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 HAUSDORFF MEASURE ON PERTURBED

 CANTOR SETS

 1 Introduction

 We recall the definition of a perturbed Cantor set from [1]. Let I $ = [0,1].
 We obtain the left subinterval / and the right subinterval 7^2 of Ia by
 deleting a middle open subinterval of inductively for each a € {l,2}n,
 where n = 0, 1, 2, • • • . Consider En = Then {En} is a decreasing
 sequence of sets. For each n we set |/cr,i |/|^<y I = an+i and 'I0i2'/'Ia' = &n+i
 for all a G {1, 2}n, where 'I' denotes the diameter of I. We call F = En
 a perturbed Cantor set.

 We assume the sequences of ratios {an}, {&n} and {^n}, where dn =
 1 - ( an -f 6n), are uniformly bounded away from 0. In [1] it was shown how to
 find the Hausdorff dimension of a perturbed Cantor set. Here we investigate
 the value of the 5-dimensional Hausdorff measure of a perturbed Cantor set.
 We recall the 5-dimensional Hausdorff measure of Fi HS(F) = lim¿-*o H¡(F)y
 where Hļ{F) = infíl^ri 'Un's • {í/nlSLi is a ¿-cover of F}, and the Haus-
 dorff dimension of F , dim h{F) = sup{s > 0 : H'(F) = oo}(= inf{s > 0 :
 H*(F) = 0}). (See [2].) We note if { an } and {èn} are given, then a perturbed
 Cantor set F is determined and vice versa[l]. We recall the set function
 h'(F) = lim inforco FIfc=i (afc +K)(= liminfn-^oo ^€{1,2}» I ^ l') for 5 e
 (0,1) and a perturbed Cantor set F . There is a close connection between the
 set functions hs and Hs . Hence in [1] we investigated the Hausdorff dimension
 of the aforementioned perturbed Cantor set using h5 . Even though we have
 information on the Hausdorff dimension, 5, of a perturbed Cantor set, we are
 curious about the value of the corresponding 5-dimensional Hausdorff measure
 of the set. Further we wonder what form of subset of the perturbed Cantor
 set has positive and finite 5-dimensional Hausdorff measure. In Theorem 1
 we give concrete examples of such subsets obtained by eliminating the right
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 subintervals in some steps of the constructing the perturbed Cantor set. Using
 these subsets, we can find that hs is equivalent to Hs . For this, one needs to
 observe that H'(F) < hs(F ), and it suffices to show that if hs(F) = oo, then
 HS(F) = oo and if 0 < hs(F) < oo, then 0 < HS(F) < oo. In fact we find that
 the set function h8 is intimately related to Hs . Finally we give applications of
 our result.

 2 Main Results

 In this section F denotes a perturbed Cantor set. Now, constructing a proper
 mass distribution // on a subset E of F , we use the Hausdorff density theorem
 with ¡i to give a lower bound on the Hausdorff measure of E .

 Theorem 1 Let hs(F) = oo. Given any number ß > 0, there is a subset E
 of F such that ß < HS(E) < oo.

 Proof. Since {an}, {bn} and {</„} are uniformly bounded away from 0, we
 may assume that an, 6n, dn > a for some a > 0 for all n.

 Letn0 = 0, andn,- = max{n > n,_! : n"=i(aj+&5) = IljLi (aj +
 bj)} for i = 1,2,3, - - - inductively. Since h'(F) = oo, the set on which n¡ is
 defined is nonempty and finite so n, is well-defined. Let t/t- =

 / a4s'
 for i = 1,2,3, Fix p such that yp ( I > ß and let i' = p and

 x0,n = nî=l(«5 + bj)- Set

 if n < nik

 n"=i (oj + Zk {j)bsj) if n > nik + 1

 with

 / _ J0 if i = nit + 1, where I = 1, 2, • • • , k
 ^ _ ļl otherwise

 and zjk+i = max{i > 4 : xjt>n . < yp } for A: = 1,2,3,-- inductively. 1 < 1({z >
 ik '■ xk,n i < 2/p} < oo follows from

 xktmk+ 1 < + 1 = xk,ntkO>nik+i = xk- l,n¿fc anik +1 < Vp

 and limn_^oo infm>n = oo. We define z : N - > {0, 1} by

 _ JO if i = nit + 1, where Z = 1, 2, • • ■

 ļl otherwise.
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 If m > fip + 1, then there exists k such that n,t + 1 < m < n¿k+1 and
 nr=i(°í + 2Ü)6¿) = Xk<™-

