Solomon Leader, Mathematics Department, Hill Center, Busch Campus, Rutgers University, New Brunswick, NJ 08903

TRANSFORMING LEBESGUE-STIELTJES INTEGRALS INTO LEBESGUE INTEGRALS

Abstract

 A recent theorem of the author for continuous functions of bounded variation is extended to include the discontinuous case. Given h of bounded variation on a closed interval K let $s(t, y)$ be the total number 0, 1, 2 of the following conditions which hold at $(t, y) \in K \times \mathbb{R}$:

- $y = h(t)$,
- y lies strictly between $h(t-)$ and $h(t)$,
- y lies strictly between $h(t)$ and $h(t+)$.

Given f Lebesgue-Stieltjes integrable against $d\,h$ we can define \hat{f} almost everywhere on $\mathbb R$ by $\hat{f}(y) = \sum_{t \in K} f(t) s(t,y)$ where the nonzero terms form a finite sum. The function \hat{f} is Lebesgue integrable and its integral $\int_{-\infty}^{\infty} \hat{f}(y) dy = \int_{K} f |dh|$. Among the special cases is a generalization of Banach 's indicatrix theorem.

1 Introduction

Given a continuous function h on $K = [a, b]$, S. Banach [1] defined its indicatrix $N(y)$ to be the number of points t in K such that $h(t) = y$. He proved that the integral of N exists and equals the total variation of h ,

(1)
$$
\int_{-\infty}^{\infty} N(y) dy = \int_{a}^{b} |dh(t)| \leq \infty.
$$

If the continuous function h is of bounded variation then the integrals in (1) are finite so $N < \infty$ almost everywhere. That is, the set $h^{-1}y$ is finite for

Key Words: Lebesgue-Stieltjes integral, Lebesgue integral, bounded variation, regulated function, Banach indicatrix Mathematical Reviews subject classification: Primary: 26A42 Secondary: 26A45

Mathematical Reviews subject classification: Frimary: 20A42 Secondary: 20A43
Received by the editors April 4, 1994

almost all y. In [7] this was used to get for each function f on K a transform φ induced by h under the definition. almost all y. In [7] this was used to get for each function f on K a transform φ induced by h under the definition.

(2)
$$
\varphi(y) = \sum_{t \in h^{-1}y} f(t) \text{ for almost all } y \in \mathbb{R}.
$$

If the Lebesgue-Stieltjes integral $\int_K f|dh|$ exists and is finite then φ is Lebesgue - integrable and

(3)
$$
\int_{-\infty}^{\infty} \varphi(y) dy = \int_{a}^{b} f(t) |dh(t)|.
$$

 This conversion formula is the key to a simple proof of Green's Theorem using a Fubini theorem for the generalized Riemann integral (Theorem 3 in [7].) (3) reduces to Banach's formula (1) if we set $f = 1$ which gives $\varphi = N$ in (2).

Our ultimate objective here is to generalize the transform (2) of f so that the conversion formula(3) applies to all functions h of bounded variation in cluding those with discontinuities. The crucial step is Theorem 1 which shows that for any function h of bounded variation on \tilde{K} Banach's formula (1) generalizes to $\int_{-\infty}^{\infty} N(x) dx = \int_{0}^{b} 1 - k(x) dx$

$$
\int_{-\infty}^{\infty} N(y) dy = \int_{a}^{b} 1_C(t) |dh(t)|
$$

where 1_C is the indicator of the set C of points of continuity of h.

Geometrically $N(y)$ is the number of intersections of the horizontal line $Y = y$ with the graph of h. If h is discontinuous at t, say $h(t-) \neq h(t)$, then the line $Y = y$ may fail to intersect the graph for y between $h(t-)$ and $h(t)$. In terms of the indicator $q(t, y)$ of the graph $h(t) = y$ the transform (2) of f is

(4)
$$
\varphi(y) = \sum_{t \in K} f(t)q(t, y) \text{ for almost all } y
$$

with summation over the finite set of nonzero terms. If h is discontinuous at t we must add to q the sum $r_{-} + r_{+} = r$ where $r_{-}(t, y)$ indicates the interior of the line segment joining $(t, h(t-))$ to $(t, h(t))$, and $r_+(t, y)$ indicates the interior of the segment joining $(t, h(t))$ to $(t, h(t+))$. As our final result we shall show (Theorem 4) that (3) holds if q is replaced by $q + r$ in (4).

2 Preliminaries

 All integrals here are defined by the Kurzweil-Henstock integration process which we review briefly. For details see [3,4,5].

