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 THE HAKE'S PROPERTY FOR SOME

 INTEGRALS OVER MULTIDIMENSIONAL

 INTERVALS

 1 Introduction

 The Hake's property is named after the work of H. Hake [4] in 1921, which was
 an important step in proving the equivalence between the integrals of Denjoy
 and Perron (see e.g. Chapter VIII in [13]). For a real function / defined on
 a compact interval [a,6] C R, H. Hake proved the equivalence between the
 Perron- integrabili ty of / over [a, 6] and its Perron- integrability over [a,c] for
 all a < c < b together with the existence of the limit

 Ümeyt/a/-

 This shows in particular that improper integrals are proper ones in the frame
 of Perron integration.

 The Riemann-type definition of the Perron integral introduced indepen-
 dently by J. Kurzweil [6] and R. Henstock [5] has led to various extensions in
 the multidimensional case. For these integrals, the formulation and proof of
 a Hake's property is an interesting question and results in this direction have
 been recently obtained by J. Mawhin and W. F. Pfeffer for the Pfeffer integral
 [10], and by J. Kurzweil and J. Jarnik for the a-regular integral [8].

 For a real function / defined on a compact interval / Ç lm, we prove
 in this note the equivalence between the integrability of / over I and the
 integrability of / over all intervals J Ç Io together with the existence of the
 (appropriate) limit

 lim fsi° fFf,
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 where F Ç Io is a figure (i.e. a finite union of compact intervals of Rm). More
 generally, instead of the interior 7° of /, we consider an arbitrary open subset
 of I.

 The definition of our integral covers the cases of the Kurzweil-Henstock
 integral (KH- integral), of the integrals of J. Mawhin (GP-integral) and W.
 F. Pfeffer (Pf-integral), and of the a-regular integral. So the Hake's property
 expressed by Theorem 3.3 contains as particular cases the two recent results
 mentioned before. For the one-dimensional integral, it also encompasses the
 Harnack's property.

 As shown in Section 4, the Hake's property proved in this note can be
 used to obtain counterexamples in a very simple way. We give three examples
 : a function which is ai-regularly integrable for all a < a' < 1 but not a 2-
 regularly integrable for all 0 < c*2 < a, a GP-integrable function which is not
 Pf-integrable, and a Pf-integrable function which is not KH-integrable (and
 even not Mi- integrable, cf. [2]).

 2 Preliminaries

 Throughout this paper / = [ai,fri]x...x[am,6m] is a non-degenerate compact
 interval of Mm. On I we consider the metric d(x,y) = max|yt- - x, |. The
 interior of a subset E Ç I is denoted by intE and its boundary by bdE. We
 use the notations Io and d I for the interior and the boundary of the interval
 I with respect to the topology of Km.

 The set of all (non-degenerate) compact subintervals J Ç I is denoted by
 J {I)' Given an interval J = [ci,di] x . . . x [cmidm] its measure, length and
 thickness are the respective positive numbers

 m(J) = rii=:i(^» ~ c»)> ^(*0 - ma x(d¿ - Ci) and t(J) = min(d, - a).

 The regularity of J is the number r(J) = ť(J) • í(J)~l . More generally, we
 shall consider four regularity functions p : J {I) [0, 1], which correspond to
 the four different integrals mentioned in the introduction (cf. Definition 2.2
 below) .

 A subset F Ç I is a figure if it is a finite union of elements of J (I) . A partition
 of a figure F is a finite collection of non-overlapping intervals Ji, . . . , Jr G
 J (I) with F = U¿=i J*-

 A system on a subset E Ç I is a finite collection { (Ji, x' (Jr, xr)},
 usually noted 5, where J',. . .,Jr G i7(/) are non-overlapping intervals and
 Xi G Ji fi E for all i = 1, . . . , r. A system is called a division of the interval I
 if one has I = U¿=i Ji- we say ^at a system S completes a figure F Ç I
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 if the intervals of S do not overlap the figure F and I = (U¿=i «A") U F.

 A gauge on a subset E Ç I is any positive map S : E -ï IR+. Given a
 parameter of regularity 0 < a < 1 and a gauge S : E - ► M+ one says that a
 system S on i? is (a,<S)-fine if it satisfies the conditions

 p(Ji) > a and t(Ji) < ¿(xi ) for all i = 1, ... , r.

 The set of (a,i)-fine divisions of I is denoted by V(I, a,i). The following
 lemma ensures that the definition of the integral is meaningful:

 Lemma 2.1. (Cousin) For every choice of a and S there exists a division D
 of I which is (aiS)-fine) i.e. the set V(I,a,S) is not empty.

