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 TRANSFORMING LEBESGUE-STIELTJES

 INTEGRALS INTO LEBESGUE INTEGRALS

 Abstract

 A recent theorem of the author for continuous functions of bounded
 variation is extended to include the discontinuous case. Given h of

 bounded variation on a closed interval K let s(t, y) be the total number
 0, 1, 2 of the following conditions which hold at (ť,y) G K x M:

 • y = h(t),

 • y lies strictly between h(t- ) and h(t ),

 • y lies strictly between h(t) and /t(ť-h).

 Given / Lebesgue-Stieltjes integrable against d h we can define f almost
 everywhere on M by f(y) = /(t) s(t,y) where the nonzero terms
 form a finite sum. The function / is Lebesgue integrable and its integral

 f(y) dy = JKf'dh'. Among the special cases is a generalization
 of Banach 's indicatrix theorem.

 1 Introduction

 Given a continuous function h on K = [a, 6], S. Banach [1] defined its indicatrix
 N(y) to be the number of points t in K such that h(t) = y. He proved that
 the integral of N exists and equals the total variation of h ,

 (1) f N(y)dy = f |dA(ť)| < oo.
 J - oo Ja

 If the continuous function h is of bounded variation then the integrals in (1)
 are finite so N < oo almost everywhere. That is, the set h~1y is finite for
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 almost all y . In [7] this was used to get for each function / on Jř a transform
 <p induced by h under the definition.

 (2) (p(y ) = f(t) for almost all y € EL
 t£h~ly

 If the Lebesgue-Stieltjes integral fKf'dh' exists and is finite then (p is Lebesgue
 - integrable and

 (3) [ <p(y)dy= ( f(t)'dh(t)'.
 J - oo J a

 This conversion formula is the key to a simple proof of Green's Theorem using
 a Fubini theorem for the generalized Riemann integral (Theorem 3 in [7].) (3)
 reduces to Banach's formula (1) if we set / = 1 which gives <p = N in (2).

 Our ultimate objective here is to generalize the transform (2) of / so that
 the conversion formula(3) applies to all functions h of bounded variation in-
 cluding those with discontinuities. The crucial step is Theorem 1 which shows
 that for any function h of bounded variation on K Banach's formula (1) gen-

 eralizes to ^
 [ N{y)dy= Ja f ^ lc(í)|d^(í)| J - oo Ja

 where lc is the indicator of the set C of points of continuity of h.
 Geometrically N(y) is the number of intersections of the horizontal line

 Y = y with the graph of h. If h is discontinuous at t, say h(t- ) ^ h(t)t then
 the line Y = y may fail to intersect the graph for y between /i(t- ) and
 In terms of the indicator ç(t, y) of the graph h(t) = y the transform (2) of / is

 (4) <p(y) = f(t)q(t , y) for almost all y
 t€K

 with summation over the finite set of nonzero terms. If h is discontinuous at

 t we must add to q the sum r_ + r+ = r where r_ (t, y) indicates the interior
 of the line segment joining )) to (ť, and r+(£, y) indicates the
 interior of the segment joining (t, to (t, /i(t-h)). As our final result we
 shall show (Theorem 4) that (3) holds if q is replaced by ç -f r in (4).

 2 Preliminaries

 All integrals here are defined by the Kurzweil-Henstock integration process
 which we review briefly. For details see [3,4,5].

 A cell is a closed, bounded, nondegenerate interval I in R = (-00,00). A
 tagged cell (J, t) is a cell I with one of its endpoints designated as the tag t. A
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 summant 5 on a cell K is a function 5(7, t) on the set of all tagged cells (7, t) in
 K. Each such 5 has a lower and upper integral with values in [- oo, oo] based
 on the following definitions. A gauge 6 is a function on K with 6(t) > 0 for all
 t. (7, t) is ¿-fine if the length of 7 is less than ¿(ť). A division K of K is a finite
 set of nonoverlapping tagged cells whose union is K . Such a K is a ¿-division
 if all its members are ¿-fine. Every finite set of nonoverlapping ¿-fine tagged
 cells in K can be extended to a ¿-division of K . For 5 a summant on K each

 division K of K yields E ^5, the sum of 5(7, ż) over the members (7,t) of K.
 For each gauge 6 on K define E¿5 to be the infimum, E* 5 the supremum, of

