0°° (F; P) + e >
 £,~i O(F-Pi). Let Ji = [inf(F(P¡)),sup(F(P¿))]. Then F(P) = U ^F(Pi) C
 UgjJi, hence |F(P)| < E~i W = ZZi 0(F;Ą) < 0~(F;P) + e. Since e
 is arbitrary, |F(P)| < 0°°(F; P). □

 Key Words: absolutely continuous, bounded variation, Lusin's condition (N), Banach 's
 condition (S)
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 Definition 2 Let F : [a, 6] - y M, P C [a, b]. F is said to be ACœ on P , if
 for each e > 0; there exists a S > 0, such that 0°°(F; P fl Ik) < £,
 whenever /*, k = 1, 2, . . .,p, ¿5 a finite set of nonoverlapping closed intervals
 with endpoints in P, and Y2k= i 1^1 <

 Definition 3 Let F : [a, 6]-4l,PC [a, 6], F is said to be VBoo on P, if there
 exists a number M G (0,+oo); such that^2k=i 0°°(F' PC'Ik) < M, whenever ,
 {/*}, is a finite set of nonoverlapping closed intervals, with endpoints in P.

 Proposition 2 Let F : [a, 6] - ► M, P C [a, 6].

 AC § A Coo on P;

 (ii) ACoo = AC on [a, 6], /or Darboux functions;

 (Hi) VB £ FBoo on P ;

 (iv) VBqo = VB on [a, 6], for Darboux functions.

 Proof.

 (i) This follows by definitions, and the following example: let / be defined
 on [a,6],/(x) = 1, for x = a rational number, /(x) = 0, for x ^ a
 rational number. Then / G ACoo, and / £ AC.

 (ii) Let I be a closed subinterval of [a, 6]. By Proposition 1, 0°°(F'I) =
 |jF(/)|. Since F is Darboux, F(I) is an interval, hence 'F(I)' = 0(F) I).
 Hence 0°°(F ; I) = 0(F) I). Now the proof follows by definitions.

 (iii) and (iv) follow similarly to (i) and (ii). □

 Remark 1 Clearly AC C A(N) C ACoo and VB C B(N) C VB0 0 on a set
 P, where A(N) and B(N) are Foran's conditions , introduced in [2].

 Definition 4 Let F : [a, 6] - >• M,P C [a, 6], F G VBoo on P. We denote
 Vqo (F; P) = inf {M : M is given by the fact that F G VBoo on P}.

 Clearly, Veo (F;P) = sup{££=1 |F(Pn/¿)| : {Ik},k= 1,2, . . .,p, is a finite
 set of nonoverlapping closed intervals with //. OP ^ 0}.

 Definition 5 Let P C [a, 6], F : P - ► R, and let s : M - ► M, s(y) = the number
 of roots of the equation F(x) = y, x G P . s(t/) ¿5 called the Banach indicatrix.
 Let Kp : [a, 6] - ► R, A'p(x) = 1, x G P, and Kp(x) = 0, x ^ p. 7'p ¿5 called the
 characteristic function of P.
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 Lemma 1 Let P C [a, b] be a measurable set. Let F : P - ¥ be a bounded,
 measurable function, m = inf (F(P)),M = s'ip(F(P)). If F (A) is a measur-
 able set whenever A is a measurable subset of P, then :

 0) fm s(y)dy = Voo(F;P) = sup{^fc>! |F(Ą)| : {Pk} is a finite or
 infinite collection of measurable , pairwise disjoint subsets of P, and
 Uk>iPk = P}'

 (ii) $(X) = Voo(F;X) is an additive set function, where $ is defined on all
 measurable subsets X of P, and V00(F-iP) +oo.

 Proof, (i) If {Pk} is as above, then we have

 ( 1 ) ^2 Kf(p> ) (y) < s(y) , for each y € [m, M].
 k> 1

 For each natural number n > 1, let I" = [a, a + (6 - a)/ 2n], and

 Ę = (a + (k - 1)(6 - a)/2n, a + k(b - a)/2n], n = 2, 3, . . . , 2".

