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 This is a survey paper on some classical trigonometric families of
 thin sets (Dirichlet sets, weak Dirichlet sets, N-sets, No-sets, A-sets,
 U-sets, and two recently introduced families of B-sets and of Bo-sets),
 the relationships between them, and basic closure properties of these
 families, presented as complete answers to ten questions. However, a
 large part of the paper is devoted to presentation of new results. In
 addition, we tried to give an overview of the best known estimates for
 cardinal characteristics for these families and for the families of par-
 ticularly "permitted" sets, using small uncountable cardinals recently
 studied in infinite combinatorics. Almost all results are accompanied
 by brief notes on the investigations preceding them. Finally, we study
 properties of families of thin sets related to the Rademacher and Walsh
 orthogonal systems of functions. Some of these families are studied for
 the first time.
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 The paper is intended to be a survey of the topics announced in the title,
 starting with the very beginning of the research area, giving a brief survey of
 its development, and including recent unpublished results. The first section
 contains a brief survey of the results which started the investigation of thin
 sets. Sections 3-5 summarize the recent tools and results of set theory which
 will be used in our considerations. Sections 6-9 present rather classical results
 concerning thin sets of trigonometric series, in spite of the fact that some of
 them are quite recent. Section 10 is an interlude showing that we did not
 forget any reasonable type of thin set. In Section 11 we give complete answers
 to a set of ten basic questions about classical families of thin sets. Sections
 12-16 and 18 are devoted to the computation of cardinal characteristics of
 these families of thin sets and present some related results. They contain both
 recent and new results. Actually, the results presented in Sections 12 (12.2-
 12.6), 13 (13.3-13.5), 14, 15, 16 (16.1-16.4) and 18 (18.3-18.7) are published
 for the first time. Some of them were presented at the conferences "Problems
 in Real Analysis" in Łodź, July, 1994 [BL2] and "Summer School on Real
 Functions Theory" in Liptovský Ján, September, 1994.
 We tried to ascribe each result to its author or authors by indicating the
 corresponding bibliographic source preceding its formulation (either as a quo-
 tation or as a theorem) .

 1 Brief history

 In 1807, Joseph Fourier submitted a basic paper on heat conduction to the
 Academy of Sciences of Paris. The paper was judged by J. L. Lagrange,
 P. S. Laplace and A. M. Legendre and was rejected. In 1811, Fourier submitted
 a revised paper for a competition of the Academy. He won the prize, but the
 paper was not published at that time because of a lack of rigor. The first part
 of this revised paper was incorporated into one of the classics of mathematics,
 Théorie analytique de la chaleur [Fou] (see [Kli] for more details). In this book
 (and already in the 1807 paper), using some geometrical reasoning, Fourier
 concluded that every function could be represented as

 oo

 (1.1) -f ( an cos 2tttix + bn sin 2irnx) ,
 n = l

 for X G (0, 1). He also claimed that this series is convergent for any function
 /, whether or not one can assign an analytic expression to / and whether
 or not / follows any regular law. Of course, that is not true. Nor did the
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 mathematical authorities of that time believe it - that was one of the reasons

 Lagrange rejected the paper. However, mathematicians of the 19th century
 started to study the possibility of such a representation (1.1). Let us remark
 that B. Riemann introduced his notion of integral while studying Fourier series,
 and many important results by U. Dini, P. G. Lejeune Dirichlet, and others
 are connected with this topic.

 A series (1.1), where1 a„, 6n G n = 0, 1, . . . , is called a trigonometric
 series.

 In 1870 G. Cantor [Cal] proved the first uniqueness result:

 If the trigonometric series (1.1) converges to 0 for all x G [0, 1],
 then all an,bn, n = 0,1,..., a re equal to 0.