 E kS for all ¿-divisions K of K. The lower integral of 5 is J^S = sup¿ E¿5
 and the upper integral is JKS = inf¿ E' 5 taken over all gauges 6 on K. If
 these two integrals are equal then their common value in [- oo, oo] defines the
 integral fK 5. 5 is integrable if its integral exists and is finite. Integrability
 on K implies integrability on every cell contained in ÜT. If 5 is integrable then
 either |5| is integrable or JK |5| = oo. We call 5 absolutely integrable if both
 5 and |5| are integrable. A cell summant is a summant whose values do not
 depend on the tag. An additive summant is a cell summant that is additive
 on abutting cells. Each function F on K defines an additive summant A F
 given by AjF(7) = F(s) - F(r) for each cell 7 = [r, s] in K. Every additive
 summant has such a representation. Since E/cAi1 = A F(K) for all divisions
 K of K , JK A F = A F(K). For 5 a summant and / a function on K the
 product /5 is the summant with value /(t)5(7, t) at (7, t).

 From this integration process a sound concept of differential emerges. The
 equivalence 5 ~ 5' between summants 5 and 5' on K is defined to be JK |5 -
 5' I = 0. A differential <j on K is the equivalence class [5] of some summant 5
 on K. As a function space the set of all summants on K forms a Riesz space
 S . The differentials on K form a Riesz space which is the homomorph of S
 modulo the Riesz ideal of all summants equivalent to 0. If cr = [5] and p = [Ä]
 then ca = [c5] for any constant c, a + p = [5 «f R', 'a' = J|5|], a + = [5+]
 and a" = [5~]. The definitions J ^cr = J and J Ka = JKS are effective
 for any representative 5 of c. So we can transfer the definitions of integral,
 integrability, absolute integrability, etc., to a from 5.

 Each function F on K yields an integrable differential dF = [AF] for
 which fKdF = AF(K). A differential a on K is integrable if and only if
 a = dF for some function F on K. The total variation of any function F
 on K is JK 'dF' < oo. a is absolutely integrable if and only if a = dF for
 some function F of bounded variation on K. A differential a is summable if

 JK'a' < 00 • With this upper integral as norm the summable differentials on
 K form a Banach lattice [5]. For E a subset of K let 1 e be the indicator of
 E. That is, l£?(t) = 1 for i in E1 0 for t in K - E. E is cr-null if 1^5 - 0
 for [5] = a. q-everywhere means everywhere on K - E for some tr-null E. If
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 <?(£) is defined and finite cr-every where on K then the definition g a = [fS] is
 effective where a = [5] and / is any function on K that equals g o*-e very where.
 Thus E is a-null if and only if Iß a = 0. In general, g = 0 cr-e very where if and
 only if g a = 0.

 Let X be the identity function ®(ť) = t on K. Lebesgue-integrability of /
 is just absolute integrability of / dx. A subset E of K is Lebesgue-measurable
 if and only if 1^ dx is integrable. Fot such E the Lebesgue measure M(E) is
 fK 1 e dx.

 We shall be concerned here with differentials on K of the form / dh and
 f'dh'. f dh can be integrable without being absolutely integrable. Moreover
 / dh can be absolutely integrable even though dh is not. This attests to the
 superiority of Kurzweil-Henstock integration on M over Lebesgue integration
 since Lebesgue-Stieltjes integrability of / dh demands absolute integrability
 of dh, f dh , and f'dh'.

 3 Regulated functions

 Since every function of bounded variation is regulated we shall prove some
 relevant results on regulated functions. Hereafter h will be a function on
 K = [a, 6], C the set of points at which h is continuous, D the set at which h
 is discontinuous.

 h is regulated if lp dh is integrable for every point pin K. This is equivalent
 to the usual definition that h has finite unilateral limits at every point p in
 ÜC, /i(pH-) for a < p < b and h(p- ) for a < p < b. For convenience we
 invoke the notational convention that h(a- ) = h(a) and fo(6+) = h(b) at the
 endpoints a, 6 of K. A regulated function h is bounded and has only countably
 many discontinuities, [2]. For all p in K we have absolute integrability of
 lp / dh for every function / on K . Given p there exists a gauge S on K such
 that 6(t) < 't - p' for t ^ p. For such a gauge (I, t) ¿-fine with I containing p
 implies t = p. So

 ' fK ip f(dh)+ = mm?) - h(p-)]+ + [h(p+) - h(p)}+)
 ,-x Sk h f(dh)~ = f(p)(ih(p) - h(p-)]~ + [%+) - Mp)]~)
 (5) ,-x

 ļ fK ip f dh = f(p)(h(p+) - h(p~))
 . Ik lr f'dh' = f(p)('h(p) - Mp-)I + 1%+) - %)!)•
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 The Monotone Convergence Theorem [3,4] and countability of D give

 ' Sk Id 'f'(dh)+ = ZP€D Sk l/l W1-
 (6) I Sk I® l/l W = EpgiP Sx If l/l W

 k /*1* i fdh'=j:pąDsKip 'fdh'.
 So for any f on K summability of lp f dh is equivalent to absolute integra-
 bility.