 Let sn(y) = ^2k= i ^F(Pni¡){y)' But F(PDlJļ) is measurable by hypothesis,
 hence sn(y) is a positive, measurable function. Clearly {$n(2/)}n is increasing.
 We show that sn(y) -> s(y)> n - ► oo. Let s*(y) = limn_>oo sn(y). Then s*(y)
 is a positive, measurable function. By [1], sn(y) < s(y), hence s*(y) < s(y).
 For y let q(y) be a natural number, such that q(y) < s(y). Then there exist
 q(y) distinct roots x' < x2 < . . . < x g(y), of the equation F(x) = y,x £ P.
 Let n(y) be a natural number, such that ( b - a)/ 2n(y) < min{xt+i - x¿ :
 i = 1,2, ...,ç(y) - 1}. Then there exist ki < ¿2 < ••• < ^g(y)» such that
 Xi e Pnl^y'i = 1,2, . . -,q(y). Hence I<F,pnrfll)Jy) = 1. It follows that

 * i

 Sn(y)(y) > q{y)- if q(y) = s(y) < +°° then q(y) = s(y) > sn(y)(y) > ?(y),
 hence sn(y)(y) = s{y) = q(y)- If Ąy) = +°°, then q(y) can be taken arbitrarily
 large, hence s*(y) = -f-oo. It follows that s(y) = s*(y), and lim„-+oo sn(y) =
 s(y). By the Beppo-Levi Theorem,

 rM rM rM rM

 liin J / sn(y)dy= s(y) dy. By [1], ^ / KF(pk){y)dy> s{y)dy. J Tt% J TTl Jt > 1 ** TTl

 (ii) Let {X, } be a sequence of measurable, pairwise disjoint sets, Xi C P,i -
 1, 2, .... Let X = UgiJfc. Then by (i),



 642 V. Ene

 oo oo -Ai

 2>oo(F;*) = £/ Jm (s/xj(y)dy i=l 1=1 Jm
 rM OO rM

 = J / ^2(s/x,)(y)dy= (s/x)(y)dy = V0o(F;X), J m ¿ m

 hence *(X) = ®(X¿). □

 Corollary 1 Leí P be a measurable set Let F : P - ► IR 6e bounded measur-
 able function. If F satisfies Lusin's condition (N) on P , ¿/ien $ is an additive
 set function, and $ ¿5 AC on P.

 Proof. By a theorem of Rademacher [3, p. 354] and Lemma 1, (ii), $
 is additive. Let X C P, |X| = 0. Let > 1, be a finite or infinite
 collection of measurable, pairwise disjoint subsets of X, with X =
 Since F G (iV) on P,J2k>i 1^(^01 = Ū- ®y Lemma 1, (i), = 0, hence
 $ E AC on P, [7, p. 30]." □
 If F : P - y M and {Ą} is a finite or infinite collection of pairwise dis-

 joint Borei (resp. analytic) sets with Uk>'Pk = P , we let V^o(F;P) =
 sup{Efc>i l*WI}-

 Corollary 2 [Iseki, [Ą, p. 16] and [5, p. 38-39]] Let P Ç [a, 6] be a Borei ( re-
 spectively analytic) set, let F : P - > M. //F ¿5 bounded and continuous on P,
 then the Banach indicatrix, s(y) is measurable and f^s(y)dy = Voo(F;P).

 Proof. The proof is similar to that of Lemma l(i), since a continuous image
 of a Borei (respectively analytic) set is always a measurable set. □

 Remark 2 Lemma 1 and Corollary 2 may be regarded as generalizations of a

 well known theorem of Banach (see [7, p. 280]). In [Ą], the integral J ^ s(y) dy
 is called the fluctuation of F on the set P.

 Corollary 3 Let P C [a, 6], and let F : P - > M, F E V B^ on P.

 (i) If P is a measurable set, F is a measurable function , and F E (TV) on
 P then F E Ti on P.

 (ii) If P is a Borei (respectively analytic) set, and F is continuous on P,
 then F £ Ti on P.