A cell is a closed, bounded, nondegenerate interval I in $\mathbb{R} = (-\infty, \infty)$. A tagged cell (I, t) is a cell I with one of its endpoints designated as the tag t. A

summant S on a cell K is a function $S(I, t)$ on the set of all tagged cells (I, t) in K. Each such S has a lower and upper integral with values in $[-\infty, \infty]$ based on the following definitions. A gauge δ is a function on K with $\delta(t) > 0$ for all t. (I, t) is δ -fine if the length of I is less than $\delta(t)$. A division K of K is a finite set of nonoverlapping tagged cells whose union is K. Such a K is a δ -division if all its members are δ -fine. Every finite set of nonoverlapping δ -fine tagged cells in K can be extended to a δ -division of K . For S a summant on K each division K of K yields $\Sigma \times S$, the sum of $S(I, t)$ over the members (I, t) of K. For each gauge δ on K define $\Sigma_{\delta} S$ to be the infimum, $\Sigma^{\delta} S$ the supremum, of $\Sigma_K S$ for all 6-divisions K of K. The lower integral of S is $\int_{\nu} S = \sup_{\delta} \Sigma_{\delta} S$ and the upper integral is $\int_{K} S = \inf_{\delta} \sum^{\delta} S$ taken over all gauges δ on K. If these two integrals are equal then their common value in $[-\infty, \infty]$ defines the integral $\int_K S$. S is integrable if its integral exists and is finite. Integrability on K implies integrability on every cell contained in K . If S is integrable then either $|S|$ is integrable or $\int_K |S| = \infty$. We call S absolutely integrable if both S and $|S|$ are integrable. A cell summant is a summant whose values do not depend on the tag. An additive summant is a cell summant that is additive on abutting cells. Each function F on K defines an additive summant ΔF given by $\Delta F(I) = F(s) - F(r)$ for each cell $I = [r, s]$ in K. Every additive summant has such a representation. Since $\Sigma_K \Delta F = \Delta F(K)$ for all divisions K of K, $\int_K \Delta F = \Delta F(K)$. For S a summant and f a function on K the product $f\tilde{S}$ is the summant with value $f(t)S(I, t)$ at (I, t) .

 From this integration process a sound concept of differential emerges. The equivalence $S \sim S'$ between summants S and S' on K is defined to be $\int_K |S S'$ = 0. A differential σ on K is the equivalence class [S] of some summant S on K . As a function space the set of all summants on K forms a Riesz space S. The differentials on K form a Riesz space which is the homomorph of S modulo the Riesz ideal of all summants equivalent to 0. If $\sigma = [S]$ and $\rho = [R]$ then $c\sigma = [cS]$ for any constant $c, \sigma + \rho = [S + R], |\sigma| = [S]|, \sigma^+ = [S^+]$ and $\sigma = [S]$. The definitions $J_K \sigma = J_K S$ and $J_K \sigma = J_K S$ are effective for any representative S of σ . So we can transfer the definitions of integral, integrability, absolute integrability, etc., to σ from S.

Each function F on K yields an integrable differential $dF = [\Delta F]$ for which $\int_K dF = \Delta F(K)$. A differential σ on K is integrable if and only if $\sigma = dF$ for some function F on K. The total variation of any function F on K is $\int_K |dF| \leq \infty$. σ is absolutely integrable if and only if $\sigma = dF$ for some function F of bounded variation on K. A differential σ is summable if $\int_K |\sigma| < \infty$. With this upper integral as norm the summable differentials on K form a Banach lattice [5]. For E a subset of K let 1_E be the indicator of E. That is, $1_E(t) = 1$ for t in E, 0 for t in $K - E$. E is σ -null if $1_E S \sim 0$ for $[S] = \sigma$. σ -everywhere means everywhere on $K - E$ for some σ -null E. If

 $g(t)$ is defined and finite σ -everywhere on K then the definition $g\sigma = [fS]$ is
effective where $\sigma = [S]$ and f is any function on K that equals g σ -everywhere. $g(t)$ is defined and finite σ -everywhere on K then the definition $g\sigma = [fS]$ is
effective where $\sigma = [S]$ and f is any function on K that equals g σ -everywhere.
Thus E is σ -null if and only if $1 \in \sigma = 0$. In gener $g(t)$ is defined and finite σ -everywhere on *K* then the definition $g\sigma = [fS]$ is
effective where $\sigma = [S]$ and *f* is any function on *K* that equals $g \sigma$ -everywhere.
Thus *E* is σ -null if and only if $1_E \sigma = 0$. In effective where $\sigma = [S]$ and f is any function on K that equals g σ -everywhere.
Thus E is σ -null if and only if $1_E \sigma = 0$. In general, $g = 0$ σ -everywhere if and
only if $g\sigma = 0$.
Let x be the identity function

Let x be the identity function $x(t) = t$ on K. Lebesgue-integrability of f
ist absolute integrability of f dx. A subset E of K is Lebesgue-measurable Let x be the identity function $x(t) = t$ on K. Lebesgue-integrability of f
is just absolute integrability of f dx. A subset E of K is Lebesgue-measurable
if and only if $1 \in dx$ is integrable. For such E the Lebesgue measure Let x be the identity function $x(t) = t$ on K. Lebesgue-integrability of f
is just absolute integrability of f dx. A subset E of K is Lebesgue-measurable
if and only if $1_E dx$ is integrable. For such E the Lebesgue measure is just absolute integrability of $f dx$. A subset E of K is Lebesgue-measurable
if and only if $1_E dx$ is integrable. For such E the Lebesgue measure $M(E)$ is
 $\int_K 1_E dx$.
We shall be concerned here with differentials on