 Later, Cantor realized that the theorem remains true when the words "for
 all" are replaced by "for all but finitely many" . Finally, Cantor extended the
 theorem to the case of a countable set of finite Cantor-Bendixson rank' of ex-

 ceptions, introducing in [Ca3] the notions of "Wertmenge" and "Punktmenge" .
 This paper actually started the development of set theory.

 Cantor's result was generalized by W. H. Young [You]:

 Young Theorem 1.1 If the trigonometric series (1.1) converges to 0 for ev-
 ery x G [0, 1] outside a countable set , then all an,bn, n = 0,1,..., are equal
 to 0.

 In 1871 Cantor [Ca2] proved for a closed interval, and H. Lebesgue proved
 in the general case (for the proof see [Ba2, KL, Zy 1]) :

 Cantor-Lebesgue Theorem 1.2 If the trigonometric series (1.1) converges
 on a set of positive Lebesgue measure, or even if

 lim (an cos 2ir nx + bn sin 2n nx) = 0
 n-f oo

 on a set of positive Lebesgue measure, then

 lim (|a„| + |6„|) = 0.
 n - ►oo

 In 1912 A. Denjoy [Den] and N. N. Luzin [Lul] independently proved the
 following

 Denjoy-Luzin Theorem 1.3 If the trigonometric series (1.1) converges ab-
 solutely on a set of positive Lebesgue measure, then

 ^(Kl + I b„') < oo,
 n= 1

 i.e. the trigonometric series (1.1) converges absolutely everywhere.

 ^or simplicity, in the whole paper, we assume bo = 0.
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 In 1915 Luzin [Lu2] showed

 Luzin Theorem 1.4 If the trigonometric series (1.1) converges absolutely
 on a non-meager set then

 f>»| + | 6„|)<oo.
 n = l

 An obvious question to ask is: are the results presented in these theorems
 in some sense the best possible? Does the conclusion of Young's theorem hold
 true for some uncountable set? Do the conclusions of the Cantor-Lebesgue
 and Denjoy-Luzin theorems hold true for some set of measure zero? Does
 the conclusion of Luzin 's theorem hold true for some meager set? Is there a
 convenient characterization of the sets for which the assumption of convergence
 in each of the above four theorems is sufficient for the conclusion?

 2 Notations and terminology

 We work in Zermelo-Fraenkel axiomatic set theory with the axiom of choice,
 ZFC; see e.g. [Jech]. We believe that this theory is consistent; i.e. one cannot
 prove in ZFC both a sentence and its negation. Then for any sentence <p we

 . have three mutually exclusive possibilities: (1) <p can be proved in ZFC, (2) its
 negation -*<p can be proved in ZFC, or (3) neither <p nor its negation -up can
 be proved in ZFC. If we want to show that some (p can be proved in ZFC, we
 simply write the proof or give an adequate reference for such a proof. If we
 want to show that (p cannot be proved in ZFC, usually we construct a model of
 ZFC in which -*<p holds true. As is customary in contemporary mathematics,
 by saying "holds true" we mean "can be proved in ZFC" .

 We use standard set-theoretic terminology and notations such as those
 of [Jech, Vau]. If (p is a formula and X is a set then the set of all elements of
 X satisfying the formula tp will be denoted by

 {x e X : <£>(x)},

 and the set of all subsets of X satisfying the formula <p will be denoted by

 {xÇX : ¥>(*)}.

 Similarly, if / is a function defined for all x which satisfy <p, we denote the set
 (if it does exist) of those /(x)'s by

 {/(*) : <p{x)}-
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 The set of all natural numbers 0,1,2,... will be denoted by a;. If n G w,
 then we identify n with the set of all smaller natural numbers, i.e.

 n = {i G u> : i < n}.

 The set of all functions defined on the set X with values in the set Y is denoted

 by XY . For example, "2 is the set of all infinite sequences of O's and Vs. 'X'
 is the cardinality of the set X. In particular, Ko = |u;| and c = |R|. The set X
 is said to be finite (countable) if 'X' < No (|^| < No)-

 Let us recall that a sequence of real- valued functions {/n}£L o Quasinor-
 mally converges to a function / on a set X if there exists a sequence of
 positive reals {£n}£ko converging to zero such that

 (V« G X)(3k)(Vn > *) I fn(x) - f(x)' < en.

