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 BOREL IMAGES OF SETS OF REALS

 Abstract

 The main goal of this paper is to generalize several results concerning
 cardinal invariants to the statements about the associated families of

 sets. We also discuss the relationship between the additive properties of
 sets and their Borei images. Finally, we present estimates for the size of
 the smallest set which is not strongly meager.

 1 Introduction

 The purpose of this paper is to study additive properties of sets of reals.
 By reals we mean the Cantor set 2^, real line M or interval [0,1]. We will be
 working in the space 2U with addition modulo 2, but most of the results would
 translate to the interval [0, 1] and M.

 We will use the standard notation. Let Q be the canonical countable dense
 set in the spaces mentioned above. It is the set of rationals in case of M or
 [0, 1] and a collection of 0-1 sequences that are eventually equal to zero in case
 of 2".

 We will often be using trees on 2<UJ . A subset T C 2<w is a tree if for every
 t £ T and n < |ť|, t'n G T. We will also require that T does not have terminal
 nodes. Let T'n denote the n-th level of T and for n < m and s G T'n let

 succT>m(s) = {t G T'm : s Çt}.
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 For a tree T and s G T let Ts = {t G T : s Ç t or t Ç 5} be the subtree
 determined by s.
 For a set A Ç 2<{Ji let

 [A] = {x G 2W : Vn xfn G >1 or x contains a terminal node from >1}.

 Note that in case of a tree, [T] coincides with the set of branches of T. On
 the other hand, for 5 G 2<u;, [ s ] is the basic open set in 2W determined by $.
 If T Ç 2<Ui is a tree as above and n G u we define the tree T ^ as

 s G <=>• 's' < n or 3ť G T (|s| = |ť| & s'[n , |s|) = ťf[n, kl))-

 Note that if we identify the set of rationals Q with -elements of 2W which are

 eventually equal to 0, then [T] -f Q = Un€u;[^n^]-
 ZFC* always denotes a finite, sufficiently large fragment of ZFC.
 Quantifiers V°° and 3°° denote "for all except finitely many" and "for

 infinitely many" , respectively.
 For a set H Ç 2" x 2W and x, y G 2" let ( H)x = {y : (x,t/) G if} and

 ( H)y = {x : (x, y ) G H}. By M and M we denote the <r-ideals of meager and
 Lebesgue measure zero sets respectively.

 Definition 1.1 Suppose that J is an ideal of subsets of the real line. A Borel
 set H Ç 2" x 2" is called a J -set if (H)x G J for all x G 2".
 We say that X Ç 2W is an R ? set if for every J -set H ,

 U w* *
 xex

 A set X Ç 2W is an SRJ set if for every J -set H,

 U w* e
 xex

 Consider the space 2W with group operation + defined as addition modulo
 2.

 A set X is J -additive if for every setF£j,X + F€j and is not
 J -covering if for every F G J , X + F ^ 2" .

 Let J* denote the ideal of J -additive sets.

 Traditionally the sets which are not Af-covering are called strongly meager
 while the sets which are not Ať -covering are called strong measure zero sets.
 Let S Z denote the ideal of strongly measure zero sets and SM the collection
 of strongly meager sets.

 It is well known that strong measure zero sets form an ideal whereas it is
 not clear whether the collection strongly meager sets is an ideal.

 We have the following easy observation:
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 Lemma 1.2 Suppose that J is a proper , translation invariant, ideal with
 Borei basis that contains all singletons. Then we have the following inclu-
 sions (writing for Ç):

 not J -covering
 s '

 RJ J* .
 ' S
 SRJ

 In particular,

 SZ SM

 S ' /* '
 RM M* R v Af* . □

 SRM SR *

 Definition 1.3 For any proper ideal J of subsets of X we can define the
 following cardinal coefficients:
 add(J) = min{|.4| : AC J, and 'JA £ J},
 cov( J) = min {'A' : A Ç J, and 'JA = X},
 non(J) = min{|Y| :Y Ç X, and Y J),
 cof[J) = min {H| :ACJ, and VB € J 3A e A B Ç A} .

 Following [20], let b and D denote the sizes of the smallest unbounded and
 dominating families in respectively.
 We have the following lemma:

 Lemma 1.4 If X is an R ^ set then every Borei image of X is an RJ set.
 If X is an SR^ set then every Borei image of X is an SR^ set.

 Proof. Suppose that X Ç 2U and let / : 2^ - y be a Borei function.
 Let if Ç 2W X 2W be a Borei J'-set. Define

 H = {(xiy):(f(x),y)eH}.