 $\frac{1}{E} dx$.
We shall be concerned here with differentials on K of the form f dh and
h. f dh can be integrable without being absolutely integrable. Moreover We shall be concerned here with differentials on K of the form $f dh$ and $f|dh|$. $f dh$ can be integrable without being absolutely integrable. Moreover $f dh$ can be absolutely integrable even though dh is not. This attests We shall be concerned here with differentials on K of the form $f dh$ and $f|dh|$. $f dh$ can be integrable without being absolutely integrable. Moreover $f dh$ can be absolutely integrable even though dh is not. This attests $f|dh$. $f dh$ can be integrable without being absolutely integrable. Moreover $f dh$ can be absolutely integrable even though dh is not. This attests to the superiority of Kurzweil-Henstock integration on $\mathbb R$ over Lebesgu f dh can be absolutely integrable even though dh is not. This attests to the
superiority of Kurzweil-Henstock integration on $\mathbb R$ over Lebesgue integration
since Lebesgue-Stieltjes integrability of f dh demands absolute superiority of Kurzweil-Henstock integration on $\mathbb R$ over Lebesgue integration since Lebesgue-Stieltjes integrability of f dh demands absolute integrability of dh , f dh, and $f|dh|$.

3 Regulated functions

 Since every function of bounded variation is regulated we shall prove some relevant results on regulated functions. Hereafter h will be a function on $K = [a, b], C$ the set of points at which h is continuous, D the set at which h is discontinuous.

h is regulated if 1_p dh is integrable for every point p in K. This is equivalent to the usual definition that h has finite unilateral limits at every point p in K, $h(p+)$ for $a \leq p \leq b$ and $h(p-)$ for $a \leq p \leq b$. For convenience we invoke the notational convention that $h(a-) = h(a)$ and $h(b+) = h(b)$ at the endpoints a, b of K . A regulated function h is bounded and has only countably many discontinuities, $[2]$. For all p in K we have absolute integrability of l_p f dh for every function f on K. Given p there exists a gauge δ on K such that $\delta(t) < |t - p|$ for $t \neq p$. For such a gauge (I, t) δ -fine with I containing p implies $t = p$. So

(5)

$$
\begin{cases}\n\int_K 1_p f(dh)^+ = f(p)([h(p) - h(p-)]^+ + [h(p+) - h(p)]^+) \\
\int_K 1_p f(dh)^- = f(p)([h(p) - h(p-)]^- + [h(p+) - h(p)]^-) \\
\int_K 1_p f dh = f(p)(h(p+) - h(p-)) \\
\int_K 1_p f|dh| = f(p)(|h(p) - h(p-)| + |h(p+) - h(p)|).\n\end{cases}
$$

The Monotone Convergence Theorem $[3,4]$ and countability of D give

(6)
$$
\begin{cases} \int_{K} 1_{D} |f| (dh)^{+} = \sum_{p \in D} \int_{K} 1_{p} |f| (dh)^{+} \\ \int_{K} 1_{D} |f| (dh)^{-} = \sum_{p \in D} \int_{K} 1_{p} |f| (dh)^{-} \\ \int_{K} 1_{D} |f dh| = \sum_{p \in D} \int_{K} 1_{p} |f dh|. \end{cases}
$$

So for any f on K summability of 1_D f dh is equivalent to absolute integrability.
bility.
To get the closure \overline{hK} of hK it suffices to adjoin to hK the unilateral limits for any f on K summability of 1_D f dh is equivalent to absolute integra-
ty.
To get the closure \overline{hK} of hK it suffices to adjoin to hK the unilateral limits
-) and $h(t+)$ for t in D. So \overline{hK} is the union of

bility.
To get the closure \overline{hK} of hK it suffices to adjoin to hK the unilateral limits $h(t-)$ and $h(t+)$ for t in D. So \overline{hK} is the union of hK with a countable set.
Thus hK and its closure have the same To get the closure \overline{hK} of hK it suffices to adjoin to hK the unilateral limits $h(t-)$ and $h(t+)$ for t in D . So \overline{hK} is the union of hK with a countable set.
Thus hK and its closure have the same Lebe $h(t-)$ and $h(t+)$ for t in D. So $\overline{h}\overline{K}$ is the union of hK with a countable set.
Thus hK and its closure have the same Lebesgue measure. Since this holds
for every cell I in K we can define for h regulated the ce Thus hK and its closure have the same Lebesgue measure. Since this holds
for every cell I in K we can define for h regulated the cell summant T and its
induced differential in terms of Lebesgue Measure M

(7)
$$
T(I) = M(hI) \text{ and } \tau = [T].
$$

We also define the cell summant S and its induced differential,

(8)
$$
S(I) = M(\overline{hI}) \text{ and } \sigma = [S]
$$

where the overbracket denotes convex closure $\overline{E}^1 = [\inf E, \sup E]$. $S(I)$ is just the diameter of hI. If h is continuous then $hI = hI$ so $T = S$. But we must investigate T and S in the general case of regulated h .