 To get the closure hK of hK it suffices to adjoin to hK the unilateral limits
 h(i- ) and fc(t+) for t in D . So hK is the union of hK with a countable set.
 Thus hK and its closure have the same Lebesgue measure. Since this holds
 for every cell 7 in K we can define for h regulated the cell summant T and its
 induced differential in terms of Lebesgue Measure M

 (7) T(I) = M (hi) and r = [T].

 We also define the cell summant S and its induced differential,

 (8) 5(7) = M (HT) and cr = [S]

 where the overbracket denotes convex closure rÊ1 = [inf E, sup E] . 5(7) is just
 the diameter of hi. If h is continuous then hi = hi so T = 5. But we must

 investigate T and S in the general case of regulated h.
 Hereafter 7 - ► p in K means Jkf (7) - ► 0 with the cells 7 in K having p

 as an endpoint. 7 - ► p- adds the restriction that p be the right endpoint of
 7, 7 - ► p-f that p be the left endpoint.

 Lemma 1 Let h be regulated and <r be defined by (8). Then lp a - lp 'dh'
 for every point p in K.

 Proof. Both 5(7) and |A/i(7)| converge to |/i(p) - h(p- )| as 7 - ► p- and to
 I Mp+) - Mp) I 48 I ~H > P+- So lp [5 - |A/i|] = 0 which proves the lemma
 since 'Ah' <5. □

 Lemma 2 Let h be regulated and I = [c, <¿] be a cell in K. For each p in K
 define the closed intervals

 {Lp Jp Jîp = = = Tip ' ' h(p /i(p), U ), Äp. /i(p- /i(p-f) ) ' ' if if c c < < p p< < d, d, 0 0 otherwise, otherwise,
 Jîp = ' /i(p), /i(p-f) ' if c < p < d, 0 otherwise,
 Jp = Tip U Äp.

 Then

 (10)
 P€I
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 Proof. Let Q be the right side of (10). Clearly hl Ç Q C 1 hi1. Suppose
 (10) false. Then there is some y belonging to 1 hi 1 but not to Q. Let A be
 the set of all p in I such that h(p) < y, B the set such that h(p) > y. Clearly
 A and B are disjoint. For all p in I h(p) y since h(p) belongs to Jp but y
 does not. So A U B = I. If t - ► p - with t in A then p lies in J, h(i) < y,
 and h(ť) - ► h(p- ), so h(p- ) < y. This implies that h(p- ) < y since h(p- )
 belongs to Jp but y does not. So the interval Jp lies in the half-line (- oo,y).
 Hence h(p) < y since h(p) belongs to Jp. That is, p belongs to A. Similarly
 if t belongs to A and t - ■* p+ then p belongs to A. So A is closed. A similar
 proof affirms that B is closed. So A, B give a topological separation of the
 connected set /, a contradiction. Thus Q = rhT giving (10). □

 Lemma 3 If h is regulated and r is defined by (7) then

 (11) 1„T = 0.

 Proof. Existence of the finite limits h(p- ) and h(p+) implies

 (12) Diam h(I - p) - > 0 as I - ► p 6 K.

 Since hi is just h(I - p) united with the single point h (p), T(I) = M(h(I - p))
 by (7). Thus, since the measure of a set is at most its diameter in M, T(J) - > 0
 by (12) as I - ► p. That is, (11) holds. □

 Lemma 4 Let h be regulated and 1 pdh be summable. Then l^'dh' = dw for
 some function w on K and under (7) and (8)

 (13) 0 < S -T < Aw,
 (14) 1 co- = r,
 (15) Id& = dw,
 (16) cr - t dw.