 Proof, (i) follows by Lemma 1 and the definition of Banach 's condition T'
 (ii) follows by Corollary 2 and the definition of Tļ . □



 A Generalization of the Banach Zarecki Theorem 643

 Definition 6 Let P C [a, 6], P : P - ► R. F fulfils Banach's condition S on P
 if for every e > 0, there exists a S > 0 such that 'F(Z) ' < e, whenever Z C P
 and 'Z' < 6. If in addition Z is supposed to be a compact set , then we obtain
 condition wS (weak S) on P.

 Definition 7 Let P C [a,6],P : P - > R. F is said to be So on P, if for
 each e > 0 there exists a S > 0 such that X^=1 1*^(^)1 < e> whenever P,-,
 i = 1,2, are measurable , pairwise disjoint subsets of P, with |-P¿| <
 S. In addition P{, i = 1,2, are supposed to be a compact set , we obtain
 condition w So on P.

 Proposition 3 Let F[a, b] -> R, P C [a, 6]. Then we have:

 (i) ACoo CSC{N) on P;

 (ii) So C 5 C wS on P;

 (Hi) So C w So C wS on P;

 (iv) If P is measurable , then S = wS fl (N) on P ;

 (v) If P is of Fcr type then wS C (N), hence S = wS on P.

 Proof.

 (i) Let e > 0, and let S be given by the fact that F G ACoo on P. Then
 there exists {/*}*, a sequence of non-overlapping closed intervals, such
 that E C U kLxIk and Yl'kLi 0°°(F' E H h) < e. By Proposition 1,
 'F{Enlk)' = iO°°(F;£n/fc) < e. Hence F £ S on P. For
 5 C (N), see [7].

 (ii) and (iii) follow from the definitions.

 (iv) S C wS O ( N ) on P follows by (i) and (ii). Let F G wS D (N) on P. Let
 Z C P, Z-measurable, 'Z' < S. We have two situations: 1) Z is a set
 of Fa- type. Then there exists Q ' C Q2 C ... C Qn C compact sets,
 such that Z - But F(Z) = /^U^Q,-) = U fl1F(Qi). Since
 {P(Qt)}», is an increasing sequence of sets, it follows that 'F(Z)' =
 liixin-too |P(Q*-)I- But |<2i| < hence 'F(Qi)' < et i = 1,2,.... Then
 1^(^)1 < hence F e S on P. 2) Z is not a set of P^-type. Then
 there exists A C Z, such that A is a set of Fa- type, and 'Z - A' = 0.
 We have 'F(Z)' < 'F(A)' + | F(Z - A) |. But 'F(A)' < e (see 1), and
 I F(Z -A) | = 0 (since P G (N)). Hence, 'F(Z)' < e and P G 5 on P.
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 (v) Let Z C P, 'Z' = 0. For 5 > 0, let S > 0 be given by the fact that F G wS
 on P. Then there exists an open set Q, such that Q D Z, 'Q' < S. It
 follows that Z C Q H P and Q H P is of Fa- type. Similarly to (iv) 1, it
 follows that 'F(Z)' < I F(Q n P)| < e, hence 'F(Z)' = 0, and F G (N)
 on P.

 □

 Theorem 1 Let F : [a, 6] - > M, F a bounded and measurable function . Let P
 be a measurable subset o/[a, b'. The following assertations are equivalent :

 (1) F G ACoo on P ;

 (ii) F G wSo H ( N ) on P;

 (ni) F E So on P;

 (iv) F G V Boo H (N) on P.

 Proof.

 (i) => (ii) Let e > 0, and let S be given by the fact that F G ACoo on
 P. Let {P/-},/: = 1,2, ...n, be a finite set of pair wise disjoint, compact
 subsets of P, such that 2Z£=1|Pfc| < 6/ 2. For each P&, there exists
 a finite set of non-overlapping closed intervals htj,j = 1,2, with
 endpoints in P*, such that Pk C U£=1U?=1J*j and J2k=i i l^.il <
 Thenn=1 l^(Pfc)l < ELi n P) | < e, hence F G u,50 on
 P. By proposition 3 (i), F G (-/V) on P.