 It is easy to see that H is a Borei set and that

 U (*)/<-) = u ñ'- D
 xex xex

 Note that we have the following easy observation:
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 Lemma 1.5 X C2W is an R^-set iff for every Borel set H Ç 2W x 2U , such
 that ( H)x 6 J for all x E 2U ,

 2" ' (J W' * J-
 xex

 Proof. Implication («-) is obvious.
 On the other hand suppose that G is a Borei set such that ^WJxçxfâ)* ^

 G € J. Let H = H 0(2" x G). Clearly H witnesses that X is not an Ä^-set. □
 Note that

 Theorem 1.6 ([9] p. 434) Suppose that X C2U .
 If H Ç X x 2W is a Borel set then there exists a Borel set H Ç 2W x 2W

 such that H = HC)(X x 2").
 If f : X - > 2U is a Borel function then there exists a Borel function

 f : 2» -> 2" such that f = f'X. □

 Finally we will need the following theorem concerning representation of
 M- and Af-sets.

 Lemma 1.7 (Fremlin) Suppose that H Ç 2W x2w is a Borel set.

 1. Assume ( H)x is meager for all x. Then there exists a sequence of Borel
 sets {Gn : n Ç w} Ç 2W x 2W such that

 (a) ( Gn)x is a closed nowhere dense set for all x G 2" ,

 (b) H C'JnÇwGn.

 2. For every e > 0 there exists a Borel set B Ç 2W x 2W such that

 (a) H Ç B,
 (b) ( B)x is open for every x,

 (c) fi((B ' H)x) < e for every x.

 Proof. For completeness we present a sketch of the proof here.
 Let Q be the family of Borei subsets G of 2W x 2W such that (G)x is open

 for every x € 2" .
 (1) Let J be the a- ideal of subsets of the plane generated by Borei sets F

 such that ( F)x is closed nowhere dense for all x.
 Consider the family E of subsets E of the plane such that there are two

 Borei sets G, H of which G G Q, H € J and E AG Ç H. By induction on
 Borei class we will show that E contains all Borel sets. In particular, it follows
 that all wM-sets are in J', which will finish the proof.
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 Clearly E contains all open sets and is closed under countable unions. We
 want to show that E is also closed under complements.

 For a set G G Q let

 G' = {(x, y) : y is an interior point of 2W ' (G)x}-

 Note that (2W x 2W) ' (G U G') is a set whose vertical sections are closed
 and nowhere dense. It follows that in order to show that E is closed under

 complements it is enough to check that G' is a Borei set.
 Let {Un : n G w} be a recursive enumeration of a countable base for the

 family of open subsets of 2W .
 Note that the following are equivalent:

 1- (x,y) € G' ,

 2. 3n ( y€Unk Vz (z £ Un V (x,z) G )) (II}),

 3. 3n (yeUnk Vm (Un n Um = 0 V 3z (z € Um (x, z) £ G))) (S}).

 That shows that G' has aA¡ definition which means that it is a Borei set.

 (2) Let E be the collection of all sets H satisfying the conclusion of the
 theorem. We will show that E is a (t- algebr a containing all open sets. In
 particular, all Borei sets are in E. It is enough to show that

 (i) unions of finitely many rectangles are in E,

 (ii) ifA0ÇA1ÇA2Ç.-. are in E then 'Jn£u) An G E,

 (iii) ì{AoDAiDA2D'" are in E then fln€u; An G E.

 Condition (i) is clear. To show (ii) fix e > 0 and let Bn witness that An G E
 with £n = e2'n. Let B = Un€w Bn.

 (iii) Fix e > 0 and let Bn witness that An G E with e /2. For n G u; let

 Zn = {x-.tx{{An'A)x)<e/2}.

 PutS = U„€w((^n x2")nBn).D

 2 SRM sets

 In this section we will characterize SRM sets.
 We will need the following characterization of meager sets.
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 Theorem 2.1 ([5] Prop. 9) For every meager set FC 2" there exists xp G
 2U and a strictly increasing function fj? G w" such that

 F Ç B(fF,xF) = {ief : V°°n 3 j € [fF(n), fF(n + 1)) x(j) ¿ xF(j)}.

 Moreover, B(f,x) Ç B(g,y) if and only if

 V°°n 3k (ý(n) < f(k) < f(k + 1) < g(n + 1) &

 *r[/(*), f(k + 1)) = yr [/(*),/(* + !)))•□

 Theorem 2.2 1. add(M) is the least size of any family F such that
 there are no r, h G such that

 V/ g F V°°n 3k G [r(n), r(n + 1)) f(k) = h(k ),

 2. X is M-additive iff for every increasing function f G there exists
 g G and y G such that

 Vx € X V°°n 3k (g(n) < f(k) < f(k + 1) < g(n + 1) &

 *r[/(*),/(* + i)) = yr[/(*),/(* + i))),

 3. non(A4*) is the least size of a bounded family F Ç such that there
 are no r, h G w* such that

 V/ G F V°°n 3Jk G [r(n),r(n + 1)) /(*) = h(k).

