Claude-Alain Faure*and Jean Mawhin Institut mathématique, Université Catholique de Louvain, B-1348 Louvain-la-Neuve, Belgium

THE HAKE'S PROPERTY FOR SOME INTEGRALS OVER MULTIDIMENSIONAL INTERVALS

1 Introduction

The Hake's property is named after the work of H. Hake [4] in 1921, which was an important step in proving the equivalence between the integrals of Denjoy and Perron (see e.g. Chapter VIII in [13]). For a real function f defined on a compact interval $[a,b] \subseteq \mathbb{R}$, H. Hake proved the equivalence between the Perron-integrability of f over [a,b] and its Perron-integrability over [a,c] for all a < c < b together with the existence of the limit

$$\lim_{c > b} \int_a^c f$$
.

This shows in particular that improper integrals are proper ones in the frame of Perron integration.

The Riemann-type definition of the Perron integral introduced independently by J. Kurzweil [6] and R. Henstock [5] has led to various extensions in the multidimensional case. For these integrals, the formulation and proof of a Hake's property is an interesting question and results in this direction have been recently obtained by J. Mawhin and W. F. Pfeffer for the Pfeffer integral [10], and by J. Kurzweil and J. Jarnik for the α -regular integral [8].

For a real function f defined on a compact interval $I \subseteq \mathbb{R}^m$, we prove in this note the equivalence between the integrability of f over I and the integrability of f over all intervals $J \subseteq I^\circ$ together with the existence of the (appropriate) limit

 $\lim_{F \nearrow I^{\circ}} \int_{F} f$,

Key Words: Hake's Property, Kurzweil-Henstock Integral

Mathematical Reviews subject classification: Primary: 26B15 Secondary: 26A39 Received by the editors June 30, 1994

^{*}Supported by a grant from the Swiss National Funds for Scientific Research.

where $F \subseteq I^{\circ}$ is a figure (i.e. a finite union of compact intervals of \mathbb{R}^{m}). More generally, instead of the interior I° of I, we consider an arbitrary open subset of I.

The definition of our integral covers the cases of the Kurzweil-Henstock integral (KH-integral), of the integrals of J. Mawhin (GP-integral) and W. F. Pfeffer (Pf-integral), and of the α -regular integral. So the Hake's property expressed by Theorem 3.3 contains as particular cases the two recent results mentioned before. For the one-dimensional integral, it also encompasses the Harnack's property.

As shown in Section 4, the Hake's property proved in this note can be used to obtain counterexamples in a very simple way. We give three examples : a function which is α_1 -regularly integrable for all $\alpha \leq \alpha_1 < 1$ but not α_2 regularly integrable for all $0 < \alpha_2 < \alpha$, a GP-integrable function which is not Pf-integrable, and a Pf-integrable function which is not KH-integrable (and even not M₁-integrable, cf. [2]).

2 Preliminaries

Throughout this paper $I = [a_1, b_1] \times \ldots \times [a_m, b_m]$ is a non-degenerate compact interval of \mathbb{R}^m . On I we consider the metric $d(x, y) = \max |y_i - x_i|$. The interior of a subset $E \subseteq I$ is denoted by int E and its boundary by bd E. We use the notations I° and ∂I for the interior and the boundary of the interval I with respect to the topology of \mathbb{R}^m .

The set of all (non-degenerate) compact subintervals $J \subseteq I$ is denoted by $\mathcal{J}(I)$. Given an interval $J = [c_1, d_1] \times \ldots \times [c_m, d_m]$ its measure, length and thickness are the respective positive numbers

$$m(J) = \prod_{i=1}^{m} (d_i - c_i), \ \ell(J) = \max(d_i - c_i) \ \text{and} \ t(J) = \min(d_i - c_i)$$

The regularity of J is the number $r(J) = t(J) \cdot \ell(J)^{-1}$. More generally, we shall consider four regularity functions $\rho : \mathcal{J}(I) \to [0, 1]$, which correspond to the four different integrals mentioned in the introduction (cf. Definition 2.2 below).

