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HAUSDORFF MEASURE ON PERTURBED
CANTOR SETS

1 Introduction

We recall the definition of a perturbed Cantor set from [1]. Let Iy = [0, 1].
We obtain the left subinterval I,; and the right subinterval I, of I, by
deleting a middle open subinterval of I, inductively for each o € {1,2}",
where n =0,1,2,---. Consider E, = Uyg(1,2)»o. Then {E,} is a decreasing
sequence of sets. For each n we set |Io1]/|Io| = ant1 and |5 2|/|I6| = bnt1
for all & € {1,2}", where |I| denotes the diameter of I. We call F = (o, En
a perturbed Cantor set.

We assume the sequences of ratios {a.}, {bn} and {dn}, where d, =
1—(an + bs), are uniformly bounded away from 0. In [1] it was shown how to
find the Hausdorff dimension of a perturbed Cantor set. Here we investigate
the value of the s-dimensional Hausdorff measure of a perturbed Cantor set.
We recall the s-dimensional Hausdorff measure of F, H*(F) = lims—0 Hj (F),
where H}(F) = inf{3_ oo, |Un|* : {Un}3%, is a §-cover of F}, and the Haus-
dorff dimension of F, dimg(F) = sup{s > 0 : H*(F) = oco}(= inf{s > 0 :
H*(F) =0}). (See [2].) We note if {a,} and {b,} are given, then a perturbed
Cantor set F is determined and vice versa[l]. We recall the set function
h*(F) = liminfneo [Te=y(af + 08)(= liminfanoeo Ypeqaoyn | Io |¥) for s €
(0,1) and a perturbed Cantor set F. There is a close connection between the
set functions h* and H*. Hence in [1] we investigated the Hausdorff dimension
of the aforementioned perturbed Cantor set using h®. Even though we have
information on the Hausdorff dimension, s, of a perturbed Cantor set, we are
curious about the value of the corresponding s-dimensional Hausdorff measure
of the set. Further we wonder what form of subset of the perturbed Cantor
set has positive and finite s-dimensional Hausdorff measure. In Theorem 1
we give concrete examples of such subsets obtained by eliminating the right
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subintervals in some steps of the constructing the perturbed Cantor set. Using
these subsets, we can find that h® is equivalent to H*. For this, one needs to
observe that H*(F) < h*(F), and it suffices to show that if A*(F’) = oo, then
H*(F)=o00andif 0 < h*(F) < 00, then 0 < H*(F) < o0o. In fact we find that
the set function h® is intimately related to H*. Finally we give applications of
our result.

2 Main Results

In this section F denotes a perturbed Cantor set. Now, constructing a proper
mass distribution x on a subset E of F, we use the Hausdorff density theorem
with p to give a lower bound on the Hausdorff measure of E.

Theorem 1 Let h*(F) = oo. Given any number 3 > 0, there is a subset E
of F such that B < H*(E) < oo.

ProoF. Since {a,}, {bn} and {d,} are uniformly bounded away from 0, we
may assume that a,,b,,d, > a for some a > 0 for all n.

Let ng = 0, and n; = max{n > n;_; : [;_, (e} +b5) = infrm>n,_, [T;, (aj+
b3)} for i = 1,2,3,- - - inductively. Since h*(F) = oo, the set on which n; is
defined is nonempty and finite so n; is well-defined. Let y; = [];2 (a3 +b3)

j=1
4s
for i = 1,2,3,---. Fix p such that gy, (a_4_) > ( and let 43 = p and
zo,n = [1=1(aj +b3). Set
S Th_1,n if n <nj;,
n T T (@ + 26 (3)8) i n 2y, +1

with

(j) = 0 ifj=n; +1, wherel=1,2,---,k
M= 1 otherwise

and tx4y = max{i > i 1 Tk n, < yYp} for k=1,2,3, - inductively. 1 < §{i >
ik 1 Zkn; < Yp} < 0o follows from
p— s S
Thkynip 41 < Tk +1 = Thiniln;, 41 = Tk=1,n,,Cn; 41 <Y
and lim, o0 infrnsp Tk = 00. We define z : N — {0, 1} by

. 0 ifj=n; +1, wherel=1,2,---
z( ) = .
1 otherwise.
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If m > ny, + 1, then there exists k such that n;, +1 < m < n;,,, and