 Ą. add(M) = min {non(Mic)ì b}.

 PROOF. (1) Follows readily from the Miller-Truss result that add (M) =
 min{cov(A/i), b} and the fact that cov(jM) is the least cardinal of any set
 FCww such that there is no A G w* such that

 VfeF3°°nh(n) = f(n).

 See [10] and [3].
 (2) Follows from 2.1 and the fact that B(f} x) -b z = B(f , x + z).
 (3) Similar to (2).
 (4) It was proved by Pawlikowski in [13]. It follows from (1) and (3) and

 the fact that add(.M) < b. □
 We will now characterize SRM sets.
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 Theorem 2.3 A set X Ç 2^ is an SRM set iff every Borei image of X is
 M-additive and every Borei image of X into u" is bounded.

 Proof. By 1.2, SRM sets are .M-additive. Thus by 1.4, all Borei images of
 SRM sets are -M-additive.
 To show the second part let F be a homeomorphism (Borei isomorphism

 is enough) between 2W ' Q and the set of increasing functions in u" . Let
 H = {(x, y) : y G B(F(x), x)}. Suppose that / is a Borei mapping of X into
 u" such that the family f(X) is unbounded. Without loss of generality we
 can assume that f{X) consists of increasing functions. Let Y = F~1(f(X)).
 By 1.4, Y is an SRM set and by 2.1,

 U W* 4 M.

 This contradiction finishes the proof of one implication.

 (<- ) Suppose that H Ç 2W x 2W is a Borei A4-set.
 Thus, by 1.7(1) we can assume that H = Un€u> where each set Gn has

 closed nowhere dense sections. Moreover, by combining 2.1 and 1.7(1), we can
 find a Borei mapping F such that for every z G 2a', F(z) = (fz , xz) 6 x 2W
 is such that ( H)z Ç B(f2ìx2). By the assumption, the family {fz : z 6 X} is
 bounded.

 Without loss of generality we can assume that fz = / for z E X. By 2.2(2),
 there exists a function g € oj" and real y € 2" such that

 Vz G X V°°n 3k (g(n) < f(k) < f(k + 1) < g(n -f 1) &

 r[/(*), /(* + 1)) = y'[m, /(* + 1))) •

 It is clear that

 [J (H)zÇB{g,y)eM,
 z€X

 which finishes the proof. □

 3 SR ^ sets

 In this section we characterize SR ^ sets.
 We start with the following well-known fact:

 Theorem 3.1 ([1], [13]) add(N) is the least size of any family F Ç uju such
 that there is no function S : u - ► [^]<u; with |S(n)| < n for all n, such that

 V/GF V°°n f(n) eS{n).
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 non(N*) is the least size of any bounded family F Ç u" such that there is no
 function S : u> - > M<u/ with |5(n)| < n for all n , such that

 V/6FV°°n f(n)eS(n).

 In particular , add(Af) = min{ non (Af*) , b}. □

 Note that the characterization of non(jV*) above is an easy corollary of the
 equivalence between (1) and (3) in the theorem below.

 We get a similar characterisation of Af-additive sets but the proof is much
 harder. We will present it here for completeness.

 Theorem 3.2 (Shelah [19]) Let X Ç 2W. The following conditions are
 equivalent :

 1. X is M -additive,

 2. for every increasing function f G uP there exists a tree T Ç 2<u> such
 that for all n, 'T'n' < f(n) and for every x G X there exists n such that
 X € [r<n>],

 3. for every increasing function /Gww there exists a sequence { In :nGw}
 such that

 (a) for all n, In C 2^n)''(n+1))|

 (b) for all n, |/„| < n}

 (c) Vx€X V°°n x'[f(n),f(n + 1)) €

 4 . there exists a function g 6 w" such that for every increasing function
 f E there exists a sequence {In : n £u} such that

 (a) for all n, /„ Ç 2Wn>''(n+1)>,

 (b) for all n , |/n| < g{n),

 (c) VxeX V°°n x'[f{n), f(n + 1)) 6

 Proof. (1) (4) The function g that we are looking for will be g{n) = n2n.
 Let / G be an increasing function such that for all n,

 f{n + 1) > 2/(0)+^ "+f(n)+n

 We will start with a construction of a measure zero set having strong combi-
 natorial properties.

 Lemma 3.3 For every n there exists a family {As : s G 2-^n)} such that
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 1. A, Ç 2('(n)''(n+1)) for s e 2¡{n),

 2. n([A ,]) = 1 - 2"n for s € 2^n'

 3. sets {x5 + [At] : s 6 2^")} are probabilistically independent for every
 family {xs : s £ 2^n)} Ç 2"1.