 Quasinormal convergence2 was introduced and studied in [BZ2, CL]. The
 main property of quasinormal convergence that we shall need is the following
 simple

 Theorem 2.1 If the sequence of real-valued functions {/n(z)}£L o quasinor-
 mally converges to 0 on a set X, then there is a strictly increasing sequence
 {n/jjjlo of natural numbers such that the series fnk(x) absolutely con-
 verges on X.

 We denote by ||x|| the distance of the real x to the nearest integer, i.e.

 ||x|| = min{{i},l -{*}},

 where {x} is the fractional part of the real x. One can easily see that

 ll* + y|| < 11*11 + Ml.

 2||x|| < |sin7Tx| < 7t||x||

 for any reals x, y. So, we can in our considerations mutually replace the
 functions ||x|| and |sin7rx|.

 We shall need a modification of the classical Dirichlet-Minkowski Theorem

 (which is a special case of the following theorem with nt- = i¡ see e.g. [Ba2, LP]).

 Theorem 2.2 Let {n¿}£í0 be a strictly increasing sequence of natural num-
 bers. For any e > 0 and any reals xi, . . . , x*, there are i,j such that 0 < i <
 j < UA)* and

 (2.1) ||(nj - n,)x/|| < 2e for I = 1, 2, . . . , Ar.

 2 A. Császár and M. Laczkovich call it equal convergence.
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 Proof. We can assume that e < 1/2. Let m Eu be such that e < 1/m < 2e.
 We divide the fc-dimensional cube [0, 1]* into t = mk equal cubes of side 1/m.
 By the pigeon-hole principle, from the t + 1 elements

 ({tÎjXi }, • • • j {^»^/c}) j i = 0, 1, . . . , t

 at least two are in the same cube; i.e., there are i ^ j such that (2.1) holds
 true and | j - i| < mk < ('/e)k .

 □

 For a subset A of [0, 1] and a real x, we denote the shift of A by

 x + A = {{x H - a} : a £ A}

 and the expansion of A by

 xA = {{xa} : a G A}.

 3 Small and thin sets

 Let T be a family of subsets of a set X. A subfamily Q C T is called a basis
 of T iff

 ŅA£T){3B eG)AÇB.

 If T is a family of subsets of a topological space, then we speak about a Borei
 basis, an basis, etc., if the basis Q consists of Borei sets, Fa sets, etc.,
 respectively. From the family T , we may construct a new family Ta by

 To = { (J An : An £ T for n G w}.
 n£ui

 The typical small subsets of the real line or the unit interval [0, 1] are the
 meager (= of the first Baire category) sets or the negligible sets (= sets of
 Lebesgue measure zero). Since we shall use them often, we denote

 /C = {A Ç [0, 1] : A is meager},

 C = {^4 Ç [0, 1] : A is negligible}.

 The families JC and C have an F^ basis and a G<j basis, respectively.
 Other small sets of real analysis are the porous sets. We assume that

 the reader is familiar with L. Zajiček's paper [Zaj], and we use its terminology
 (actually we need only three notions: porous, bilaterally porous and <r-porous).
 The family of porous subsets of [0, 1] will be denoted by V. The family of a-
 porous sets is Va- Every <r-porous set is contained in a <r-porous G sa set; i.e.,
 Va has a Gs<? basis, see e.g. [FH].
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 A. Rajchman [Raj] introduced the notion of an H-set (H in honour of
 G. H. Hardy and J. E. Littlewood, who considered this kind of set): a set A
 is called an H-set if there are an increasing sequence of integers {nfc}jķĻ0 and
 0 < a, b < 1 such that

 0 < {rikX - a} < b} for x G A and k = 0, 1, 2, -

 One can easily see that an H-set is a nowhere dense set of measure zero. On
 the other hand, every H-set is contained in a perfect H-set. If % denotes the
 family of all H-sets, then %a denotes the family of all countable unions of
 H-sets. Thus we have

 UaCKC'C.