Hereafter $I \to p$ in K means $M(I) \to 0$ with the cells I in K having p as an endpoint. $I \rightarrow p-$ adds the restriction that p be the right endpoint of *I*, $I \rightarrow p+$ that p be the left endpoint.

Lemma 1 Let h be regulated and σ be defined by (8). Then 1_p $\sigma = 1_p |dh|$ for every point p in K .

PROOF. Both $S(I)$ and $|\Delta h(I)|$ converge to $|h(p) - h(p-)|$ as $I \to p-$ and to $|h(p+)-h(p)|$ as $I \to p+$. So $\int_K 1_p |S - |\Delta h| = 0$ which proves the lemma PROOF. Both $S(I)$ and $|\Delta h(I)|$ converge to $|h(p) - h(p-)|$ as $I \to p-$ and to $|h(p+) - h(p)|$ as $I \to p+$. So $\int_K 1_p [S - |\Delta h|] = 0$ which proves the lemma since $|\Delta h| \leq S$.

since $|\Delta h| \leq S$.

Lemma 2 Let h be regulated and $I = [c, d]$ be a cell in K. For each p in K

define the closed intervals **Lemma 2** Let *h* be regulated and $I = [c, d]$ be a cell in *K*. For each *p* in *K* define the closed intervals

(9)
$$
\begin{cases} L_p = \overline{h(p), h(p-)} & \text{if } c < p \leq d, \space 0 \text{ otherwise,} \\ R_p = \overline{h(p), h(p+)} & \text{if } c \leq p < d, \space 0 \text{ otherwise,} \\ J_p = L_p \cup R_p. \end{cases}
$$

Then

$$
\overline{hI} = \bigcup_{p \in I} J_p.
$$

PROOF. Let Q be the right side of (10). Clearly $\overline{hI} \subseteq Q \subseteq \overline{hI}$. Suppose (10) false. Then there is some y belonging to \overline{hI} but not to Q. Let A be PROOF. Let Q be the right side of (10). Clearly $\overline{hI} \subseteq Q \subseteq \overline{hI}$. Suppose (10) false. Then there is some y belonging to \overline{hI} but not to Q. Let A be the set of all p in I such that $h(p) < v$. B the set such that h PROOF. Let Q be the right side of (10). Clearly $hI \subseteq Q \subseteq hI$. Suppose (10) false. Then there is some y belonging to \overline{hI} but not to Q . Let A be the set of all p in I such that $h(p) < y$, B the set such that h (10) false. Then there is some y belonging to ' hI ' but not to Q . Let A be
the set of all p in I such that $h(p) < y$, B the set such that $h(p) > y$. Clearly
 A and B are disjoint. For all p in I $h(p) \neq y$ si the set of all p in I such that $h(p) < y$, B the set such that $h(p) > y$. Clearly

A and B are disjoint. For all p in I $h(p) \neq y$ since $h(p)$ belongs to J_p but y

does not. So $A \cup B = I$. If $t \to p$ — with t in A then p lies in A and B are disjoint. For all p in $I h(p) \neq y$ since $h(p)$ belongs to J_p but y
does not. So $A \cup B = I$. If $t \to p$ — with t in A then p lies in I, $h(t) < y$,
and $h(t) \to h(p-)$, so $h(p-) \leq y$. This implies that $h(p-) < y$ since $h(p-)$
 belongs to J_p but y does not. So the interval J_p lies in the half-line $(h(p-)) \leq y$,
belongs to J_p but y does not. So the interval J_p lies in the half-line $(-\infty, y)$.
Hence $h(p) \leq y$ since $h(p)$ belongs to J_p . Tha and $h(t) \to h(p-)$, so $h(p-) \le y$. This implies that $h(p-) < y$ since $h(p-)$
belongs to J_p but y does not. So the interval J_p lies in the half-line $(-\infty, y)$.
Hence $h(p) < y$ since $h(p)$ belongs to J_p . That is, p belongs to A. belongs to J_p but y does not. So the interval J_p lies in the nail-line $(-\infty, y)$.
Hence $h(p) < y$ since $h(p)$ belongs to J_p . That is, p belongs to A. Similarly
if t belongs to A and $t \to p+$ then p belongs to A. So A i Hence $h(p) < y$ since $h(p)$ belongs to J_p . That is, p belongs to A. Similarly
if t belongs to A and $t \to p+$ then p belongs to A. So A is closed. A similar
proof affirms that B is closed. So A, B give a topological separat if t belongs to A and $t \to p+$ then p belongs to A. So A is closed. A similar proof affirms that B is closed. So A, B give a topological separation of the connected set I, a contradiction. Thus $Q = \overline{hI}$ giving (10).

connected set 1, a contradiction. Thus $Q = hI$ giving (10).
Lemma 3 If h is regulated and τ is defined by (7) then

$$
(11) \t\t\t 1_p \tau = 0.
$$

PROOF. Existence of the finite limits $h(p-)$ and $h(p+)$ implies

(12)
$$
\text{Diam } h(I-p) \to 0 \text{ as } I \to p \in K.
$$

Since hI is just $h(I - p)$ united with the single point $h(p)$, $T(I) = M(h(I - p))$ by (7). Thus, since the measure of a set is at most its diameter in \mathbb{R} , $T(I) \to 0$
by (12) as $I \to n$. That is (11) bolds by (12) as $I \rightarrow p$. That is, (11) holds.