 PROOF. Summability of Ißdh is just finiteness of (6) for / = 1. So lüdh
 is absolutely integrable which yields w. Given a cell I in K let U = hi -
 hi. The interval ' hi1 has its endpoints in hi. So U is open in M. From
 the definition (9) of Jp in Lemma 2 and from (5) for /= 1 we have the
 inequality M(Jp) < lp'dh'. By Lemma 2 U is covered by the Jp s with p
 in I. For p in C fi I Jp consists of the single point h(p) which does not lie in
 U since U is disjoint from hi. So U is covered by those Jp s with p in D fi I.
 Therefore M(U) < < Ep€z> // 1,1^1 = /jlflW = Aw(/).
 This together with M(U ) = MÇ hi ') - M (hi) = S(I) - T(I) gives (13). By
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 (13) 0 < a - r < dw. So 0 < Ic(o--t) < 1 cdw = 0 since C and D are disjoint
 and Id dw = dw. Thus

 (17) lev = 1er.

 Since D is countable (11) in Lemma 3 gives 1 x>r = 0. So 1er = r which
 with (17) gives (14). By Lemma 1 and the countability of D we get 1 do- =
 lD'dh' = dw which gives (15). The sum of (14) and (15) gives (16). □

 Lemma 5 Let h be of bounded variation and dv = 'dh' on K. Then under
 definitions (7) and (8)

 (18) a = dv

 and

 (19) r = 1 cdv.

 Proof. (18) follows from 'Ah' < S < Av which implies dv = 'dh' < a < dv.
 (14) in Lemma 4 and (18) then give (19). □

 Lemma 6 Let h be regulated with l^dh summable. Then under definition (7)

 (20) 0< [ T = f lc'dh'<oo. Jk Jk

 Proof. Since |A/i| < 5 by (8), 'dh' < a. Hence lc'dh' < lc&. By (14) in
 Lemma 4 this is just

 (21) lc'dh'<r.

 Now lc'dh' = 'dh' - lD'dh' with lj)'dh' integrable. Thus since the integral of
 'dh' exists so does

 (22) [ lc|<ft|= [ 'dh' - f lD'dh'<oo. Jk Jk Jk

 If h is of bounded variation then (20) follows from (19) in Lemma 5. If h is of
 unbounded variation then (22) is infinite which by (21) gives (20) with both
 integrals infinite. □

 We can now extend the role of Banach 's indicatrix N. Note that the

 hypothesis of Theorem 1 is satisfied if h is continuous.

 Theorem 1 Let h be regulated on K with 'j)dh summable. Then for N(y)
 the number of points t such that h(t) = y

 (23) í N(y)dy= Í lc'dh'<oo.
 J-oo Jk
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 Proof. Using (20) in Lemma 6 we can get a sequence of gauges 6n on K such
 that

 (24) 6n < 1 In

 and for every ¿„-division K. of K

 i I Ek T - JK le |dfc| I < 1/n if Sk lc M < oo

 I EKT>n if fKlc'dh' = oo

 where T is defined by (7). Choose a sequence of divisions Kn such that

 (26) Kn is a £n-division of K

 and

 (27) Ä^n+i refines Kn

 where Kn is the partition induced by Kn. (That is, I belongs to Kn if and
 only if (/, i) belongs to Kn for some t.) For each y in M let Nn(y) be the
 number of members I of Kn such that y belongs to hi. That is,

 (28) Nn(y) = £ 1M(„).
 ieKn

 By (27) and (28)

 (29) 0 < Nn(y) < Nn+i(y) < oo for all y in M and all n.

 Let E be the set of endpoints of the cells belonging to K' U K2 U • • • . Since E
 is countable so is hE. Consider any y that does not belong to hE. Given t in
 h~1y each Kn has just one member I that contains t since t must be interior
 to I and the members of a partition do not overlap. Thus by (28)

 (30) Nn(y) < N(y) < 00 for all n, and all y in the
 complement of the countable set hE.

 Consider any finite subset A of /i_1y. Take n large enough to make 1/n less
 than the distance between any pair of distinct points in A. For such n (24)
 and (26) imply that each member I of Kn contains at most one point of A.
 This together with (29) and (30) gives

 (31) Nn(y) y N(y) for almost all y as n f 00
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 since the countable set hE is of measure zero. Now 1 hi(y)dy = M (hi) =
 T(J). So integration of (28) gives

 (32)
 •/-°° ^

 By the Monotone Convergence Theorem applied to (31) the integral in (32)
 converges to N(y)dy. On the other hand the right side of (32) converges
 to JK lc'dh' by (25) and (26). This gives (23). □

 4 The conversion formulas for integrators h of bounded
 variation

 Theorem 2 Let h be of bounded variation on K with dv = 'dh'. Given a
 function f on K define the function <f> almost everywhere or R by

 (33) 4>{y)= E /W-
 *€k~ły

 If f dv is absolutely integrable then <f> is Lebesgue-integrable and

 (34) f <j>{y)dy= f lcf dv.
 J- oo Jk

 Proof. Case 1. 0 < / < k for some integer k.
 Since C is a Borei set 1 cdv is integrable. So there is a function w on K

 such that

 (35) dw = 1 cdv - lc'dh'.

 w is monotone, dw >0. w is continuous since lpdw = 0 for every point p in
 K. Similarly since lcf dv is integrable there is a function F on K such that

 (36) dF = lcf dv - f dw .