 Proof. Such a family may be constructed in many different ways. Below is
 one such construction.

 Fix a family of sets {/s : s G 2^n^} such that

 1- Is Ç [/(n),/(n + 1)) for all 5,

 2. Is fi It = 0 for s ^ t,

 3. 'I5 ' = n for all s.

 For 5 € 2'<n) let

 A, = {< G 2t"n>''(n+1» : 3 k € /, t(k) = 1 j . □

 Define a sequence of trees {Tm : m G w} using the following condition:

 Tm'f(rn) = 2/(m) and for n > m if 5 G Tmf/(n) then succTm,/(n+i)(s) = Hi-

 Note that

 K[Tm])= n (l-2-")m-^°l.
 n=m

 In particular, the set H = 2" ' Um€u) Pm] has measure zero. Since X is a null
 additive the set X + H has measure zero. Passing to complements we conclude
 that the set

 n (*+ ' upy) x£X ' m£uj /

 has positive measure.
 Let T* Ç 2<w be a tree such that fi([T^]) > 0 for all s G T* and

 chç n (*+ u^V x£X V m£u> /

 Note that if [T*] Ç ļjmgu; [Tm + then there is 5 G T* and m G w such
 that T? C Tm + X.
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 For s £ T* and m g w define

 XSim = {x € X :Tf CTm + x}.

 By the above remark X = U,eT'm€w X,,m.
 We will first show that each set Xs>m satisfies the conditions of (4).
 Fix š € 71*, m € w and let n > m, |š|. By extending, if necessary, we can

 assume that ļi('Tj]) > |//([š]).
 We will estimate the size of the set {x'f(n) : x £ Xj^}. Consider the

 finite tree

 ť= n ((r*r/(n+i))+«r/(n+i)).

 Observe that T has height f(n + 1) and contains Tj'f(n -f 1). Let t be any
 element of T'f(n). For every element x G Xj ^ there is a tx G Tm'f{n) such
 that x'f(n) + tx =t. Since tx depends only on x'f(n) the sets {x'f(n) : x G
 Xjtrñ} and {tx : x G Xj}m} have the same size. It follows that

 succř,/(n+i)(ť~) = n {succW(n+i)(M + x'f(n + 1) : X € Xj,,*} .

 The sequences tx are all different and therefore sets succj^ ,/(n+i)(tr) represent
 probabilistically independent sets. Thus their translations are also indepen-
 dent thus computing measures (relativised to [t') and using the fact that the
 sets on the right hand side are independent we get

 2 < MPf ]) ^ V ( [SUCCf,/(n+l) (*)] ) = (l -

 In particular we get that for all n > |£|, m,

 '{x'f{n) :x eXJtřň}'<2n.

 Let { Xk : k G oj} be enumeration of the family {XSim • 5 G T*,m G
 For each fc,m G w let = {x' [/(m),/(m + 1)) : x G Xk}. By the above
 argument

 Vi V°°m 'I^' < 2m+1.

 Let g(n) = n • 2n+1 for all n. Define for n G w,

 /n = |J{/n:fc<".l/nl<2n+1}.

 It is clear that the sequence { In : n £uj} has the required properties.
 Note that we have proved the following:
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 Lemma 3.4 Suppose that f G u/w is strictly increasing and that for each n
 we have a disjoint family {Is : s G 2-^n)} of subsets o/[/(n),/(n -I- 1)) of size
 n. Let

 H = {x G 2" : 3°°n '/j G /,ř/(n) x(j) = 0}.

 Then H has measure zero and if X is any set such that X + H has measure
 zero then there are sets Jn Ç 2-^n) such that 'Jn' < n2n and

 ViGX V°°n x'f(n) G Jn- □

 (4) - ► (3) Suppose that the function / G w" is given. Apply (4) to the
 function f'{n) = f(g(n)) for n Gw.

 Implication (3) (2) is very easy.

 (2) - > (1) Let H Ç 2" be a measure zero set. The following lemma is
 well-known:

 Lemma 3.5 There exists a sequence ( Fn : n G w) suc/i ř/iař Fn Ç 2n for
 neu, ¿2ñ=i l^nl • 2-n < oo and H Ç {x G 2" : 3°°n xfn G Fn}. □

 By 3.5, there exists a sequence (Fn : n G w) such that Ç 2n for n G u/,
 i 1^1 • 2"" < oo and H Ç C]m€u

 Let / G be an nondecreasing function with limn-Kx> f(n) = oo such
 that

 ģ/H-|Fn| Z_^ On Z_^ On
 n = l

 Let T be a tree from 3.2(2) for this function. Note that |T^n^ 'k' < 2nf(k)
 for all n,iGw.