A subset $F \subseteq I$ is a figure if it is a finite union of elements of $\mathcal{J}(I)$. A partition of a figure F is a finite collection of non-overlapping intervals $J_1, \ldots, J_r \in \mathcal{J}(I)$ with $F = \bigcup_{i=1}^r J_i$.

A system on a subset $E \subseteq I$ is a finite collection $\{(J_1, x_1), \ldots, (J_r, x_r)\}$, usually noted S, where $J_1, \ldots, J_r \in \mathcal{J}(I)$ are non-overlapping intervals and $x_i \in J_i \cap E$ for all $i = 1, \ldots, r$. A system is called a *division* of the interval I if one has $I = \bigcup_{i=1}^r J_i$. And we say that a system S completes a figure $F \subseteq I$ if the intervals of S do not overlap the figure F and $I = (\bigcup_{i=1}^{r} J_i) \cup F$.

A gauge on a subset $E \subseteq I$ is any positive map $\delta : E \to \mathbb{R}_+$. Given a parameter of regularity $0 < \alpha < 1$ and a gauge $\delta : E \to \mathbb{R}_+$ one says that a system S on E is (α, δ) -fine if it satisfies the conditions

$$\rho(J_i) \ge \alpha \text{ and } \ell(J_i) \le \delta(x_i) \text{ for all } i = 1, \dots, r.$$

The set of (α, δ) -fine divisions of I is denoted by $\mathcal{D}(I, \alpha, \delta)$. The following lemma ensures that the definition of the integral is meaningful:

Lemma 2.1. (Cousin) For every choice of α and δ there exists a division D of I which is (α, δ) -fine, i.e. the set $\mathcal{D}(I, \alpha, \delta)$ is not empty.

Definition 2.2. One says that a function $f: I \to \mathbb{R}$ is *integrable* if there exists a number $A \in \mathbb{R}$ such that for any $\varepsilon > 0$ and any $0 < \alpha < 1$ there exists a gauge $\delta: I \to \mathbb{R}_+$ with the property

 $|S(f, D, I) - A| < \varepsilon$ for every division $D \in \mathcal{D}(I, \alpha, \delta)$,

where $S(f, D, I) = \sum_{i=1}^{r} f(x_i) m(J_i)$ is the usual Riemann sum associated with D. The integral $A \in \mathbb{R}$ is unique and denoted by $\int_{I} f$.

We consider four particular choices for the regularity function ρ :

1) $\rho(J) = r(J)$. One gets the GP-integral, cf. Definition 9 in [9].

2) $\rho(J) = \inf \{ d_i - c_i / a_i \neq c_i \text{ and } d_i \neq b_i \} \ell(J)^{-1}$, and $\rho(J) = 1$ if one corner of I is contained in J. According to a result of J. Kurzweil and J. Jarnik [7] one gets the Pf-integral of W. F. Pfeffer [12].

3) $\rho(J) = 1$. Then one can leave the parameter of regularity α and one gets the classical Kurzweil-Henstock integral.

4) $\rho(J) = r(J)$ if $r(J) \ge \alpha_0$ and $\rho(J) = 0$ otherwise. Then the parameter α can be taken as a constant and one gets the α_0 -regular integral [8].

We shall use the two following propositions (which are well-known for these integrals).

Remark 2.3. By considering the map ρ as a function of tagged intervals (J, x) instead of a function of intervals J, one may also include other integrals, like for instance the integral of Z. Buczolich in the plane [1].

Proposition 2.4. Let $f: I \to \mathbb{R}$ be an integrable function. Then f is integrable on every subinterval $J \in \mathcal{J}(I)$ and the indefinite integral $\varphi(J) = \int_J f$ is an additive function of intervals.

Proposition 2.5. (Saks-Henstock) Let $f: I \to \mathbb{R}$ be an integrable function and let $\delta: I \to \mathbb{R}_+$ be a gauge such that $|S(f, D, I) - \int_I f| \leq \varepsilon$ for every (α, δ) -fine division D of the interval I. Then one has

$$\left|\sum_{i=1}^r \left\{f(x_i)m(J_i) - \int_{J_i} f\right\}\right| \leq \varepsilon.$$

for every (α, δ) -fine system $S = \{(J_1, x_1), \ldots, (J_r, x_r)\}$ on the interval I.