Lemma 4 Let h be regulated and $1_D dh$ be summable. Then $1_D |dh| = dw$ for some function w on K and under (7) and (8)

- (13) $0 \leq S T \leq \Delta w$,

(14) $1_C \sigma = \tau$,
- (14) $1_C \sigma = \tau$,
-
- (15) $1_D \sigma = dw,$

(16) $\sigma = \tau + du$ $\sigma = \tau + dw$.

PROOF. Summability of $1_D dh$ is just finiteness of (6) for $f = 1$. So $1_D dh$ is absolutely integrable which yields w. Given a cell I in K let $U = hI' \overline{hI}$. The interval \overline{hI} has its endpoints in \overline{hI} . So U is open in R. From the definition (9) of J_p in Lemma 2 and from (5) for $f = 1$ we have the inequality $M(J_p) \leq \int_I 1_p |dh|$. By Lemma 2 U is covered by the J_p 's with p in I. For p in $C \cap I$ J_p consists of the single point $h(p)$ which does not lie in U since U is disjoint from h.l. So U is covered by those J_p s with p in $D \cap I$. Therefore $M(U) \leq \sum_{p \in D \cap I} M(p) \leq \sum_{p \in D} \int_I 1_p|dh| = \int_I 1_D|dh| = \Delta w(I).$ This together with $M(U) = M(\overline{hI}) - M(hI) = S(I) - T(I)$ gives (13). By

(13) $0 \leq \sigma - \tau \leq dw$. So $0 \leq 1_C(\sigma - \tau) \leq 1_C dw = 0$ since C and D are disjoint and $1_D dw = dw$. Thus

$$
1_C \sigma = 1_C \tau.
$$

Since D is countable (11) in Lemma 3 gives $1_D \tau = 0$. So $1_C \tau = \tau$ which with (17) gives (14). By Lemma 1 and the countability of D we get $1_D \sigma = 1_D |dh| = dw$ which gives (15). The sum of (14) and (15) gives (16). $|1_D|dh| = dw$ which gives (15). The sum of (14) and (15) gives (16).

Lemma 5 Let h be of bounded variation and $dv = |dh|$ on K. Then under **Lemma** 5 Let n be of bounded variation and $dv = |ah|$ on .
definitions (7) and (8)

definitions (7) and (8)
(18)
$$
\sigma = dv
$$

$$
\tau=1_C dv.
$$

PROOF. (18) follows from $|\Delta h| \leq S \leq \Delta v$ which implies $dv = |dh| \leq \sigma \leq dv$.
(14) in Lemma 4 and (18) then give (19). (14) in Lemma 4 and (18) then give (19) .

Lemma 6 Let h be regulated with 1_D dh summable. Then under definition (7)

(20)
$$
0 \leq \int_K \tau = \int_K 1_C |dh| \leq \infty.
$$

PROOF. Since $|\Delta h| \leq S$ by (8), $|dh| \leq \sigma$. Hence $1_C|dh| \leq 1_C\sigma$. By (14) in Lemma 4 this is just

$$
\text{Lemma 4} \text{ this is just} \\
1_C|dh| \leq \tau.
$$

Now $1_C|dh| = |dh| - 1_D|dh|$ with $1_D|dh|$ integrable. Thus since the integral of dhl exists an does Now $1_C|dh| = |dh| - 1_D|dh|$ with $1_D|dh|$ integrable. The $|dh|$ exists so does

$$
|dh| \text{ exists so does}
$$
\n
$$
\int_K 1_G |dh| = \int_K |dh| - \int_K 1_D |dh| \leq \infty.
$$

If h is of bounded variation then (20) follows from (19) in Lemma 5. If h is of unbounded variation then (20) is infinite which by (21) gives (20) with both
integrals infinite.
We can now extend the role of Banach's indicatrix N. Note that the

We can now extend the role of Banach's indicatrix N . Note that the hypothesis of Theorem 1 is satisfied if h is continuous.

Theorem 1 Let h be regulated on K with $1_D dh$ summable. Then for $N(y)$ the number of points t such that $h(t) = y$

(23)
$$
\int_{-\infty}^{\infty} N(y) dy = \int_{K} 1_{C} |dh| \leq \infty.
$$

PROOF. Using (20) in Lemma 6 we can get a sequence of gauges $\delta_{\bf n}$ on K such
that **PROOF.** Using (20) in Lemma 6 we can get a sequence of gauges δ_n on K such that

$$
\delta_n < 1/n
$$

and for every δ_n -division K of K

(25)
$$
\begin{cases} |\sum_{K} T - \int_{K} 1_{C} |dh| < 1/n & \text{if } \int_{K} 1_{C} |dh| < \infty \\ \sum_{K} T > n & \text{if } \int_{K} 1_{C} |dh| = \infty \end{cases}
$$

where T is defined by (7). Choose a sequence of divisions \mathcal{K}_n such that