Hg—l(a + Z(])b‘) = Zk,m-
Since zx it S Thon, +i forallj=1,2,---, we get Ti,m > Thyni4r- Thus

s

an,, +1
Sk
> yp -
2

Therefore, H;"_l(a +2(j)b3) > yp & forallm=n, + 1,n, + 2,1, + 3,
Moreover, HJ "‘"'l(a + 2(j)b}) = T4 < Yp for k = 1,2, since
ni, +1 < nj, 41 < ny,,, and since HJ it (a3 +2(5)b3) = H;_‘_"l*l (a} + 2« (])b’)
Hence []7_;(af + 2(j)b;) < yp for infinitely many n. Therefore y,, 7 <
lim infn o0 [T5-; (a5 + 2(5)83) < 4p.
Now we find a sequence {zk} 22, such that
z; = minz~1(0), zk41 = min[z72(0) \ {21, -, 2 }]

for k=1,2,---. Thus we can define

I =

100, ik

¢ if i;; = 2 for some j such that 1 < j < max{l: z < k}
L. ;. otherwise

foreachk =1,2,---. Let E;, = U{I; : 0 € {1,2}"}. Put u(l,) = Z,E,',,E; |1
for each o € {1,2}*, where k = 1,2, ---. Note that

n
wlo) = I | liminf TT (o} + 2(81).

i=k<41

Then p extends to a mass distribution on [0,1] whose support is in E =
Ny E;, C F (cf. Proposition 1.7 [2]) since

n
wlo) = 113 1° (ah 41 + 2(k + 1)b ;) liminf IkI (af + 2(5)b})
i=k+2

n
p— od 3 b § M ] s . ?
= (1151 +115,,1*) lim inf I;L(a.‘ + 2(i)b})
=

= ulTon) + plls2).
Clearly

2 | < u([0,1)) = hmme (af + z(k)b}) < yp.
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Let z € F =\~ En. Then there is a sequence {/,,}3%,, where o, € {1,2}"
such that o2, I, = {z}. Given a small positive number r, there exists k
such that |Iak+1| < r < |I,,|. Since dj1|lo;| > alls,| > ar for each j such
that 0 < j < k, Bar(2) C [Ur(s04)eq1,2)% I7]°, Where Bar(z) is the ball of
radius ar with center z. Thus p(Bar(z)) < (s, ). Now,

p(B ar(z)) #(ls,) < p(Ls.)
(ar |10k+1| - a’(a’lIa I‘)

$—s
< l ""I lim inf H (af + 2(3)83).
a? i=k+1

s
Since yp% < liminfno [Tio; (af + 2(k)bi) < yp, the sequence

n
{lim g}f'_lll(a: + 2(0)5]) }iZn,

p(Br(z) () _ 2

Y, 2 .
has an upper bound Z[ T = o Then lim sup,_,,

rt = a2 ads’
yp?
aSs a3s al a4s
Thus H*(E) > T,u(E) 2 (yp?) =% > B by Proposition 4.9 [2].
Clearly H*(E) < yp. 0

From Theorem 1, we immediately have the following.
Corollary 2 If h*(F) = oo, then H*(F) = co

Remark 1 We could also prove Corollary 2 using a natural mass distribution
on F. (See [1].) Combining this fact and ezercise 4.8 of [2], we also have
Theorem 1 although we don’t have a constructive proof. :

Theorem 3 If0 < h*(F) < oo, then 0 < H*(F) < oo.

PROOF. Since h*(F) > 0, there is a positive number A such that [];_,(af +
b) > Afor all n. Hence {liminf, o0 [T}y 41 (af +bf)}22, has an upper bound

h*(F)
A

. Using the same argument in the proof of Theorem 1, we have

elo) ) ..

s Aa?*
HenceH(F)>(hs(F))A>0 O



HAUSDORFF MEASURE ON PERTURBED CANTOR SETS 621

Corollary 4 h* and H® are equivalent.
ProoF. This follows from H* < h* and Corollary 2 and Theorem 3. O

Example 1 Let § be a sufficiently small positive number . We can choose
€k,1 and €k 2 for each k = 1,2,--- such that 2 +6 < €x1, €x2 < 3 — 6. with
the following three cases:

[Case 1; (3 +ex,1)? + ( + &x,2)? = 1]

Let ax = 3 + €x,1 and bk = 3 + €x,2. Then h#(F) = 1. Using Corollary 4,
we see that 0 < H3(F) < oo.

[Case 2; (3 +€x1)% + (L +ex0)? = eF]

Let ax = %+ €x,1 and b, = %+ €x,2. Then h'i’(F) = 0. Using Corollary 4,
we see that H3(F) = 0.

[Case 3; (L + €)% + (3 + €x,2)% = ef]

Let ax = 3 + €1 and bx = § + € 2. Then h3(F) = oo. Using Corollary 4,
we see that H3(F) = oco.
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