 (ii) ^ (iii). The proof is similar to that of Iseki (see[4], Theorem 14). Let
 e > 0. For e/2 , let S > 0 be given by the fact that F G wS on P. Let Q
 be a measurable subset of P. Then there exists a set of P^-type A, such
 that A C Q and 'Q - A' = 0. Since F G ( N ) on P, | F(Q - A)' = 0. By
 Proposition 3 (iii), F G wS on P. Hence |P(Q)| = 'F(A) U F(Q - A)' <
 'F(A)' + 'F(Q - A)' = 'F(A)'. Since A C Q, it follows that 'F(Q)' =
 |P(A)|. The set A can be expressed as the limit of an increasing, infinite
 sequence of compact sets. It. follows that, for e > 0 there exists Ae C A,
 Ae- a compact set, such that 'F(Q)' = |P(^4)| < |P(Ař)| -j-£. Let {P¿},
 i = 1,2, ...,n, be a finite set of measurable, pairwise disjoint subsets of
 P, such that ELi 1^*1 < Then, as above, there exists a compact set
 Qi C Pi, such that |P(P¿)| < 'F(Qi)' + e/2 n, i = 1,2, It follows
 that E?=i IQt I < S and ¿"=1 |P(Q,)| + e/2 < e/2 + e/2 = e, hence
 F G So on P.
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 (iii) =»(i). For e > 0, let S > 0, be given by the fact that F £ So on P. Let
 {/*}, k = 1,2,..., n, be a finite set of nonoverlapping closed intervals,
 such that P H Ik î <t>, and J2k=i 1^*1 < ^et ^ = P n h- Then
 ELi IAU and ELi l*WU tence F G ACoo on P.

 (iii) ^(iv). Let F € So on P. Then , by Proposition 3 (i),(ii), F G ( N ) on P.
 For e = 1, let S > 0, be given by the fact that F £ So on p. Let {P/J,
 k = 1,2, ..,p be a finite set of measurable, pairwise disjoint subsets of
 P, P = U l=lPk and diam(Pfc) < Í, k = 1,2, ..,p. By Lemma 1 (ii),(i),
 *{p) = ££=i *(ft) < P ■ hence F € VBoo on P.

 (iv) =>(iii). Let F G VBoo fi (N) on P. By a well-known theorem of Saks
 ([7], p. 31), it follows that, for each e > 0, there exists a S > 0, such
 that, for each measurable set X C P, < £, whenever |X| <
 Let {Pfc}, & = l,2,...,p, be a finite collection of measurable, pairwise
 disjoint subsets of P, with ££=1 |(P/c) < 6. Then ££=1 'F(Pk)' <
 I n=i *(A) = hence F 6 So on P.

 □

 Remark 3 aj Prom the proof of Theorem 1, it follows that (i) & (ii)& (iii)
 without asking F to be measurable, b) In [ 1 ], we showed that there exists a
 continuous function F , which is 5(2) on a perfect set P, F G (N) on P,
 F £ A(N) on P, N = 1,2,.... That's why (i) &(iv) in Theorem 1 is so
 surprising.

 Corollary 4 Let P[a, 6] - ► R, P C [a, b].

 (i) If P is a set of F 0 -type then ACoo = wSo = So on P;

 (ii) AC = ACoo = So = w So on [a, 6], for continuous functions ;

 (iii) So § S ^ (iV) and wSo ^ wS on [a, 6], /or continuous functions ; wS on
 [a, 6], /or continuous functions;

 (iv) VBC'(N) = VB« H (AT) = ACoo = AC on [a, 6], for Darboux functions.

 Proof, (i) See Proposition 3(iii), (iv) and Theorem l(i), (ii), (iii), (ii) See
 (i) and Proposition 2(ii). (iii) By [7] AC £ S, for continuous functions on
 [a, 6]. Now the proof follows by (ii) and Proposition 3(ii), (iii), (i), (iv) See
 Proposition 2(ii), (iv) and Theorem 1. □

 Remark 4 Corollary 4(lv) *s zn fact, the Banach- Zarecki theorem ([7]).
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