 We have X + H Ç ^ • For every n,

 [T^] + H Ç fļ (J [T<n>] + [Ffc],
 m£uj k>m

 By the choice of / the measure of [T^n^]-h[Ffc] is bounded by 2n f(k) • 'Fk'-2~k.
 Thus

 ft ([T(n>] + H) < 2" • ¿ mjż+ 0.
 k=TTl

 Since n is arbitrary we conclude that X + H has measure zero which finishes
 the proof. □

 As a consequence we have:

 Theorem 3.6 (Shelah [19]) N* Ç M *.
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 Proof. Follows immediately from 3.2 and 2.2. □

 Theorem 3.7 A set X Ç 2W is a SR ^ set iff every Borel image of X is
 J'f -additive and every Borel image of X into u" is bounded.

 Proof. As in 2.3, we show that the Borei images of SR ^ sets are Af-additive.
 To show the second part let F be a homeomorphism between 2" ' Q and the
 set of increasing functions in ww . For an increasing function /Gw1" let

 B(f) = {x € 2W : 3°°n Vi < n x(f(n) + i) = 0}.

 Clearly, B(f) is a measure zero set. Let H = {(x, y) : y G B(F(x))}. Sup-
 pose that / is a Borei mapping of X into such that the family f{X) is
 unbounded. Without loss of generality we can assume that f(X) consists of
 increasing functions. Let Y = F~1(f(X)). By 1.4, Y is an SR ^ set. By a
 result of Miller ([11], lemma 5),

 (J
 x£Y

 To show the other implication we need the following fact.

 Theorem 3.8 (Recław [17]) Let X Ç 2W be a set such that for every Borel
 function X fx € there exists a function S : u> - > [w]<a' such that
 |5(n)| < n for all n and

 Vx ex V°°n fx(n) eS{n).

 Then X is a SR ^ set. □

 Now we are ready to finish the proof of the theorem 3.7. Suppose that F is
 a Borei mapping of X into u" . By the assumption the set F(X) is bounded.
 Let / be a function such that F(X) is bounded by the function 2'(n+1)~^n).
 Identify 2^n+1)""-^n) with 2^n)'-^n+1)) for all n. In this way we can identify
 F(X) with a subset of 2". Part (3) of 3.2 and 3.8 conclude the proof. □

 Note that the assumptions that Borei images of X into u" are bounded in
 2.2 and 3.7 are necessary. It follows immediately from the following theorem:

 Theorem 3.9 (Recław [18]) Assume Martin's Axiom. Then the real line is
 a Borel image of some M -additive set X. □

 In particular, the set X from 3.9, is AÍ- and .M-additive but. is neither a
 SR nor SRM set.

 It is also consistent (see [13]) that there exists a set X £ SR ^ such that
 all Borei images of X are null- additi ve.

 %
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 4 RM sets

 In this section we will study RM sets. All the results of this section can be
 found in [4]. They were also proved by Pawlikowski and Recław in [16] and
 [15] and Recław in [17].

 Definition 4.1 A set X Ç 2U has Rothberger's property (is a C" set) if for
 every sequence of open covers of X , { Qn : n £ u} there exists a sequence
 {Un :n£u} with Un G Gn such that X Ç |Jn€u, Un.

 Note that Rothberger's property is the topological version of strong mea-
 sure zero. We have the following:

 Theorem 4.2 (Fremlin, Miller [12]) The following are equivalent :

 1. X Ç 2W has Rothberger's property

 2. X has strong measure zero with respect to every metric which gives X
 the same topology. □

 Let C" be the collection of subsets of which have Rothberger's property.
 It is easy to see that C" is a <r-ideal.

 Theorem 4.3 (Bartoszyński, Judah, Pawlikowski, Recław [4], [17], [16])
 The following conditions are equivalent:

 1. X is an Rm set,

 2. for every Borei function x fx £ u" there exists a function g £ uj"
 such that

 "ix eX 3 °°n fx(n) = g(n).

 3. for every Borei function x - > (Yx , fx) 6 [u]w x there exists a g Gww
 such that

 VxEX 3 °°n E Yx fx(n) = g(n).

 4 . Every Borei image of X has Rothberger's property.

 As a consequence we get:

 Theorem 4.4 (Bartoszyński, Judah [4])

 cf(cov{M)) > add(RM ) > add(C") > add{M).
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 5 sets

 In this section we will study sets. Most of the results of this section were
 obtained independently (and earlier) by Pawlikowski.
 Let us start with the following definition.