 Since ifc,„jļfe+I < Xk,„ik+j for all j = 1, 2, • • • , we get xk,m > *k,nijfc+1 • Thus

 . «•
 > ®fe,nijk+ 1 - ®fc-l,n¡4+i -"H . > VpTT-

 Therefore, njLi(aj + zU)bj) > fplf f°r all m = np + 1, np + 2, np + 3, - .
 Moreover, n"=i+I(aj + zU)bj) = ^,n,t+1 < 2/p for fc = 1,2, ••• since

 n*k + 1 < "u+i < n.k+i and since n"=i+1(ai + 20')6j) = n"=i+l(aj+^(Í)6j)-
 as

 Hence rij=i(a¿ + zU)^j) < %> f°r infinitely many n. Therefore yp- <
 lim infn_*oo nj=i(aj + < Vp-

 Now we find a sequence such that

 Zi = minz-1(0),zfc+i = min[z-1(0) ' {zi, • • • ,z/.}]

 for k = 1,2,--. Thus we can define

 p _ Í <t> if iZj = 2 for some j such that 1 < j < max{/ : 2/ < k}
 *1, •••.»it otherwise

 for each k = 1,2,--. Let E'n =U {I* : a € {1,2}"}. Put y.[I„) = J2iei<,nE-k lJlä
 for each <r € {1, 2}fc, where k = 1,2,- - - . Note that

 n

 M(/.) = |/;|Miminf n- *oo ¡1 Ä to + *(*)*?)• n- *oo Ä

 »=fc + l

 Then /1 extends to a mass distribution on [0, 1] whose support is in E =
 n~i E* C F (cf. Proposition 1.7 [2]) since

 n

 ^) = 'OsK+i + z(k + lK+l)'imin{ Tl - ► OO Jļ (aj + 2(1)6?) Tl - ► OO

 »=/: + 2

 = (1^,11' ' + |/;i2r)limmf ' n-too n to + *(W) ' ' n-too

 «=fc+2

 = M(/a,l) + /ł(/<r,2)-

 Clearly
 5 n

 yp^- A < //([0, 1]) = lim Ti- fOO inf Jļ "*■ (a'k + z(k)b'k) < yp. A Ti- fOO "*■
 k = l



 620 I. S. Baek

 Let X G F = n~i En. Then there is a sequence {/crn}£°=i, where an G {1, 2}n
 such that n~i = {x}- Given a small positive number r, there exists k
 such that |/c7fc+1| < r < 'Iak'. Since dj+''Iaj' > oc'Iak' > ar for each j such
 that 0 < j < fc, Sar(íc) C [Ur(5¿<Tfc)€{i,2}fc ^r]c, where 5ar(^) is the ball of
 radius ar with center x. Thus fi(Bar(x)) < p(Iak). Now,

 V(Ba r(x)) H(lck) < tl{Iak)
 (ar)' - - <*'(<**1/^1')

 n w+»w»i)-
 i=fc+l

 Since yp- < liminfn^oo fļfc=i (aí- + Z(^)K) S Vp> the sequence

 {liminf n-too JJ ■Ł*Ł (aJ + «(i)6J)}fc^n, p n-too ■Ł*Ł p
 i=Jc + 1

 has an upper bound s = - . Then limsupr-ł0
 Q; q,5

 yPy

 Thus #*(2?) > > ^-(j/p^-) = yp-Ķ~ > ß by Proposition 4.9 [2].
 Clearly H'(E) < yp. □

 From Theorem 1, we immediately have the following.

 Corollary 2 If hs{F) = oo, then HS{F) = oo.

 Remark 1 We could also prove Corollary 2 using a natural mass distribution
 on F. ( See [1].) Combining this fact and exercise JĻ.8 of [2], we also have
 Theorem 1 although we don't have a constructive proof

 Theorem 3 If 0 < hs(F) < oo, then 0 < H'(F) < oo.

 Proof. Since h*(F) > 0, there is a positive number A such that nr=i (a? +
 bf ) > A for all n. Hence {lim inf^oo Fir=fc+i(a¿ + ^)}*Lo an uPPer bound
 U / jp'

 - - - . Using the same argument in the proof of Theorem 1 , we have
 Jx

 ß(Bar(x)) (*P)
 (ar). - a2S ^ *

 Hence H*(F) > (J^A>Q. □
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 Corollary 4 hs and Hs are equivalent.