 N. K. Bary [Ba2] presents an unpublished result of I. I. Piatetskiï-Shapiro
 which implicitly contains (see also [Zaj])

 Theorem 3.1 Every H-set is ( bilaterally ) porous.

 Let us recall that a family T of subsets of a set X is an ideal on X if

 a) 0 G T, X <£ T,

 b) if A € T, B Ç A, then B G T,

 c) if A,B £ T , then A U B G T.

 An ideal T is called a a-ideal if

 d) whenever An G T for n G w, then Une" G T.

 It is well known that /C, £, V0 are <r-ideals.
 We usually say that a set A C X is small with respect to some ideal T on

 X if AeT.

 A very important indication of the bigness of a set A Ç [0, 1] is whether
 or not it contains a perfect subset. However, this property is not preserved by
 intersection, and some perfect sets are small (meager, measure zero, porous).
 A set A C [0, 1] is called a Bernstein set if neither A nor [0, 1] ' A contain a
 perfect subset. It is well known that

 the axiom of choice implies the existence of Bernstein sets.

 The notion of a Bernstein set is not a notion of smallness in the above sense.

 As we shall see, the families of exceptional sets considered in trigonometric
 series theory usually do not form ideals, although the sets contained in them
 are often (not always) small in the above-mentioned sense. With these families
 in mind, we define: a family T of subsets of a set X (we consider only the case
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 X = [0, 1]) is called a family of thin sets if T satisfies conditions a) and b)
 of the above definition.

 Let J be a family of thin subsets of X. Let AyB Ç X. According to
 J. Arbault [Arb], the set A is said to be T-permitted for the set B iff
 A U B G T. The set A is T- permitted iff it is ^"-permitted for every B G T .
 We denote

 Prm(^*) = {A Ç X : A is ^"-permitted}.

 The following simple facts are implicitly contained in [Arb] :

 1) Prm(^*) is an ideal,

 2) Prm(^) C T,

 3) Prm(^*) = T if and only if T is an ideal.

 4 Cardinal characteristics

 Let T be a family of subsets of a set X. The cardinal characteristics of the
 family T are defined as follows:

 non(^) = min{|A| .ACXkA^T},

 add(JF) = min{|a| : Q Ç T k (J Ê7 ¿ T),

 cov(^) = min{|Ç| :Ģ CT k X ç{JQ),
 cof(T) = min{|^| : G Ç T & Q is a basis of T}.

 If the family T contains all singletons, X ^ T and ļj T ■=■ X, then one can
 easily show that add(^) < cov{T) < cof(^) and add(^) < non(^") < cof(F).

 The other cardinal characteristics we will consider are defined using par-
 tially ordered sets without minimal elements. A subset A of a partially ordered
 set P, < is open if for every x G A and y G P, if x > y then y E A. A subset
 A of a partially ordered set P, < is dense in P if for every x G P there exists
 a y < x, y £ A. A subset G of P is called a fìlter if for any x,y £ G there
 exists a z £ G such that z < x and z <y' and, for any x G G if x < z, then
 z G G. Two elements x, y of a partially ordered set P, < are called disjoint if
 there is no z G P such that z < x and z < y. A partially ordered set P, < is
 said to be C.C.C . if every subset of P consisting of pairwise disjoint elements
 is countable.

 We recall that m is the least cardinal k. for which there exists a C.C.C,

 partially ordered set P, < and a family : £ < >c} of dense subsets of P
 such that there is no filter on P meeting every Aç, £ < k.
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 It is easy to show that No < m < c, see e.g. [Fri]. The assumption m = c
 is called Martin's Axiom.