 Definition 5.1 A set G Ç 2W is called small if there exists a sequence of
 disjoint intervals {In : n 6 u>} and a sequence {Jn : n 6 w} such that for all
 nEu,

 1. Jn Ç 2in,

 2. |7„| • 2_l/n' < 2"2n,

 3. GC{ ¡r€2<" : 3°°n x|7n £ Jn}-

 We denote the set {i € 2W : 3°°n x'In € J„ } by (/„, o-
 For a function /£u" such that f(n) > 0 for all n and a series J3n=o <

 oo let

 Xf=]ļ f(n)
 n£uj

 and

 E/ = {s€(M<r;!fg!<£n}.
 For the rest of this section we will assume that en = 2~n for all n.

 Note that by setting /(n) = 2'/n' and S(n) = Jn we can identify the set

 { xe2 » :3°°nx'IneJn}

 with the set {z G Xj : 3°°n z(n) G ¿"(n)}.

 Definition 5.2 Let H be the ideal of all sets X Ç 2W such that every Borel
 image of X into is bounded.

 By replacing "Borei" by "continuous" we get a weaker property introduced
 by Hurewicz as E ** ([8])

 We will start with the following forcing characterization of R ^ sets.
 Recall that for a model M, R (M) denotes the set of random reals over M .

 Theorem 5.3 X is an -set iff for every countable elementary submodel
 model M ■< H( A) there exists a real z such that z is random over M[x] for
 xeX.
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 Proof. Recall that H( A) is the collection of sets hereditarily of size < A. If
 A is a regular, uncountable cardinal then H ( A) is a model for a large fragment
 of ZFC. Moreover, in this context, M[x ] is a "closure" of M U {x}.
 (<- ) Let H be an Af- set. Choose M containing the code of H and let z be

 as above. Then z £ 'Jxex(H)x>

 (- >) Let M ķ= ZFC* be a countable model. Consider the set

 ii = {(*,y) :yP(%])}-

 M is countable and can be coded as a real. Note that y ¿ R(M[x]) is equivalent
 to the statement "there exists a code for a null set F G M[x] such that y G F" .
 Since M is countable this statement is arithmetical (in M ). It follows that H
 is a Borei set. Let z be such that z £ ( H)x for x G X. Clearly z is the real we
 are looking for. □

 Theorem 5.4 Suppose that X G The following are equivalent :

 1. X is an set,

 2. for every function f € u" and every Borei mapping x Sx G £/ there
 exists a function g G Xj such that

 Vx ex V°°n g{n)<¿sx{n).

 Proof. Implication (1) - > (2) is very easy because H = {(x, <;) : 3°°n g(n) G
 Sx(n)} is a Borei Af -set in X x Xj.

 (2) - ► (1) The proof is based on techniques from [2].
 Suppose that ff Ç 2W x 2W is a Borei Af-set.

 Lemma 5.5 There exist increasing interleaved sequences {nki mk : k G w}
 and families {«/£, G w} such that for all k G u,

 1- ¿k Q 2'nfc,nfc+1), Jjļ? C 2[mk>mk+lif

 2. mappings x { Jļ : k G w} and x : k G w} are Borei,

 3. 'JĘ' • 2n"-nk+i < 2'2k, I J*' • 2T7lfc~mfc+1 < 2~2k for all x G X,

 4- {H)x ç ([nA,nfc+1), J^)~=0U ([mfc> mk+1),
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 Proof. By 1.7(2), we can find a sequence of Borei sets {Bn : n € w} such
 that ( H)x Ç (fine* for x € X and

 Vx€X*~nn({Bn)t)<ķ.
 Thus we can work with Z?n's rather than with H .
 The rest of the proof is the repetition of the proof of theorem 2.2 in [2]

 (using the fact that X G %)• □
 As in [2], define for k and x G X sets

 Sļ = {s € 2[nk'mt) : s has at least 2nk^-mk~k extensions in J¡¡}

 and for k > 0

 S% = ļs G 2^nk,mk^ : s has at least 2n*"~mfc-1~/c extensions in •

 The mapping x {S£ U € a;} is Borei. Moreover, {S% U S% : k G
 a ;} G E/, where f(k) = 2m*~nfc. Therefore, by the assumption about X there
 exists a real z such that

 VxGX V00* zí[nfc, mk) £ Sxk U 5?.

 Define îot x £ X and l;Ew,

 7* = |s € : zr[nfc,mfe)^s € Jk or s~ z'[nk+i,mk+i) € ^fc+i} •

 As before we easily check that the assumption about X yields that there exists
 a real y such that

 VxGX V°°*yr[mfc,nÂ+1)íí J?.

 Now define ? G 2" as

 v _ f z(n) if n G [n*, m*) for some
 * ' ~~ ļ y(n) if n 6 [m^, rifc+i) for some k

 As in the proof of 2.2 in [2] we check that

 U(i/)x.ū
 xčX

 Theorem 5.6 (Pawlikowski [14]) Suppose that X G Tí. Then X G iff
 for every measure zero set E G Aít EC 1 X G •
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 Proof. The implication (- ►) is obvious.