 Definition 2.2. One says that a function /:/->■ R is integrable if there
 exists a number A G M such that for any e > 0 and any 0 < a < 1 there exists
 a gauge S : I - ► R+ with the property

 I S(f, D,I) - A I < e for every division D G V(I, a, Í),

 where S{fìDìI) = ^¿=1 /(£») m(Jt) is the usual Riemann sum associated
 with D. The integral A G M is unique and denoted by ff f.

 We consider four particular choices for the regularity function p'

 1) p(J) = r(J). One gets the GP-integral, cf. Definition 9 in [9].

 2) p(J) = inf {di - Ci / clí ^ Ci and di ^ 6,} and p(J) = 1 if
 one corner of I is contained in J. According to a result of J. Kurzweil and J.
 Jarnik [7] one gets the Pf- integral of W. F. Pfeffer [12].

 3) p(J) = 1. Then one can leave the parameter of regularity a and one
 gets the classical Kurzweil-Henstock integral.

 4) p(J) = r(J) if r( J) > aQ and p( J) = 0 otherwise. Then the parameter
 a can be taken as a constant and one gets the a0-regular integral [8].

 We shall use the two following propositions (which are well-known for these
 integrals) .

 Remark 2.3. By considering the map p as a function of tagged intervals
 ( J, x) instead of a function of intervals J, one may also include other integrals,
 like for instance the integral of Z. Buczolich in the plane [1].

 Proposition 2.4. Let f : I - > M be an integrable function. Then f is
 integrable on every subinterval J G J {I) and the indefinite integral <p(J) =
 f j f is an additive function of intervals.

 Proposition 2.5. (Saks-Henstock) Let f : I - >> M be an integrable function
 and let S : I - ► M+ be a gauge such that 'S(fìDìI) - /7/| < s for every
 (aìS)-fine division D of the interval I. Then one has
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 ļ £i= i - h /} I < £•
 for every (a,á)-fijie system 5 = {(Ji, xi), . . . , (Jr, £r)} on the interval I.

 3 The main theorem

 Let E Ç I be a closed subset such that 0 ^ i? ^ /, and suppose that / : / - v M
 is integrable on every interval J G J {I) contained in I 'E. Given any figure
 F Ç I'E one can define the integral of / on the figure F by

 If f = fj /> where J' , . . . , Jr is any partition of F.

 Since the integral is (weakly) additive, cf. Proposition 2.4, the value of fFf
 does not depend on the choice of the partition.

 Definition 3.1. Given a parameter 0 < a < 1 and a gauge S : E -* M +
 we say that a figure F Ç I'E is (a,i)-ciose to the subset I ' E if there
 exists a system S on E which is (a, J)-fine and completes F. We denote by
 T{I'E, a,i) the set of all figures F Ç I'E which are (a,i)-close to I'E.

 Defining <S(x) = ^ d(x,E ) for all x E I'E and using the Cousin's lemma
 one easily shows that the set F(I'E, a ,6) is not empty for every choice of a
 and 8.

 Definition 3.2. We say that the integral fF f converges to the number A G M
 when the figure F tends to 7'£' if for any e > 0 and any parameter 0 < a < 1
 there exists a gauge S : E - y K+ with the property

 'fFf - A ' < e for every figure F G T(I'E, a, J).

 Theorem 3.3. Let E Ç I be a closed subset and suppose that f : / -> M is
 integrable on every interval J Ç I'E. If the function f xe is integrable on
 I and if the integral fFf converges to a limit A G M when the figure F tends
 to I'E, then f is integrable on I and fjf= fjf XE +A.
 Proof. By considering f - fxE one may assume that f(x) = 0 for all x G E.
 We want to show that A is the integral of /. We first choose a sequence of
 intervals /„ G J (I) such that In Ç I'E for each n G N and I'E = UnLi JIït •
 For instance, one can take the family of all closed balls B(x , 'd{x, E )), where
 x runs over the rational points of I ' E .

 Given e > 0 and 0 < a < 1 there exists for each n G Na gauge Sn : In - >
 M+ with

 I S(f,D,In) - fJnf I < 2~n £ for every division D G V(Inì a, Sn).

 One may assume that ¿n(z) < d(x, E) for every x G In and ¿n(^) < d(x , bd In)

 for every x G intln. For x G En := intlr i'(J^=ił we define i(x) = ¿n(x).
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 By hypothesis there exists a gauge S : E - ► M+ such that | fF f - A ' < e for
 every figure F G ,F(/ 'i£, a, ¿). One thus gets a gauge 6 : I -+ M+.