 The family of all infinite sets of natural numbers is denoted by

 [uĄu = {A Ç ut : A infinite}.

 If L G M" we denote by L(n) the nth element of L (starting from 0); i.e.,
 L = {L(n) : n G u>} and L(n) < L(n + 1) for every n £ u. For X,Y Çu
 let X Ç* Y denote that the set X ' Y is finite. Let T C [u]w be a family of
 infinite sets of natural numbers. We say that an infinite set B C u is a pseudo-
 intersection of the family T if B Ç* A for all A G T. The family T has the
 fìnite intersection property , f.i.p. if for any finite system A' , . . . , An Ç.T ,
 the intersection fìILi infinite- A family T of infinite subsets of u is called
 a tower if the partially ordered set is well-ordered and has no infinite
 pseudo-intersection. If A, B are subsets of u we say that B splits A if both
 A OB and A ' B are infinite.

 Generally, we say that some property of natural numbers "eventually holds
 true" if it is true for all but finitely many natural numbers. For example,
 AÇ* B if the implication n G A ^ n £ B eventually holds true. The set
 of all infinite sequences of natural numbers is partially quasi-ordered by the
 eventual dominating relation

 / <* g = (3k G w)(Vn G w)(n > k => f(n) < g{n)).

 We need the following small uncountable cardinals which are cardinal char-
 acteristics of the structure of V(u):

 p is the least size of a family T Ç [u;]1" with f.i.p . such that T has no
 infinite pseudo- intersect ion,

 t is the least size of a tower,
 s is the least size of a splitting family, i.e. the least size of a family T Ç [u]u

 such that every infinite subset of u is split by some set from
 t is the least size of a family T C [u]" such that no infinite subset of u ;

 splits every member of T .
 fj is the least size of a family of open dense subsets of [o;]", Ç* such that

 its intersection is not dense, or equivalently, it is the least k such that the
 Boolean algebra [u]" /finite is not /c-distributive.

 b is the least size of an unbounded subfamily of <*,
 D is the least size of an cofinal (dominating) subfamily of "cj, <* .
 For basic information see e.g. [vDw, Vau].
 We shall need [Boo]

 Booth Lemma 4.1 A set X has cardinality smaller than s if and only if
 the following holds true: if {fn}%L o 15 0 sequence of functions defined on the
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 set X with values in [0,1], then there exists an increasing sequence
 of natural numbers such that the sequence {fnk(x)}fL o converges for every
 xeX.

 Proof. Suppose 'X' < s and {fn}??= o is a sequence of functions defined on
 X with values in [0, 1]. For q € [0, 1] fl Q and x £ X} let

 Lq,x = {n e u; : /n(x) < q}.

 Since the family T = {LÇtX : q € [0, 1] D Q, x £ X} cannot be splitting, there
 exists an infinite set K Ç u such that for every L £ T either K Ç* L or
 K Ç* u ' L. Then for each x G X,

 lim fn (x) = mf{q € [0, 1] fi Q : K Ç * Lg,x}-
 n£K

 Conversely, if T is a splitting family with 'T' = s, we define the functions
 /n : T - ► [0, 1] by

 f /n - / ł> if n 6
 /n(Lj f /n - - ' 0, if ní L.

 It is easy to see that no subsequence of the sequence {/n}£L o is convergent.
 □

 Corollary 4.2 Let {/n,o}~=o; > {/n,m}~= o be sequences of functions de-
 fined on a set X with values in a closed interval [a, 6]. If 'X' < s, then there
 exists an increasing sequence such that all sequences {/n*,o}¡tLo> • • • >
 {fnktm}kLo converge on X.