 To show the other implication consider the space Xf = rin€u> f(n ) equipped
 with its standard product measure.
 We will work in the space 2W x Xf.
 By 5.4 it is enough to show that for every function f and every Borei

 mapping x ^ 51 6 E/ there exists a function g G Xj such that

 VxGX 'f°°ng{n) <£Sx{n).

 Suppose that a function / and a Borei mapping as above are given. Let
 H Ç 2W x Xf be the Borei set such that ( H)x = {h G Xj : 3 °°n h(n) G Sx(n)}.
 Construct a sequence of elements of Xj, {gn : n S u} and a sequence of

 measure zero sets { En : n £ cj} such that

 1. En = {x e X : gn e ( H)x } for all n,

 2- gn+ 1 € Xf ' U {(H)x : ar € E0 U • • • U En}.

 The existence of these sequences follows from Fubini's theorem and the as-
 sumption about X. Note that the set (J{(i/)x : x G ¿?o U • • • U En} does not
 have full measure.

 For x E X define hx G w" as follows:

 hx(n) = min {k : V; > k gn(j) £ Sx (j)} for nGw.

 Note that hx(n) is defined for all except finitely many values of n.
 Since the mapping x hx is Borei we can find an increasing function

 /iGww such that hx <* h for all x G X. Let

 g(k ) = gn{k) for h(n) < k < h(n -j- 1).

 It is easy to see that
 Vx £ X V°°n g(n) £ Sx (n)

 which finishes the proof. □
 As a corollary we get:

 Theorem 5.7 Suppose that X DE E SR^ for every E G M . Then X G ■

 Proof. It is enough to show that X £ 7i. Suppose that F : 2U - > lj" is a
 Borei mapping. We can find a sequence of compact sets {An : n G such
 that

 1. F'An is continuous,
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 2. Ungo; An has full measure.

 Let E = 2W '|Jn€u; An- Since ED X G SR^ , it follows from 3.7 that F(EC'X)
 is bounded. On the other hand, F{'Jn€wAn) is also bounded, which finishes
 the proof. □

 A set X Ç 2" is a Sierpiński set if X D H is countable for every measure
 zero set H Ç 2" .

 Theorem 5.8 (Pawlikowski [14]) Every Sierpiński set is strongly meager.

 Proof. All countable sets are in SR ^ and all R^ sets are strongly meager. □
 We do not know if the sets form an ideal. In fact we do not know if

 R ^ fi U is an ideal. We only have the following result:

 Theorem 5.9 If R^ C 'U is an ideal then R^ O 7Í is a cr-ideal.

 Proof. Suppose that {Xn : n G w} is an increasing sequence of elements of
 R^ Mí. We will show that X = (Jneu; ^ n ^ ^ • We use 5-4. Let / G
 and suppose that x Sx G E/ is a Borei mapping. By the assumption, for
 every n there exists a function gn G Xj such that

 V*EXn V°°kgn(k)¿Sx(k).

 As before, for x G X define hx G as follows:

 hx(n) = min {fc : V j > k gn(j) £ S* (i)} for nGw.

 Since mapping x hx is Borei we can find an increasing function h G
 such that hx <* h for all x G X. Let

 9{k) = gn{k) for h(n) < k < h(n + 1).

 It is easy to see that
 VxGX V°°n g{n) Sx {n)

 which finishes the proof. □

 6 Strongly meager sets

 In this section we will estimate the smallest size of a set which is not strongly
 meager.

 We start with the following forcing characterization of strongly meager
 sets.

 Theorem 6.1 The following are equivalent:
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 1. X is strongly meager ,

 2. for every countable model M ķ= ZFO there exists s such that X + s Ç
 R(M),

 3. for every measure zero set H Ç 2W x 2W there exists s such that

 (J (H)x+, ï T.
 x£X

 Proof. (1) - y (3) Suppose that H Ç 2W x 2W has measure zero. Let y be
 such that ( H)y has measure zero. Since X is strongly meager there exists s
 such that (X + s) H ( H)y = 0. In particular, y £ (Jxçx (ff w

 (3) - > (2) Let G = 2" ' R (M) and let H be such that ( H)x = G -h x. Find

 s € 21" ' (J {H)x = 2w'{X + G).
 x£X

 Clearly 5 is the real we are looking for.

 (2) - > (1) Suppose that G is a null set. Let M be a countable model such
 that G G M. Note that if x + 5 G R(M) then x + s £ G. □

 Definition 6.2 For f G w" define the following cardinal invariants:

 cov(Ef) = min{|.4| : A Ç E; k Vg G X/ 35 G A 3 °°n g{n) G S(n)}

 and

 cof{Ef) = min{|^4| : A Ç £/ & V^r G 3S G A V°°n g(n) G S(n)}.