3 The main theorem

Let $E \subseteq I$ be a closed subset such that $\emptyset \neq E \neq I$, and suppose that $f: I \to \mathbb{R}$ is integrable on every interval $J \in \mathcal{J}(I)$ contained in $I \setminus E$. Given any figure $F \subseteq I \setminus E$ one can define the integral of f on the figure F by

 $\int_F f = \sum_{i=1}^r \int_{J_i} f$, where J_1, \ldots, J_r is any partition of F.

Since the integral is (weakly) additive, cf. Proposition 2.4, the value of $\int_F f$ does not depend on the choice of the partition.

Definition 3.1. Given a parameter $0 < \alpha < 1$ and a gauge $\delta : E \to \mathbb{R}_+$ we say that a figure $F \subseteq I \setminus E$ is (α, δ) -close to the subset $I \setminus E$ if there exists a system S on E which is (α, δ) -fine and completes F. We denote by $\mathcal{F}(I \setminus E, \alpha, \delta)$ the set of all figures $F \subseteq I \setminus E$ which are (α, δ) -close to $I \setminus E$.

Defining $\delta(x) = \frac{1}{2}d(x, E)$ for all $x \in I \setminus E$ and using the Cousin's lemma one easily shows that the set $\mathcal{F}(I \setminus E, \alpha, \delta)$ is not empty for every choice of α and δ .

Definition 3.2. We say that the integral $\int_F f$ converges to the number $A \in \mathbb{R}$ when the figure F tends to $I \setminus E$ if for any $\varepsilon > 0$ and any parameter $0 < \alpha < 1$ there exists a gauge $\delta : E \to \mathbb{R}_+$ with the property

 $\left|\int_{F} f - A\right| < \varepsilon$ for every figure $F \in \mathcal{F}(I \setminus E, \alpha, \delta)$.

Theorem 3.3. Let $E \subseteq I$ be a closed subset and suppose that $f: I \to \mathbb{R}$ is integrable on every interval $J \subseteq I \setminus E$. If the function $f \cdot \chi_E$ is integrable on I and if the integral $\int_F f$ converges to a limit $A \in \mathbb{R}$ when the figure F tends to $I \setminus E$, then f is integrable on I and $\int_I f = \int_I f \cdot \chi_E + A$.

Proof. By considering $f - f \cdot \chi_E$ one may assume that f(x) = 0 for all $x \in E$. We want to show that A is the integral of f. We first choose a sequence of intervals $I_n \in \mathcal{J}(I)$ such that $I_n \subseteq I \setminus E$ for each $n \in \mathbb{N}$ and $I \setminus E = \bigcup_{n=1}^{\infty} int I_n$. For instance, one can take the family of all closed balls $B(x, \frac{1}{2}d(x, E))$, where x runs over the rational points of $I \setminus E$.

Given $\varepsilon > 0$ and $0 < \alpha < 1$ there exists for each $n \in \mathbb{N}$ a gauge $\delta_n : I_n \to \mathbb{R}_+$ with

 $|S(f, D, I_n) - \int_{I_n} f| < 2^{-n} \varepsilon$ for every division $D \in \mathcal{D}(I_n, \alpha, \delta_n)$.

One may assume that $\delta_n(x) < d(x, E)$ for every $x \in I_n$ and $\delta_n(x) \le d(x, bd I_n)$ for every $x \in int I_n$. For $x \in E_n := int I_n \setminus \bigcup_{j=1}^{n-1} int I_j$ we define $\delta(x) = \delta_n(x)$.

By hypothesis there exists a gauge $\delta: E \to \mathbb{R}_+$ such that $|\int_F f - A| < \varepsilon$ for every figure $F \in \mathcal{F}(I \setminus E, \alpha, \delta)$. One thus gets a gauge $\delta: I \to \mathbb{R}_+$.