 5 Diagrams

 Now we present the main known relations between the cardinal characteristics
 of C and /C and/or those of the structure of V(u). An arrow from a cardinal
 e to a cardinal f means that in ZFC the inequality c < f is provable. We start
 with the Cichori diagram [Fr2, Vau]:

 cov(£) - non (/C) - cof(/C) - cof(£) - c

 "tí"
 b - - t>

 I Î
 Ni - add(£) - add(/C) - cov(/C) - non(£)
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 It is worth to note that the equalities add(/C) = min{6, cov(/C)} and cof(/C) =
 max{U,non(/C)} hold true. Moreover, it is known [BJS] that no equality can
 be proved; i.e., for every arrow c f in this diagram, there exists a model of
 ZFC in which c < f.

 The cardinal characteristics of the structure V{u) are related as indicated
 in the following diagram:

 s - D - c

 t f t
 add(£) f) - b - +- t

 t lit
 Hi - m - p - t - add(/C) - cov(/C)

 It is known for almost all these inequalities that the equality cannot be proved.
 However, the situation is not as simple as in the Cichoń diagram, see e.g. [Vau].
 We add some relations between cardinals from both diagrams:

 s < non(£), cov(JC) < t,

 s < non(£), cov(£) < r.

 Let us remark that some symmetry appears in both diagrams. This is a
 consequence of two kinds of dualities: Rothberger duality for cardinal char-
 acteristics of /C and C based on the decomposition of the unit interval as the
 union of a meager and a negligible set [Rot] , and the duality between charac-
 teristics based on the inverse relation, see e.g. P. Vojtáš [Vo2].

 6 Sets of uniqueness

 For a recent and rather systematic treatment of sets of uniqueness, we rec-
 ommend the book by A. Kechris and A. Louveau, [KL]. Following Cantor's
 results, we define: a set A Ç [0, 1] is said to be a set of uniqueness or U-set
 if every trigonometric series (1.1) converging to zero outside A is identically
 zero. The family of all U-sets will be denoted by U .

 So, Young's Theorem 1.1 can be formulated as "every countable set is a U-
 set". Using this result and the Alexandroff-Hausdorff Theorem, which asserts
 that every uncountable Borei set contains a perfect subset, (see e.g. [Jech, The-
 orem 94]) we can easily prove the following theorem: For a proof of assertions
 (l)-(5) see e.g. [KL]; assertion (6) can be obtained by a simple computation.
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 Theorem 6.1

 (1) If AC [0, 1] does not contain a perfect subset, then A is a U-set.

 (2) Every Bernstein set is a U-set.

 (3) There are two U-sets such that their union is the whole interval [0,1].

 (4) Every set of cardinality smaller that c is a U-set.

 (5) There exists a U-set which is neither meager nor has measure zero (and
 so is not a -porous).

 (6) Shifts of U-sets are again U-sets.

 What will happen in the case of a nice U-set, say with the property of
 Baire or being Lebesgue measurable? Using some elementary facts about
 trigonometric series one can prove the folklore result (for a proof see e.g. [Ba2,
 KL])

 Theorem 6.2 If a U-set is Lebesgue measurable , then it has measure zero.

 In 1916 D. E. Menchoff [Men] distinguished U-sets and Lebesgue measure
 zero sets by proving

 Theorem 6.3 There is a perfect set of Lebesgue measure zero which is not a
 U-set.

 The case of Baire property waited several years for the answer . In 1986
 G. Debs and J. Saint- Raymond [DSR], using methods of descriptive set theory,
 proved

 Theorem 6.4 Every U-set which has the property of Baire is meager.

 The existence of a perfect U-set has been shown by N. K. Bary [Bal].
 Independently, A. Rajchman [Raj] proved

 Theorem 6.5 Every Ha-set is a U-set.

 In 1952 I. I. P i atetskii- Shapiro [PS] proved that the opposite is not true;
 actually, he proved the following (see [Ba2]):

 Theorem 6.6 There is a closed U-set which cannot be covered by a sequence
 of closed porous sets and hence is not an Hc-set.