 <f> is defined almost everywhere by (33) since N < oo almost everywhere by
 Theorem 1. To prove (34) we must show in terms of (36) that

 (37) r <1>(y)dy = A F(K).
 J - oo

 Under Case 1 (36) gives 0 < dF < k dw. Integration over any cell in K gives
 the corresponding summant inequality

 (38) 0 < AF < k Aw.
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 Deñne the cell summant G by

 AF
 (39) G(I) = - (I) if A w{I) > 0, 0 if Aw(I) = 0 A w

 for every cell I in K. From (39) and (38) we get

 (40) G Aw = AF

 and

 (41) 0 < G < k.

 By (19) in Lemma 5 (35) is just T ~ Aw under definition (7). So GT ~ G Aw
 by the boundedness (41) of G. By (40) this is just GT ~ AF. So we can
 choose for each positive integer n a gauge 6n on K such that Sn < 1/n and

 Sr.

 (42) 2lAF_GTl < Vn-
 Choose a sequence of 6n -divisions Kn of K such that Kn+ 1 refines Kn where
 Kn is the partition induced by Kn . For each n define the function <f>n on M by

 (43) 4>n(y) = E G(J)lu(y).
 ieKn

 Each <f>n is a linear combination of indicators of bounded measurable sets hi.
 So <f>n is Lebesgue-integrable and integration of (43) gives

 (44) H <ļ>n(y)dy = 52GT. J-°°

 Since /Cn is a in-division (42) and (44) give the convergence

 (45) f <t>n(y)dy - ► A F(K) as n - ► oo.
 J - OO

 Let B be the set of all t in C where the condition

 w £(<>=«'>
 fails to hold. B is dw- null by Theorem 17 in [4]. So 0 = lßdw = lß'dh' by
 (35) since B is a subset of C. That is, B is d/i-null. So hB is Lebesgue-null by
 Theorem 2 in [6]. So is iV""1oo by (23) in Theorem 1. D is countable as is the
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 set E of endpoints of members of K i Ulf 2 U • • • . Dismissing the Lebesgue-null
 sets hB , JV-1oo, hD, and hE we conclude that for almost all y

 (A7' / h~1y ls a subset of C - B covered for each
 * ' ļ n by the interiors of the cells belonging to Kn.

 Consider any y in hK satisfying (47). h~1y is then a nonvoid finite set
 {¿i> • • -»¿m}- Since JCfi is a 1 /n-di vision it follows that for n sufficiently large
 each member I of Kn contains at most one point of h~1y. For such n (43)
 takes the form

 m

 (48) M y) = £<?(*,„)
 » = 1

 where IiyVl is the unique member of Kn whose interior contains t{. Since (46)
 holds on h~1y1 a subset of C - B by (47), the definition (39) of G together
 with the condition that < 1/n gives the convergence

 (49) G(I*,n) -+ f(ti) as n - ♦ 00

 for i = 1, . . . , m. By (33), (48) and (49)

 (50) <f>n{y) -+ (j>{y) as n- ♦ 00

 for all y satisfying (47), hence almost everywhere. For y subject to the coverage
 condition in (47) the definition (43) of 4>n and the boundedness (41) of G give

 (51) 0 < <t>n(y) < k N(y) for all n.

 So (51) holds for almost all y. Since h is of bounded variation, N is Lebesgue-
 integrable by Theorem 1. So (50), (51) and (45) give (37) by the Dominated
 Convergence Theorem. So Theorem 2 holds for Case 1.

 Case 2. 0 < f(t) < 00 for all t in K . Apply Case 1 to /* = k A / for
 k = 1,2,... . With w satisfying (35) the Monotone Convergence Theorem
 gives for fu f f

 (52) / fkdw y f dw as k / 00.
 Jk Jk

 Define fa almost everywhere by

 (53) Mv)= E AW
 t£k-iy
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 which is just (33) with / replaced by /*. Applying Case 1 to /* we get (34)
 for fk, namely

 (54) [ <f>k(y)dy= [ fkdw.
 J-oo Jk

 Since fk f /, <t>k S <f> a.e. by (53) and (33). So the Monotone Convergence
 Theorem gives

 /OO -oo <f>k(y)dy / J / oo ßOO
 <f>k(y)dy / / <ļ>(y)dy as k / oo.