Now let D be any (α, δ) -fine division of the interval I. We consider the figure $F = \bigcup \{J_i \mid x_i \notin E\}$. By construction one has $F \in \mathcal{F}(I \setminus E, \alpha, \delta)$. Then

$$\begin{aligned} |S(f, D, I) - A| &\leq \left| \sum_{x_i \notin E} \left\{ f(x_i) m(J_i) - \int_{J_i} f \right\} \right| + |\int_F f - A| \leq \\ \sum_{n=1}^{\infty} \left| \sum_{x_i \in E_n} \left\{ f(x_i) m(J_i) - \int_{J_i} f \right\} \right| + |\int_F f - A| < \varepsilon + \varepsilon = 2\varepsilon \end{aligned}$$

according to Proposition 2.5 (recall that $J_i \subseteq I_n$ for every *i* with $x_i \in E_n$), and this proves that the function *f* is integrable on *I*.

Remark 3.4. The theorem contains as a particular case a result of J. Kurzweil and J. Jarnik for the α -regular integral, cf. Proposition 2 in [8]. And for m = 1 it also involves the well-known Harnack's property (left as exercise).

Example 3.5. Let $E = \partial I$ be the boundary of I for the topology of \mathbb{R}^m . Since E is of Lebesgue-measure zero one has $\int_I f \cdot \chi_E = 0$ for any function $f: I \to \mathbb{R}$. So the theorem reads as follows: If the function f is integrable on every interval $J \subseteq I^\circ$ and the integral $\int_F f$ converges to a limit $A \in \mathbb{R}$ when the figure F tends to I° , then f is integrable on the interval I and $\int_I f = A$.

In that situation a sufficient condition for the Pf-integrability of f was given in [10]. One can prove that if $\int_F f$ converges to a limit $A \in \mathbb{R}$ in the sense of [10], then it converges to A in our sense. But this is an immediate consequence of the following lemma, which says that the condition of Theorem 3.3 is also necessary.

Lemma 3.6. Let $E \subseteq I$ be a closed subset and let $f: I \to \mathbb{R}$ be such that both f and $f \cdot \chi_E$ are integrable on the interval I. Then the integral $\int_F f$ converges to the number $\int_I (f - f \cdot \chi_E)$ when the figure F tends to $I \setminus E$.

Proof. One may assume that f(x) = 0 for all $x \in E$. Given $\varepsilon > 0$ and $0 < \alpha < 1$ there exists a gauge $\delta : I \to \mathbb{R}_+$ with the property

$$S(f, D, I) - \int_{I} f | < \varepsilon$$
 for every division $D \in \mathcal{D}(I, \alpha, \delta)$.

Now consider any figure $F \in \mathcal{F}(I \setminus E, \alpha, \delta)$. We choose a partition J_1, \ldots, J_r of F and for each $i = 1, \ldots, r$ a division $D_i \in \mathcal{D}(J_i, \alpha, \delta)$. By definition there exists a system S on E which is (α, δ) -fine and completes F. Then $D = (\bigcup_{i=1}^r D_i) \cup S$ is a division of the interval I and $D \in \mathcal{D}(I, \alpha, \delta)$. So we obtain

$$\left|\int_{F} f - \int_{I} f\right| \leq \left|\sum_{i=1}^{r} \left\{\int_{J_{i}} f - S(f, D_{i}, J_{i})\right\}\right| + \left|S(f, D, I) - \int_{I} f\right| < 2\varepsilon$$

according to Proposition 2.5 (and the additivity of the integral, cf. Proposition 2.4), and thus the lemma is proved. $\hfill \Box$

626

4 Some examples

Example 4.1. Let $I = [0,1] \times [0,1]$ be the unit square. Given some parameter $0 < \alpha < 1$ we consider the function $f: I \to \mathbb{R}$ defined by

 $f(x,y) = 1/x^3$ if $0 < y < \frac{1}{2}\alpha x$, $f(x,y) = -1/x^3$ if $\frac{1}{2}\alpha x < y < \alpha x$

and f(x, y) = 0 otherwise. Then f is α_1 -regularly integrable for any $\alpha \le \alpha_1 < 1$ but not α_2 -regularly integrable for any $0 < \alpha_2 < \alpha$.