 By Theorem 6.1 (3), the union of two U-sets need not be a U-set. However,
 in some important special cases, it is. N. K. Bary [Bal] proved that



 Thin sets of Harmonic Analysis and Infinite Combinatorics 467

 the union of count ably many closed U-sets is also a U-set.

 N. N. Kholshchevnikova [Khl] remarked that actually

 Theorem 6.7 The union of less than add(/C) closed U-sets is a U-set.

 By Theorem 6.7 the union of two Fa sets of uniqueness is also a U-set. A
 partial extension has been proved by N. N. Kholshchevnikova [Khl]:

 The union of two disjoint Gs U-sets is a U-set.
 If G , H are U-sets and G is both Fa and Gs, then G U H is a U-set.

 Thus, a U-set which is simultaneously F* and G<$, is ¿/-permitted. These
 results were generalized by C. Carlet and G. Debs [CD] as

 Theorem 6.8 Let An, n £ u , be U-sets that are closed relative to the union
 A = (XLo • Then A is also a U-set.

 Let us remark that every countable set of finite Cantor-Bendixson rank is
 both Fa and G¿. In particular,

 Corollary 6.9 By adding a finite set to a U-set , one again obtains a U-set.

 7 Thin sets related to the convergence and the absolute
 convergence of trigonometric series

 J. Marcinkiewicz [Mal], in honour of V. V. Niemytzkiï, introduced the notion
 of an N-set (investigated earlier by P. Fatou [Fat] and A. Rajchman [Raj]):
 a set A Ç [0, 1] is an N-set if there is a trigonometric series (1.1) absolutely
 converging on A with X^L0(IM + IM) = 00 0e- not converging absolutely
 everywhere). The family of all N-sets will be denoted by Jsi Ě In 1941 R. Salem
 proved the first three parts of the following theorem, the parts (1) and (2)
 in [Sal] and the part (3) in [Sa2]; later, J. Arbault [Arb] proved the last one.

 Theorem 7.1

 (1) Whenever the set of absolute convergence of the trigonometric series
 (1.1) is non-empty, then it is a shift of the set of absolute convergence
 of the series Pn sin 2n nx, where pn = 'Ja' + b'.

 (2) A set A C [0, 1] is an N-set if and only if there are non-negative reals pn ,
 n = 1,2,..., such that Pn - 00 an d the series pn sin 7rnx
 absolutely converges for x E A.

 (3) By adding a point, consequently a finite set, to an N-set, one again
 obtains an N-set.
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 (4) A set AC. [0, 1] is an N-set if and only if there are reals pn >0,kn> 1,
 n = 1,2,..., such that pn = oo and the series X^°=i pn sin7rfcnx
 absolutely converges for x € A.

 Let us recall that a set of reals A is called a Z-basis if every real x can be
 written in the form

 n

 I =

 «'=1

 for some a,- £ A and suitable integers i = 1, . . . , n. A well known result
 of H. Steinhaus says that if a set A contains a Borei subset which either has
 positive measure or is non-meager, then the set A - A = {x - y : x, y G A}
 contains an interval and consequently A is a Z-basis. From this point of
 view, the following result3 of V. V. Niemytzkiï [Nie] is a common extension of
 theorems 1.3 and 1.4.

 Theorem 7.2 If the series bn sin 2irnx absolutely converges on a Z-
 basis, then l^n| < oo.

 Combining this result with Theorem 7.1 we obtain

 Corollary 7.3

 (1) A Z-basis is not an N-set.

 (2) Every N-set is meager and has Lebesgue measure zero.

 (3) Shifts and expansions of N- sets are N-sets again.

 Then, J. Arbault [Arb] and independently P. Erdös4 proved

 Arbault-Erdös Theorem 7.4 By adding a countable set to an N-set , one
 again obtains an N-set.