 Proof. This follows from H 5 < hs and Corollary 2 and Theorem 3. □

 Example 1 Let S be a sufficiently small positive number . We can choose
 €kti and €kf2 for each k = 1, 2, • • • such that H - S < e^i, Ck,2 < ' - 6. with
 the following three cases :

 [Case 1; (Ì + ck,i)$ + (5 + €*,2)* = 1]
 Let ak = ' + €k,i and 6* = ' + €kt2- Then /12(F) = 1. Using Corollary 4,

 we see that 0 < H?(F) < 00.

 [Case 2; (^ + ejb.i)» + (5 + €*,2)' = e^]
 Let ak = ' 4- and b^ = ' + €kt2- Then /12 (F) = 0. Using Corollary 4,

 we see that H*(F) = 0.

 [Case 3; (J + eM)¿ + (± + eM) 2 = et]
 Let a* = ^ + €k, 1 and 6* = ' 4- fit, 2. Then /12 (f) = 00. Using Corollary 4,

 we see that H^(F) = 00.

 References

 [1] I. S. Baek, Dimensions of the perturbed Cantor set , Real Analysis Ex-
 change, 19, No.l (1994), 269-273.

 [2] K. J. Falconer, Fractal Geometry , John Wiley & Sons. (1990).


	Contents
	p. 617
	p. 618
	p. 619
	p. 620
	p. 621

	Issue Table of Contents
	Real Analysis Exchange, Vol. 20, No. 2 (1994-95) pp. 372-863
	Front Matter
	EDITORIAL MESSAGES [pp. 372-372]
	CONFERENCE REPORTS
	REPORT ON THE CONFERENCE "PROBLEMS IN REAL ANALYSIS" ŁÓDŹ, POLAND, JULY 11–13, 1994 AND JOINT U.S.-POLISH WORKSHOP REAL ANALYSIS ŁÓDŹ, POLAND, JULY 14–19, 1994 [pp. 373-378]
	WHERE ANALYSIS, TOPOLOGY AND SET THEORY MEET: WHICH MATHEMATICAL OBJECTS CAN BE INTERESTING FOR TOPOLOGISTS? [pp. 379-382]
	DARBOUX HOMOTOPIES AND DARBOUX RETRACTS - RESULTS AND QUESTIONS [pp. 383-383]
	OLD AND NEW SANDWICH THEOREMS [pp. 384-386]
	MULTIPLYING DERIVATIVES [pp. 387-391]
	COMPACT SUBSETS OF THE BAIRE SPACE [pp. 392-393]
	SOME THIN SETS OF REAL ANALYSIS [pp. 394-395]
	ON STRONG QUASI-CONTINUITY [pp. 396-400]
	INTRODUCTION TO TRANSCENDENTAL SPACES [pp. 401-401]
	STABILITY ASPECTS OF DELTA CONVEXITY [pp. 402-404]
	FIXED POINTS AND ITERATIONS OF DARBOUX FUNCTIONS [pp. 405-405]
	FUNCTIONS OF SMALL BOREL CLASSES [pp. 406-406]
	CLASSIFICATIONS OF BOREL MEASURABLE FUNCTIONS [pp. 407-410]
	RESTRICTION THEOREMS IN REAL ANALYSIS [pp. 411-413]
	STRONG SEMICONTINUITY OF REAL FUNCTIONS [pp. 414-415]
	CORE DENSITY TOPOLOGIES [pp. 416-417]
	ON THE SUMS AND THE PRODUCTS OF QUASI-CONTINUOUS FUNCTIONS [pp. 418-421]
	STRAINING FOR THE HARMONY AMIDST A CACOPHONY OF DERIVATIVES [pp. 422-423]
	ON THE CAUCHY DIFFERENCE [pp. 424-426]
	ON DENSITY POINTS [pp. 427-428]
	SOME PROBLEMS CONCERNING ALMOST CONTINUOUS FUNCTIONS [pp. 429-432]
	THREE PROBLEMS IN EUCLIDEAN GEOMETRY [pp. 433-434]
	COMPOSITIONS WITH DERIVATIVES [pp. 435-435]
	SOME GENERAL METHODS FOR SHOWING DERIVATIVES ARE IN B₁ [pp. 436-437]
	UNIFORMLY ANTISYMMETRIC FUNCTIONS, UNIFORMLY ANTI-SCHWARZ FUNCTIONS [pp. 438-440]
	FIRST RETURN DIFFERENTIATION [pp. 441-442]
	ON FIRST RETURN CHARACTERIZATIONS OF BAIRE CLASSES α ≥ 1 [pp. 443-443]
	SOLUTION OF THE BAIRE ORDER PROBLEM OF MAULDIN [pp. 444-446]
	On some ideals of sets [pp. 447-449]
	ON GENERALIZED STOCHASTIC CONVERGENCE [pp. 450-451]
	ON NON-BAIRE SETS [pp. 452-453]