Proof. We take $E = \{(0,0)\}$. Therefore we are interested in figures $F = I \setminus int J$ with $J = [0, x] \times [0, y]$. Clearly, one has $\int_F f = 0$ for every figure $F \in \mathcal{F}(I \setminus E, \alpha_1, 1)$, and this proves that f is α_1 -regularly integrable.

Now let $\frac{1}{2}\alpha \leq \alpha_2 < \alpha$ and consider the interval $J = [0, \delta] \times [0, \alpha_2 \delta]$. An easy calculation shows that $\int_F f = -(\alpha - \alpha_2)^2/2\alpha_2\delta$. Therefore $\int_F f$ cannot converge when the figure F tends to $I \setminus E$, and this proves that f is not α_2 -regularly integrable. In particular, f is not α_2 -regularly integrable for $0 < \alpha_2 < \frac{1}{2}\alpha$.

Example 4.2. Let $I = [0,1] \times [0,1]$ be the unit square. We consider the function $f: I \to \mathbb{R}$ defined by

$$f(x, y) = 1/x^4$$
 if $0 < y < \frac{1}{2}x^2$, $f(x, y) = -1/x^4$ if $\frac{1}{2}x^2 < y < x^2$

and f(x, y) = 0 otherwise. Then f is GP-integrable but not Pf-integrable.

Proof. As before, we take $E = \{(0,0)\}$. We first show that f is GP-integrable. For any figure $F = I \setminus int J$ with $F \in \mathcal{F}(I \setminus E, \alpha, \alpha)$ one has $y \ge \alpha x \ge x^2$ because $r(J) \ge \alpha$ and $\ell(J) \le \alpha$. Therefore $\int_F f = 0$ and the assertion follows.

But for the Pf-integral one has $\rho(J) = 1$ for every interval $J = [0, x] \times [0, y]$. In particular, for $J = [0, \delta] \times [0, \frac{1}{2}\delta^2]$ we calculate that $\int_F f = -(4\sqrt{2}-5)/6\delta$, and this proves that f is not Pf-integrable.

Example 4.3. Let $I = [0,1] \times [0,1]$ be the unit square. We consider the function $f: I \to \mathbb{R}$ defined by

$$f(x,y) = (-1)^i 2^n$$
 if $(x,y) \in \left(\frac{i-1}{4^n}, \frac{i}{4^n}\right] \times \left(\frac{1}{2^n}, \frac{1}{2^{n-1}}\right]$ (for $i = 1, ..., 4^n$)

and f(x, y) = 0 if xy = 0. Then f is Pf- integrable but not KH-integrable.

Proof. By Fubini's theorem the function f is not Kurzweil-Henstock integrable because the partial integral $\int_0^1 f(x, y) dy$ does not exist for any $x \in (0, 1]$. In order to show that f is Pf-integrable we apply Theorem 3.3 with $E = [0, 1] \times \{0\}$. We shall use the intervals $I_n = [0, 1] \times \{2^{-n}, 2^{-n+1}\}$.

Let $\varepsilon > 0$ and $0 < \alpha < 1$ be given. We choose a constant gauge $\delta = 2^{-N+1}$ on E (the integer N will be precised later). Obviously, any figure

 $F \in \mathcal{F}(I \setminus E, \alpha, \delta)$ contains the interval $[0, 1] \times [2^{-N+1}, 1]$, and therefore $\int_F f = \sum_{n=N}^m \int_{F \cap I_n} f,$

where I_1, \ldots, I_m are the intervals with $F \cap int I_n \neq \emptyset$. Let S be a system on E which is (α, δ) -fine and completes F. Say $(0,0) \in J_1$ and $(1,0) \in J_r$. Using that $\int_{I_n} f = 0$ for every $n \in \mathbb{N}$ we obtain the following inequality:

$$\left|\int_{F\cap I_n} f\right| \leq \sum_{i=1}^r \left|\int_{J_i\cap I_n} f\right|.$$