 Let non(SM) be the least size of a set which is not strongly meager.

 We start with the following fact:

 Theorem 6.3 (Shelah, Brendle-Just) There exists a measure zero set H Ç
 2W such that for every set Y , if Y + H has measure zero then there is z such
 that Y -h z Ç H .

 Proof. We shall describe how to modify the set constructed on page 543 to
 get the required set H .

 Lemma 6.4 There exists an increasing function f G w" and a sequence {Un :
 nGw} such that for all n G w:
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 1. f(n + 1) > 2'(0)+-+><n>+n,

 2. U„ Ç
 i

 3.

 ( 1 '/(n)

 I ¡or every X ç 2"(n)"'<"+1», |X| < n2n+l, X + U„ #

 Proof. Suppose that /(n) and i/n-i have been chosen. Let k be such that

 ( i'n2"+1 ( iy(n)
 ( i1 2*) i'n2"+1 -1 ( V 2»)

 and

 Define /(n+1) such that /(n+1) > /(n)+fcn2n+1+n2-^n). Divide [/(n),/(n+
 1)) into n2n+1 pairwise disjoint intervals of size k , say {J,- : ¿ < n2n+1}.

 Let

 Un = {s e : Vi < n2n+1 3j € «(¿) = l} for n € w.

 By the choice of fc we have

 / ļ '/(n)

 e([c.]) > i - (i - ~) ļ

 Suppose that X Ç 2tf<"> /<"+'», |X| < n2"+1. Let X = (x, : i < n2"«}.
 Define z* such that = XifJi for every t.

 It is easy to see that x* £Un + X. O
 As in 3.3, define sets {Is : s G 2^n^} such that

 !• h Ç [/(rc),/(n + 1)) for all s,

 2. Is H It = 0 for 5 ^ ť,

 3. 1/, I = n - 1 for all s,

 4. for every 5 £ 2^n) there exists 1 < n2n+1 such that /s Ç Jt-.
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 For s € let

 A, = {< G Un : 3k. e I, t(k) = 1} .

 Note that the choice of k and (l)-(4) above guarantee that the sets As
 satisfy the conditions of 3.3 (except that the measure of [As] is different).

 Let Trn1 s and H be defined as in 3.2. ^
 Let T = Note that UmP™] Ç Q ~ł~ 2"1-
 As in the proof of 3.2, we show that if y is a set such that Y + H has

 measure zero then there exists a sequence {In :n^w} such that

 1. for all n, In Ç2^n^n^'

 2. for all n, |/n| < n2n+1,

 3. Vxey V~n«r[/(n),/(n + l)) G /n.

 Note that if Y has the above property then Y + T 4- Q ^ 2W . This is
 guaranteed by 6.4(4). Let, z E 2W ' (7 + T + Q). Clearly

 z + y ç T ' {Ť + Q) ç 2" ' (J[Tm] = H,
 m

 which finishes the proof. □
 Now we can characterize strongly meager sets.

 Theorem 6.5 min/ coi/(E/) < non(SM) < min / cof(E/).

 Proof. The first inequality is proved like 5.4 (see [2] for details).

 Fix / G . Let A Ç E/ be a family of size cof(E/) such that

 VgeXf 3SeA V°°n g(n) GS(n).

 By increasing / and doing some elementary coding we can assume that there
 is a function / such that f(n) = 2^n+1)~-^n) for all n. For S G E/ define

 Ps = I® e V : Vwn x'[f(n),f(n + 1)) € 5(n)| ,

 where S(n) is treated as a subset of 2^n)-^n+1)). Let H be the set from 6.3.
 Note that 6.4 gives us enough freedom to ensure that Ps + H has measure

 zero for all S G E/. This is because in 6.4(4) we can replace the clause
 'X' < n2n+1 by 'X' < #(n), where g is an arbitrary fixed function, (cf. [6],
 lemma 9).

 For each S £ A choose xs G such that Ps + xs Ç H . We claim that
 X = {xs : 5 G .4} is not strongly meager and show that X + H = 2U .
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 Suppose that y G 2" ' (X + H). Let S G A be such that y G Ps- Now
 yePsÇH + xsÇH + X. Contradiction. □

 A forcing notion V has Laver property if it does not "increase" cof(E/). In
 other words, if V has Laver property then for every g G V7 C'X¡ there exists
 S G V H E/ such that g(n) G S(n) for all n.

 In this language we can formulate the previous theorem as follows:

 Theorem 6.6 Suppose that V' is a generic extension of V obtained by a
 forcing notion which has Laver property. Then the set V fi 2" is not strongly
 meager in V'. □
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