(26)
$$
K_n
$$
 is a δ_n -division of K

and

$$
(27) \t K_{n+1} \t \t \text{refines} \t K_n
$$

where K_n is the partition induced by \mathcal{K}_n . (That is, I belongs to K_n if and only if (I, t) belongs to \mathcal{K}_n for some t.) For each y in R let $N_n(y)$ be the number of members I of K_n such that y belongs to hI . That is,

(28)
$$
N_n(y) = \sum_{I \in \mathcal{K}_n} 1_{hI}(y).
$$

By (27) and (28)

(29)
$$
0 \leq N_n(y) \leq N_{n+1}(y) < \infty \text{ for all } y \text{ in } \mathbb{R} \text{ and all } n.
$$

Let E be the set of endpoints of the cells belonging to $K_1 \cup K_2 \cup \cdots$. Since E is countable so is hE . Consider any y that does not belong to hE . Given t in $h^{-1}y$ each K_n has just one member I that contains t since t must be interior to I and the members of a partition do not overlap. Thus by (28)

(30)
$$
N_n(y) \leq N(y) \leq \infty \text{ for all } n, \text{ and all } y \text{ in the complement of the countable set } hE.
$$

Consider any finite subset A of $h^{-1}y$. Take n large enough to make $1/n$ less than the distance between any pair of distinct points in A . For such n (24) and (26) imply that each member I of K_n contains at most one point of A. This together with (29) and (30) gives

(31)
$$
N_n(y) \nearrow N(y)
$$
 for almost all y as $n \nearrow \infty$

since the countable set hE is of measure zero. Now $\int_{-\infty}^{\infty} 1_{hI}(y)dy = M(hI) =$ $T(I)$. So integration of (28) gives

(32)
$$
\int_{-\infty}^{\infty} N_n(y) dy = \sum_{\mathcal{K}_n} T.
$$

 By the Monotone Convergence Theorem applied to (31) the integral in (32) converges to $\int_{-\infty}^{\infty} N(y) dy$. On the other hand the right side of (32) converges
to $\int_{\mathbf{r}} 1_C |dh|$ by (25) and (26). This gives (23). to $\int_K 1_C |dh|$ by (25) and (26). This gives (23).

4 The conversion formulas for integrators h of bounded variation

Theorem 2 Let h be of bounded variation on K with $dv = |dh|$. Given a function f on K define the function ϕ almost everywhere or R by

(33)
$$
\phi(y) = \sum_{t \in h^{-1}y} f(t).
$$

If f dv is absolutely integrable then ϕ is Lebesgue-integrable and

(34)
$$
\int_{-\infty}^{\infty} \phi(y) dy = \int_{K} 1_{C} f dv.
$$

PROOF. Case 1. $0 \le f \le k$ for some integer k.

Since C is a Borel set $1_C dv$ is integrable. So there is a function w on K such that

$$
(35) \t dw = 1_C dv = 1_C |dh|.
$$

w is monotone, $dw \geq 0$. w is continuous since $1_p dw = 0$ for every point p in K. Similarly since $1_C f dv$ is integrable there is a function F on K such that

$$
(36) \t dF = 1_C f dv = f dw.
$$

 ϕ is defined almost everywhere by (33) since $N < \infty$ almost everywhere by Theorem 1. To prove (34) we must show in terms of (36) that

(37)
$$
\int_{-\infty}^{\infty} \phi(y) dy = \Delta F(K).
$$

Under Case 1 (36) gives $0 \le dF \le k$ dw. Integration over any cell in K gives the corresponding summant inequality

(38)
$$
0 \leq \Delta F \leq k \ \Delta w.
$$

Define the cell summant G by

(39)
$$
G(I) = \frac{\Delta F}{\Delta w}(I) \text{ if } \Delta w(I) > 0, \text{ 0 if } \Delta w(I) = 0
$$

for every cell I in K . From (39) and (38) we get

$$
(40) \tG \Delta w = \Delta F
$$

$$
\quad \text{and} \quad
$$

$$
(41) \t\t 0 \le G \le k.
$$

By (19) in Lemma 5 (35) is just $T \sim \Delta w$ under definition (7). So $GT \sim G \Delta w$ by the boundedness (41) of G. By (40) this is just $GT \sim \Delta F$. So we can choose for each positive integer n a gauge δ_n on K such that $\delta_n < 1/n$ and

(42)
$$
\sum_{n=1}^{\delta_n} |\Delta F - GT| < 1/n.
$$

Choose a sequence of δ_n -divisions \mathcal{K}_n of K such that K_{n+1} refines K_n where K_n is the partition induced by \mathcal{K}_n . For each n define the function ϕ_n on R by

(43)
$$
\phi_n(y) = \sum_{I \in \mathbf{K}_n} G(I) 1_{hI}(y).
$$

Each ϕ_n is a linear combination of indicators of bounded measurable sets hI. So ϕ_n is Lebesgue-integrable and integration of (43) gives