If $J_i \cap \operatorname{int} I_n \neq \emptyset$, then $\ell(J_i) > 2^{-n}$, and for $i = 2, \ldots, r-1$ this implies $t(J_i) > \alpha \cdot 2^{-n}$. So we deduce that there exist at most $[2^n/\alpha] + 2$ intervals J_i with $J_i \cap \operatorname{int} I_n \neq \emptyset$. And since $|\int_{J_i \cap I_n} f| \leq 4^{-n}$ we conclude that

$$\left|\int_{F\cap I_n} f\right| \le 1/\alpha 2^n + 2/4^n.$$

Thus it suffices to choose $N \in \mathbb{N}$ such that $\sum_{n=N}^{\infty} (1/\alpha 2^n + 2/4^n) < \varepsilon$. Hence $\int_I f = 0$.

In fact, this function is an example of a Pf-integrable function which is not M_1 -integrable (another such example was given in [2]). Before we prove this result, we first recall the definition of the M_1 -integral for the two-dimensional case (compare with [3]).

Definition 4.4. A function $f: I \to \mathbb{R}$ is called M_1 -integrable if there exists a number $A \in \mathbb{R}$ such that for any $\varepsilon > 0$ and any K > 0 there exists a gauge $\delta: I \to \mathbb{R}_+$ with the property $|S(f, D, I) - A| < \varepsilon$ for every division D of I satisfying

 $\ell(J_i) \leq \delta(x_i)$ for all $i = 1, \ldots, r$ and $\sum_{i=1}^r \ell(J_i)^2 \leq K$,

noted $D \in \mathcal{D}_1(I, K, \delta)$. Clearly, any KH-integrable function is M_1 -integrable. And in [11] D. J. F. Nonnenmacher proved that any M_1 -integrable is Pf-integrable.

Proposition 4.5. The function $f : I \to \mathbb{R}$ of Example 4.3 is not M_1 -integrable.

Proof. We show that for any gauge $\delta: I \to \mathbb{R}_+$ there exist two divisions D_1 and D_2 in $\mathcal{D}_1(I, 5, \delta)$ with $|S(f, D_1, I) - S(f, D_2, I)| \ge \frac{1}{3}$. We first cover the set $E = [0, 1] \times \{0\}$.

Let $\gamma(x) := \frac{1}{4}\delta(x,0)^2$. There exists a division $\{(A_1, x_1), \ldots, (A_s, x_s)\}$ of the interval $[0,1] \subseteq \mathbb{R}$ with the property

$$A_i = \left[\frac{m_i - 1}{4^{n_i}}, \frac{m_i}{4^{n_i}}\right] \text{ and } \ell(A_i) = \frac{1}{4^{n_i}} \leq \gamma(x_i) \text{ for all } i = 1, \dots, s.$$

We put $N_1 = \{i/m_i \text{ is odd}\}$ and $N_2 = \{i/m_i \text{ is even}\}$. Then we have $\sum_{i \in N_1} \ell(A_i) \ge \frac{1}{2}$ or $\sum_{i \in N_2} \ell(A_i) \ge \frac{1}{2}$. Say $\sum_{i \in N_1} \ell(A_i) \ge \frac{1}{2}$.

As $4^{-n_i} \leq \gamma(x_i)$ we obtain $2^{-n_i+1} \leq \delta(x_i, 0)$. Considering the intervals $B_i = [0, 2^{-n_i}]$ and $C_i = [2^{-n_i}, 2^{-n_i+1}]$, we construct the division D_1 as follows:

- a system $\{(J_1,\xi_1),\ldots,(J_s,\xi_s)\}$ on the set E, where $J_i = A_i \times (B_i \cup C_i)$ if $i \in N_1$ and $J_i = A_i \times B_i$ if $i \in N_2$, and $\xi_i = (x_i, 0)$;
- a system $\{(J_{s+1}, \xi_{s+1}), \dots, (J_r, \xi_r)\}$ which completes the preceding one, and such that $r(J_i) = 1$ and $\ell(J_i) \leq \delta(\xi_i)$ for all $i = s + 1, \dots r$.