	TOPICAL SURVEY
	THIN SETS OF HARMONIC ANALYSIS AND INFINITE COMBINATORICS [pp. 454-509]
	RESTRICTION THEOREMS IN REAL ANALYSIS [pp. 510-526]

	RESEARCH ARTICLES
	CONVERSION FORMULAS FOR THE LEBESGUE-STIELTJES INTEGRAL [pp. 527-535]
	BOREL IMAGES OF SETS OF REALS [pp. 536-558]
	FINITE ADDITIVITY AND CLOSEST APPROXIMATIONS [pp. 559-579]
	SOME QUESTIONS CONCERNING INVARIANT EXTENSIONS OF LEBESGUE MEASURE [pp. 580-592]
	THE RIGHT ABSORPTION PROPERTY FOR DARBOUX FUNCTIONS [pp. 593-602]
	TRANSFORMING LEBESGUE-STIELTJES INTEGRALS INTO LEBESGUE INTEGRALS [pp. 603-616]
	HAUSDORFF MEASURE ON PERTURBED CANTOR SETS [pp. 617-621]
	THE HAKE'S PROPERTY FOR SOME INTEGRALS OVER MULTIDIMENSIONAL INTERVALS [pp. 622-630]
	ON THE MAXIMAL FAMILIES FOR THE CLASS OF STRONGLY QUASI–CONTINUOUS FUNCTIONS [pp. 631-638]
	A GENERALIZATION OF THE BANACH ZARECKI THEOREM [pp. 639-646]
	SMOOTHING Λ-SEQUENCES [pp. 647-650]
	DECOMPOSITION OF I-APPROXIMATE DERIVATIVES [pp. 651-656]
	CARDINAL INVARIANTS CONCERNING FUNCTIONS WHOSE SUM IS ALMOST CONTINUOUS [pp. 657-672]
	SUMS OF BOUNDED DARBOUX FUNCTIONS [pp. 673-680]
	EXTREME CONTRACTIONS IN $L\left( {\ell _2^p,\,\ell _2^q} \right)$ AND THE MAZUR INTERSECTION PROPERTY IN $\ell _2^p\,{ \otimes _\pi }\ell _2^q$ [pp. 681-698]
	SOME EQUIVALENTS OF THE AP CONTROLLED CONVERGENCE THEOREM, THEIR GENERALIZATIONS AND A RIESZ-TYPE DEFINITION OF THE AP-INTEGRAL [pp. 699-725]

	INROADS
	AN INTEGRABILITY THEOREM FOR DIRICHLET SERIES [pp. 726-735]
	THE PRESERVATION OF THE CONVEXITY OF FUNCTIONS [pp. 736-740]
	ON A THEOREM OF DUNFORD, PETTIS AND PHILLIPS [pp. 741-743]
	MEASURABILITY, QUASICONTINUITY AND CLIQUISHNESS OF FUNCTIONS OF TWO VARIABLES [pp. 744-752]
	POINTS OF UNIFORM CONVERGENCE AND OSCILLATION OF SEQUENCES OF FUNCTIONS [pp. 753-767]
	MEASURABILITY OF PEANO DERIVATES AND APPROXIMATE PEANO DERIVATES [pp. 768-775]
	LINEAR SPACES OF DARBOUX DERIVATIVES [pp. 776-785]
	REGULARITY OF LOCALLY LIPSCHITZ FUNCTIONS ON THE LINE [pp. 786-798]
	ON MEASURE SPACES WHERE EGOROFF'S THEOREM HOLDS [pp. 799-804]
	DARBOUX HOMOTOPIES AND DARBOUX RETRACTS - RESULTS AND QUESTIONS [pp. 805-814]
	A NOTE ON ADDITIVE FUNCTIONS OF INTERVALS [pp. 815-818]
	SOME TOPOLOGICAL PROPERTIES OF HAMEL BASES [pp. 819-822]
	ON LOCAL RELATIVE CONTINUITY [pp. 823-830]
	SOME COMMENTS ON AN APPROXIMATELY CONTINUOUS KHINTCHINE INTEGRAL [pp. 831-841]
	SUMS OF CONTINUOUS AND DARBOUX FUNCTIONS [pp. 842-846]
	ON NECESSARY AND SUFFICIENT CONDITIONS FOR NON-ABSOLUTE INTEGRABILITY [pp. 847-857]
	A THEOREM ON SEQUENCES OF DIFFERENTIABLE FUNCTIONS [pp. 858-863]

	Back Matter