 Now let D be any (a,<5)-fine division of the interval I. We consider the
 figure F = 'J{Ji ¡Xi £ E}. By construction one has F G TĻ^E, a, <5). Then

 I S(f, D,/)-X|<| ZXi(E {f(xi) m(Ji) - /} I + I JF f - A I <

 ]Cn=i 12xi€En {/(x»)m(^>) - /ji ^}ļ l/f/- -^l <£ + £ = 2e
 according to Proposition 2.5 (recall that J i C In for every i with ar, 6 ^n),
 and this proves that the function / is integrable on I. □

 Remark 3.4. The theorem contains as a particular case a result of J. Kurzweil
 and J. Jarnik for the a- regular integral, cf. Proposition 2 in [8]. And for m = 1
 it also involves the well-known Harnack's property (left as exercise).

 Example 3.5. Let E = dl be the boundary of I for the topology of IRm.
 Since E is of Lebesgue-measure zero one has Jjf xE = 0 for any function
 /:/-)> M . So the theorem reads as follows: If the function / is integrable on
 every interval J Ç Io and the integral fF f converges to a limit A G M when
 the figure F tends to 7°, then / is integrable on the interval I and fjf = A.

 In that situation a sufficient condition for the Pf-integrability of / was
 given in [10]. One can prove that if fFf converges to a limit A £ M in the
 sense of [10], then it converges to A in our sense. But this is an immediate
 consequence of the following lemma, which says that the condition of Theorem
 3.3 is also necessary.

 Lemma 3.6. Let E Ç I be a closed subset and let f : I -¥ IR be such that
 both f and f - XE are integrable on the interval I. Then the integral fF f
 converges to the number f f (f - f -xe) when the fìgure F tends to I'E.

 Proof. One may assume that f(x) = 0 for all x G E. Given e > 0 and
 0 < öl < 1 there exists a gauge S : I - ► M+ with the property

 I S{f,D,I) - fjf' < s for every division D G £>(/,a,¿).

 Now consider any figure F G 7{l 'E, a, S ). We choose a partition J', . . . , Jr
 of F and for each i = l,...,r a division Di G £>(J¿,a,í). By definition
 there exists a system 5 on £ which is (a,i)-fine and completes F. Then
 ö=(UfeiA)u 5 is a division of the interval I and D G V(I, a,¿). So we
 obtain

 'fpf-hfi < I EU S(f, Di , Ji) } I + I S(f, D.n-Sjf '<2s
 according to Proposition 2.5 (and the additivity of the integral, cf. Proposition
 2.4), and thus the lemma is proved. □
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 4 Some examples

 Example 4.1. Let I = [0, 1] x [0, 1] be the unit square. Given some
 parameter 0 < a < 1 we consider the function / : I - > R defined by

 /(x, y) = 1/x3 if 0 < y < ļai, /(x,y) = - 1/x3 if ^ax <y < ax
 and f(x,y) = 0 otherwise. Then / is ai-regularly integrable for any a <
 a i < 1 but not a2-regularly integrable for any 0 < a 2 < a.

 Proof. We take E = {(0,0)}. Therefore we are interested in figures jF =
 I'intJ with J = [0,x] x [0,y]. Clearly, one has fFf = 0 for every figure
 F G T{I'E,a 1, 1), and this proves that / is ai-regularly integrable.

 Now let ļa < û2 < or and consider the interval J = [0,í] x [0,a2¿].
 An easy calculation shows that JFf = -(a - ct2)2/2a2¿. Therefore fFf
 cannot converge when the figure F tends to I ' E , and this proves that / is
 not a2-regularly integrable. In particular, / is not a2-regularly integrable for
 0 < a2 < 'a. □
 Example 4.2. Let I = [0, 1] x [0, 1] be the unit square. We consider the
 function / : I - > R defined by

 f(x,y) = 1/x4 if 0 < y < ¿x2, f(x,y) = -1/x4 if 'x2 < y < x2

 and /(x,y) = 0 otherwise. Then / is GP-integrable but not Pf- integrable.

 Proof. As before, we take E = {(0,0)}. We first show that / is GP-
 integrable. For any figure F = I'intJ with F G F(I ' E,a,a) one has
 y ^ ax ^ x2 because r(J) > a and £(J) < a. Therefore fFf = 0 and the
 assertion follows.

 But for the Pf-integral one has p( J) = 1 for every interval J = [0, x]x[0, y].
 In particular, for J = [0,¿] x [0, ] we calculate that fFf = - (4'/2 - 5) / 6 J,
 and this proves that / is not Pf- integrable. □

 Example 4.3. Let I = [0, 1] x [0, 1] be the unit square. We consider the
 function /:/->■ R defined by

 f(x,y) = (-lY2n if (x,y)€ (for » =

 and /(x, y) = 0 if xy = 0. Then / is Pf- integrable but not KH- integrable.