Clearly, one has $\ell(J_i) \leq \delta(\xi_i)$ for all i = 1, ..., r. And since $\sum_{i=1}^r \ell(J_i)^2 \leq \sum_{i=1}^s 4^{-n_i+1} + \sum_{i=s+1}^r m(J_i) \leq \sum_{i=1}^s 4\ell(A_i) + \sum_{i=1}^r m(J_i) = 5$ one gets $D_1 \in \mathcal{D}_1(I, 5, \delta)$.

For the second division $D_2 \in \mathcal{D}_1(I, 5, \delta)$ we put the intervals $A_i \times B_i$ in place of the intervals $J_i = A_i \times (B_i \cup C_i)$, and we add (for each $i \in N_1$) a division E_i of the interval $A_i \times C_i$, which satisfies the following properties:

- 1. $r(J_{ij}) = 1$ and $\ell(J_{ij}) \leq \delta(\xi_{ij})$ for all j, and
- 2. $|S(f, E_i, A_i \times C_i) \int_{A_i \times C_i} f| \leq \frac{1}{6s}.$

Finally, since $\int_{A_i \times C_i} f = -4^{-n_i} = -\ell(A_i)$, we conclude that

(1)
$$|S(f, D_1, I) - S(f, D_2, I)| = |\sum_{i \in N_1} S(f, E_i, A_i \times C_i)|$$

(2)
$$\geq \sum_{i \in N_1} \ell(A_i) - \sum_{i \in N_1} \frac{1}{6s},$$

and this proves that $|S(f, D_1, I) - S(f, D_2, I)| \ge \frac{1}{2} - \frac{1}{6} = \frac{1}{3}$. Therefore the function f cannot be M_1 -integrable on the interval I.

References

- Buczolich Z., A general Riemann complete integral in the plane, Acta Math. Hung. 57 (1991), 315-323.
- [2] Jarnik J. and Kurzweil J., Pfeffer integrability does not imply M₁-integrability, Czech. Math. J. 44 (1994), 47-56.
- [3] Jarnik J., Kurzweil J. and Schwabik S., On Mawhin's approach to multiple nonabsolutely convergent integral, Casopis Pest. Mat. 108 (1983), 356-380.
- [4] Hake H., Über de la Vallée Poussins Ober- und Unterfunktionen einfacher Integrale und die Integraldefinition von Perron, Math. Ann. 83 (1921), 119-142.

- [5] Henstock R., Definitions of Riemann type of the variational integral, Proc. London Math. Soc. (3) 11 (1961), 402-418.
- [6] Kurzweil J., Generalized ordinary differential equations and continuous dependence on a parameter, Czech. Math. J. 7 (1957), 418-446.
- [7] Kurzweil J. and Jarnik J., Equivalent definitions of regular generalized Perron integrals, Czech. Math. J. 42 (1992), 365-378.
- [8] Kurzweil J. and Jarnik J., Differentiability and integrability in n dimensions with respect to α -regular intervals, Results in Math. 21 (1992), 138-151.
- [9] Mawhin J., Generalized multiple Perron integrals and the Green-Goursat theorem for differentiable vector fields, Czech. Math. J. 31 (1981), 614-632.
- [10] Mawhin J. and Pfeffer W. F., Hake's property of a multidimensional generalized Riemann integral, Czech. Math. J. 40 (1990), 690-694.
- [11] Nonnenmacher D. J. F., Every M₁-integrable function is Pfeffer integrable, Czech. Math. J. 43 (1993), 327-330.
- [12] Pfeffer W. F., The divergence theorem, Trans. Amer. Math. Soc. 295 (1986), 665-685.
- [13] Saks S., Theory of the integral, Hafner Publishing Company (1937).