 -oo J oo

 From (52), (54), (55) we conclude that <f>(y)dy = fKfdw which is just
 (34) for Case 2. Note that our proof also shows that for any Borei function
 / > 0 with fKfdw = oo (34) holds with both integrals infinite.

 Case 3. - oo < f(t) < oo for all t in K. Apply Case 2 to both /+ and /~
 and subtract the results to get the theorem for / = /+ - /" . □
 Note that in Theorem 2 we can replace / by lcf- Śo the hypothesis on /

 is that lcf'dh' is absolutely integrable.
 We turn now to the easily proved counterpart of Theorem 2 where C is

 replaced by its complement D.

 Theorem 3 Given h regulated on K let r = r_ -f r+ on K x M where r_ (t, y)
 indicates that y lies strictly between h(t-) and h(t), and r+(t, y) indicates
 that y lies strictly between h(t) and /i(t-j-). Given f on K such that '&f dh
 is summable the function 9 is defined almost everywhere on M by

 (56) 0(y) = ^/(ť)r(í,2/)
 teD

 since the series is absolutely convergent for almost every y. Moreover , 9 is
 Lebesgue integrable and

 (57) r 9(y)dy = [ lDf'dh'.
 J-oo Jk

 Proof. For each point p in D we have

 /oo ■ OO f(p)r(p,y)dy = f(p)[ J - » OO OO r_(p, y)dy + J / - « OO OO f(p)r(p,y)dy = f(p)[ r_(p, y)dy + / r+(p, y)dy]
 ■ OO J - OO J - OO

 = Hp)['HP) - KP~) I + IMP-«-) - MP)0 = / Wl^l Jk
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 by the last equation in (5). Apply (5) and (6) to both /+ and /** to get
 (57) and absolute convergence almost everywhere of the series in (56) from
 the Monotone Convergence Theorem. This also shows that (57) holds under
 (56) for all / > 0 on JÜC, allowing infinite values in (56) and (57). □

 We can now combine the results of Theorems 2 and 3.

 Theorem 4 Let h be of bounded variation on K with dv = 'dh'. Let ç(t, y)
 indicate in K x IR that h(t) = y. Let s = q + r with r as defined in Theorem 3.
 Let f be a function on K with f dv absolutely integrable . Then the transform
 f of f is defined almost everywhere on M by

 (58) f(y) = X) /(*)*(*. v)
 t€K

 with the nonzero terms forming a finite sum for almost all y . Moreover f is
 Lebesgue-integrable on R and

 (59) [ f(y)dy = Í f dv.
 J-oo JK

 Proof. Apply Theorems 2 and 3. Note that the definition (33) of <f> is just
 (4). So (58) is the sum of (33) and (56) with / = <ļ> + 0. (59) is the sum of
 (34) and (57) since lc + Id = 1- □

 Note that s(ť, y) = 0 for y in the complement of 1 hK' So f(y) = 0 for
 such y by (58). So the integral of / in (59) may be taken over the bounded
 interval 1 hK ' instead of R.

 Except for y in hD we have h"1y contained in C which implies ç(t, y) =
 lfc-i y(t) < 1 c{t) so 1 c(t)ç(t, y) = q(ti y )• We also have 1 c(t)r(ti y) = 0 by the
 definition of r in Theorem 3. So lcW5(*»2/) = lc (*)$(*» y) + lcWr(¿, y) =
 q(t}y) except for y in the countable set hD. Thus (58) and (33) give lcf{y) =

 y) = y ) f°r but countąbly many y. So 1 cf = 0 almost
 everywhere which reduces (59) to (34). So Theorem 2 is the special case of
 Theorem 4 for / = 1 cf-

 Except for y in hD we have l^(t)ç(t, y) = 0. Also lx>(t)r(t, y) = r(t, y).
 So l.p(t)s(ť, y) = r(t, y) except for y in hD. Thus (58) and (56) give lüfiy) =

 = Et€D /Wr(*» y) = e(y) for a11 but countably many
 y. So 1 j)f = 9 almost everywhere which reduces (59) to (57). So for / = 1¿>/
 Theorem 4 reduces to Theorem 3 for h of bounded variation.
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