 Proof. By Fubini's theorem the function / is not Kurz weil- Henstock inte-

 grable because the partial integral Jq f(x,y)dy does not exist for any x G
 (0,1]. In order to show that / is Pf-integrable we apply Theorem 3.3 with
 E = [0, 1] x {0}. We shall use the intervals /„ = [0, 1] x [2~n, 2~n+1].

 Let e > 0 and 0 < a < 1 be given. We choose a constant gauge <5 =
 2"^+1 on E (the integer N will be precised later). Obviously, any figure
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 F G F(I'E,a, S) contains the interval [0, 1] x [2_Ar+1, 1], and therefore

 If f = Sn=AT ifn/n f >

 where /i, . . . , /m are the intervals with F fi intln ^0. Let 5 be a system on
 E which is (a,<?)-fine and completes F. Say (0,0) G J' and (1,0) G Jr • Using
 that / = 0 for every n G N we obtain the following inequality:

 I frnln f I - Ei = l

 If Ji fi int/n ^ 0, then ¿(«7») > 2"n, and for i = 2, . . . , r - 1 this implies
 ť(7:) > a-2~n. So we deduce that there exist at most [2n/a] + 2 intervals J,
 with 7,- H int /n ^ 0. And since | /j.n/n /I < 4~n we conclude that

 I /pn/n I - l/c*2n + 2/4n.

 Thus it suffices to choose TV G N such that Y1ti=n " (l/a2n + 2/4n) < £. Hence
 fjf = 0. " □
 In fact, this function is an example of a Pf- integrable function which is not

 Mi- integrable (another such example was given in [2]). Before we prove this
 result, we first recall the definition of the Mi- integral for the two-dimensional
 case (compare with [3]).

 Definition 4.4. A function / : / -> M is called M'-integrable if there exists
 a number A G M such that for any e > 0 and any K > 0 there exists a gauge
 S : I - ¥ M+ with the property |S(/, D, I) - A | < e for every division D of I
 satisfying

 £(Ji) < S(xi) for all i = 1, . . . , r and Ya=i ^(^»)2 <

 noted D G T>i{I, K, S). Clearly, any KH- integrable function is Mi -integrable.
 And in [11] D. J. F. Nonnenmacher proved that any Mi- integrable is Pf-
 integrable.

 Proposition 4.5. The function / : / - ► R of Example 4.3 is not M'-
 integrable.

 Proof. We show that for any gauge S : I - > R + there exist two divisions D'
 and Z>2 in 2>i(/,5,<5) with 'S(f, Di, I) - S(f , i?2, /) | > |. We first cover the
 set £ = [0,l]x{0}.

 Let 7(x) := 'S(x, 0)2. There exists a division {(j4i , xi), . . . , (j4s, xs)} of
 the interval [0, 1] Ç M with the property

 . 771 ¿ - 1 Tīli _ , . 1 . .

 Ai= . 4n. ,^77 and _ £{Ai) , . = - < 7(x,) . . for all i =

 We put Ni = {i / mi is odd} and N2 = {z/mt- is even}. Then we have
 E.eNi ¿(Ai) > ' or E,€Ar2 ^>) > Say T,i€Nl ¿{Ai) >
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 As 4"n¿ < j(xi) we obtain 2~ni+1 < i(x,-,0). Considering the intervals
 Bi = [0,2~n»] and = [2~n¿, 2~n'+1], we construct the division D' as
 follows:

 • a system { (J' , f i), . . . , (J, , ) } on the set E , where 7,- = Ai x (J3,- U Ci)
 if i € iVļ and Ji = -4,- x Bi if i G JV2, and & = (x», 0);

 • asystem {(J5+i,f3+i), . . (Jr,ír)} which completes the preceding one,
 and such that r(Jt) = 1 and £(Ji) < <J(£») for all i = s + 1, . . .r.

 Clearly, one has £{Ji) < ¿(f») for all i = 1, . . .,r. And since Y?i=i ^(^*)2 ^
 £<=i 4"n'+1 + £<=,+1 m(Ji) < £Jal 4/(A<) + Ei=i m(J0 = 5 one Sets
 Di €l>i(/,5,i).

 For the second division £>2 € I>i(J, 5,¿) we put the intervals Ai x in
 place of the intervals J i = Ai x U C¿), and we add (for each i G N') a
 division E i of the interval x which satisfies the following properties:

 1. r(Jij) = 1 and £(Jij) < 6{£ij) for all j, and

 2.

 Finally, since fA xC.f = - 4"ni = - £(Ai), we conclude that

 (1) 'S(f,DuI)-S(f,D2,I)' = ' £ Si/.^.X.-xCOl
 ieNx

 P) - E w - E

 and this proves that |S(/, Di, J) - S(fiD2,I)' > ' - | = 5. Therefore the
 function / cannot be Mi-integrable on the interval I. □
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