(44)
$$
\int_{-\infty}^{\infty} \phi_n(y) dy = \sum_{\kappa_n} GT.
$$

Since \mathcal{K}_n is a δ_n -division (42) and (44) give the convergence

(45)
$$
\int_{-\infty}^{\infty} \phi_n(y) dy \to \Delta F(K) \text{ as } n \to \infty.
$$

Let B be the set of all t in C where the condition

(46)
$$
\frac{dF}{dw}(t) = f(t)
$$

fails to hold. B is dw-null by Theorem 17 in [4]. So $0 = 1_B dw = 1_B|dh|$ by (35) since B is a subset of C. That is, B is dh-null. So hB is Lebesgue-null by Theorem 2 in [6]. So is $N^{-1}\infty$ by (23) in Theorem 1. D is countable as is the

set E of endpoints of members of $K_1 \cup K_2 \cup \cdots$. Dismissing the Lebesgue-null sets hB, $N^{-1}\infty$, hD, and hE we conclude that for almost all y

(47)
$$
\begin{cases} h^{-1}y \text{ is a finite subset of } C - B \text{ covered for each} \\ n \text{ by the interiors of the cells belonging to } K_n. \end{cases}
$$

Consider any y in hK satisfying (47). $h^{-1}y$ is then a nonvoid finite set $\{t_1, \ldots, t_m\}$. Since \mathcal{K}_n is a $1/n$ -division it follows that for n sufficiently large each member I of K_n contains at most one point of $h^{-1}y$. For such n (43) takes the form

(48)
$$
\phi_n(y) = \sum_{i=1}^m G(I_{i,n})
$$

where $I_{i,n}$ is the unique member of K_n whose interior contains t_i . Since (46) holds on $h^{-1}y$, a subset of $C - B$ by (47), the definition (39) of G together with the condition that $M(I_{i,n}) < 1/n$ gives the convergence

(49)
$$
G(I_{i,n}) \to f(t_i) \text{ as } n \to \infty
$$

for $i = 1, ..., m$. By (33), (48) and (49)

(50)
$$
\phi_n(y) \to \phi(y) \text{ as } n \to \infty
$$

 for all y satisfying (47), hence almost everywhere. For y subject to the coverage condition in (47) the definition (43) of ϕ_n and the boundedness (41) of G give

(51)
$$
0 \leq \phi_n(y) \leq k \; N(y) \text{ for all } n.
$$

So (51) holds for almost all y. Since h is of bounded variation, N is Lebesgue integrable by Theorem 1. So (50), (51) and (45) give (37) by the Dominated Convergence Theorem. So Theorem 2 holds for Case 1.

Case 2. $0 \le f(t) < \infty$ for all t in K. Apply Case 1 to $f_k = k \wedge f$ for $k = 1, 2, \ldots$ With w satisfying (35) the Monotone Convergence Theorem gives for $f_k \nearrow f$

(52)
$$
\int_K f_k dw \nearrow \int_K f dw \text{ as } k \nearrow \infty.
$$

Define ϕ_k almost everywhere by

(53)
$$
\phi_k(y) = \sum_{t \in h^{-1}y} f_k(t)
$$

which is just (33) with f replaced by $f_{\bm k}$. Applying Case 1 to $f_{\bm k}$ we get (34)
for $f_{\bm k}$, namely which is just (33) with f replaced by f_k . Applying Case 1 to f_k we get (34) for f_k , namely which is just (33) with f replaced by f_k . Applying Case 1 to f_k we get (34)
for f_k , namely
(54) $\int_{-\infty}^{\infty} \phi_k(y) dy = \int_K f_k dw$.

(54)
$$
\int_{-\infty}^{\infty} \phi_k(y) dy = \int_K f_k dw.
$$

Since $f_k \nearrow f$, $\phi_k \nearrow \phi$ a.e. by (53) and (33). So the Monotone Convergence Since $f_k > f$, $\psi_k > \psi$ a.e. by (33) extracts.

(55)
$$
\int_{-\infty}^{\infty} \phi_k(y) dy \nearrow \int_{\infty}^{\infty} \phi(y) dy \text{ as } k \nearrow \infty.
$$

From (52), (54), (55) we conclude that $\int_{-\infty}^{\infty} \phi(y) dy = \int_{K} f dw$ which is just (34) for Case 2. Note that our proof also shows that for any Borei function $f \geq 0$ with $\int_K f \, dw = \infty$ (34) holds with both integrals infinite.

Case 3. $-\infty < f(t) < \infty$ for all t in K. Apply Case 2 to both f^+ and $f^$ and subtract the results to get the theorem for $f = f^+ - f^-$.

Note that in Theorem 2 we can replace f by $1_C f$. So the hypothesis on f is that $1_C f |dh|$ is absolutely integrable.

We turn now to the easily proved counterpart of Theorem 2 where C is we turn now to the easily proved counterpart of Theorem 2 where C is replaced by its complement D .

Theorem 3 Given h regulated on K let $r = r_+ + r_+$ on $K \times \mathbb{R}$ where $r_-(t, y)$ indicates that y lies strictly between $h(t-)$ and $h(t)$, and $r_{+}(t, y)$ indicates that y lies strictly between $h(t)$ and $h(t+)$. Given f on K such that $1_D f dh$ is summable the function θ is defined almost everywhere on $\mathbb R$ by

(56)
$$
\theta(y) = \sum_{t \in D} f(t)r(t, y)
$$

since the series is absolutely convergent for almost every y. Moreover, θ is Lebesgue integrable and

(57)
$$
\int_{-\infty}^{\infty} \theta(y) dy = \int_{K} 1_{D} f|dh|.
$$

PROOF. For each point p in D we have

$$
\int_{-\infty}^{\infty} f(p)r(p, y)dy = f(p)[\int_{-\infty}^{\infty} r_{-}(p, y)dy + \int_{-\infty}^{\infty} r_{+}(p, y)dy]
$$

= $f(p)[|h(p) - h(p_{-})| + |h(p_{+}) - h(p)|] = \int_{K} 1_{p}f|dh|$

by the last equation in (5). Apply (5) and (6) to both f^+ and f^- to get (57) and absolute convergence almost everywhere of the series in (56) from the Monotone Convergence Theorem. This also shows that (57) holds under (56) for all $f > 0$ on K, allowing infinite values in (56) and (57). (56) for all $f > 0$ on K, allowing infinite values in (56) and (57).

We can now combine the results of Theorems 2 and 3.

Theorem 4 Let h be of bounded variation on K with $dv = |dh|$. Let $q(t, y)$ indicate in $K \times \mathbb{R}$ that $h(t) = y$. Let $s = q + r$ with r as defined in Theorem 3. Let f be a function on K with f dv absolutely integrable. Then the transform \tilde{f} of f is defined almost everywhere on $\mathbb R$ by

(58)
$$
\hat{f}(y) = \sum_{t \in K} f(t)s(t, y)
$$

with the nonzero terms forming a finite sum for almost all y. Moreover \hat{f} is Lebesgue-integrable on $\mathbb R$ and

(59)
$$
\int_{-\infty}^{\infty} \hat{f}(y) dy = \int_{K} f dv.
$$

PROOF. Apply Theorems 2 and 3. Note that the definition (33) of ϕ is just (4). So (58) is the sum of (33) and (56) with $\hat{f} = \phi + \theta$. (59) is the sum of (34) and (57) since $1c + 1p = 1$. (34) and (57) since $1_c + 1_D = 1$.

Note that $s(t, y) = 0$ for y in the complement of \overline{hK} . So $\overline{f}(y) = 0$ for such y by (58). So the integral of \hat{f} in (59) may be taken over the bounded interval \overline{hK} instead of $\mathbb R$.

Except for y in hD we have $h^{-1}y$ contained in C which implies $q(t, y) =$ $1_{h^{-1}y}(t) \leq 1_{\mathcal{C}}(t)$ so $1_{\mathcal{C}}(t)q(t, y) = q(t, y)$. We also have $1_{\mathcal{C}}(t)r(t, y) = 0$ by the definition of r in Theorem 3. So $1_c(t)s(t, y) = 1_c(t)q(t, y) + 1_c(t)r(t, y) =$ $q(t, y)$ except for y in the countable set hD. Thus (58) and (33) give $1_c\bar{f}(y) =$ $\sum_{t \in K} f(t)q(t, y) = \phi(y)$ for all but countably many y. So $\widehat{1_Cf} = \emptyset$ almost everywhere which reduces (59) to (34). So Theorem 2 is the special case of Theorem 4 for $f = 1_C f$.

Except for y in hD we have $1_D(t)q(t, y) = 0$. Also $1_D(t)r(t, y) = r(t, y)$. So $1_D(t)s(t, y) = r(t, y)$ except for y in hD. Thus (58) and (56) give $1_D\bar{f}(y) =$ $\sum_{t\in K} f(t)1_D(t)s(t,y) = \sum_{t\in D} f(t)r(t,y) = \theta(y)$ for all but countably many y. So $1_Df = \theta$ almost everywhere which reduces (59) to (57). So for $f = 1_Df$ Theorem 4 reduces to Theorem 3 for h of bounded variation.

References

 $[1]$ S. Banach, Sur les lignes rectifiables et les surfaces dont l'aire est finie, Fund. Math. 7 (1925) 225-236.

- [2] J. Dieudonne, *Foundations of Modern Analysis*, Academic Press, New York
(1960). (1960).
- [3] S. Leader, What is a differential? A new answer from the generalized Riemann integral, Amer. Math. Monthly 93 no. 5 (May 1986) 348-356.
- [4] S. Leader, A concept of differential based on variational equivalence under generalized Riemann integration, Real Analysis Exchange 12 (1986-87) 144-175.
- [5] S. Leader, 1-differentials on 1-cells: A further study, New Integrals, Lecture Notes in Math. 1419, Springer (1990) 82-96.
- [6] S. Leader, Variation of f on E and Lebesgue outer measure of fE , Real Analysis Exchange 16 (1990-91) 508-515.
- [7] S. Leader, Conversion formulas for the Lebesgue-Stieltjes integral, Real Analysis Exchange 20 (1994-95) 527-535.