 J. Arbault [Arb] remarks that when constructing an N-set, one usually
 chooses the coefficients as 0 or 1. Therefore, he defined: a set A Ç [0, 1] is
 called an No-set if there exists an increasing sequence {7ik}£L0 of natural
 numbers such that

 oo

 (7-1) E sin TrnfcX
 k= o

 3 Perhaps it is due to the above mentioned result on Z-bases why J. Arbault [Arb] at-
 tributes this theorem to H. Steinhaus.

 J. Arbault in [Arb, pp. 271-2] writes that "M. R. Salem m'a signalé que ce théorème a
 été démontré par M. P. Erdös, mais non publié." Let us remark that the notes of J. Arbault
 about the Erdös' proof are sufficient for reconstructing it.
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 converges absolutely for every x 6 A. As before, Mo will denote the family of
 all No-sets. Evidently, every No-set is an N-set. He also introduced the notion
 of a set "admettend suite de limite nulle" that was named later A-set in his

 honour: a set A is called an A-set if there is an increasing sequence of integers
 {nk }£L0 such that the sequence {sin rikirx}%L0 converges to 0 for every x G A.
 It is easy to see that

 NoÇAÇUa.

 In [Arb] he gave the following answers to fundamental questions about No-sets
 and A-sets:

 Theorem 7.5

 (1) Every countable set of reals is an No-set .

 (2) By adding a point to an No-set or an A-set , one obtains an No-set or an
 A-set , respectively.

 (3) Shifts and expansions of No-sets and A-sets are No-sets and A-sets , re-
 spectively.

 Moreover, he gives an important example

 Theorem 7.6 If an are positive reals, limn_>oo an = 0 and an = oo,
 then the N-set

 oo

 {x € [0, 1] : ^ anļsin2n7Tx| < 00}
 n=l

 is not an A-set. Consequently , there exists an N-set that is not an No-set.

 By the Piatetskiï-Shapiro Theorem 3.1, every A-set is <r-porous. In 1985
 S.V. Konyagin (unpublished?) showed that (for a proof see [Zaj])

 Theorem 7.7 The N-set

 00 1
 {z E [0,1]: - |sinn!7Tx| < 1}

 y 1 n n = y 1

 is not c-porous .

 It is easy to see that Niemy tzkiï's result can be extended to A-sets: a Z-
 basis is not an A-set. H. Steinhaus proved that the Cantor set is a Z-basis.
 J. Arbault showed that the Cantor set cannot be covered by countable many
 N-sets. On the other hand, the Cantor set is an H-set and therefore porous.
 Thus

 V <£ Afa, V£A, UĻA.
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 In connection with the Cantor-Lebesgue Theorem 1.2, R. Salem [Sa3] in-
 troduced the notion of an R-set (R in honour of A. Rajchman according to
 his result quoted below): a set A is called an R-set if there is a trigonometric
 series (1.1) converging on A with coefficients not converging to zero; 7Z is the
 family of all R-sets.

 A. Rajchman [Raj] has shown (using other notions) that

 every R-set is a n Ha-set.

 In 1990 S. Kahane [Ka2] proved that Ç .4. In 1991 S. V. Konyagin5 [Kon]
 proved the converse. Thus

 Theorem 7.8 A = 71.

 Using this result, N. N. Kholshchevnikova [Kh4] proved

 Theorem 7.9 By adding a countable set to an A-set one obtains again an
 A-set.

 From now on, we will prefer the name "A-set".

 8 Other trigonometric thin sets

 A set A is called a Dirichlet set or shortly a D-set if there is an increasing
 sequence of integers {n/c}^L0 such that {sin nk7rx}%°=0 uniformly converges to
 zero on A. The family of all Dirichlet sets is denoted by V. A set A is called
 an almost Dirichlet set or shortly an aD-set if every proper subset B of
 A which is closed in A is a Dirichlet set: the corresponding family is denoted
 by aV. A set A is called a pseudo Dirichlet set6 or shortly a pD-set if
 there is an increasing sequence of integers {7ifc}£L0 suc^ that {s^n n^7rx}?Lo
 quasinormally converges to zero on A. The corresponding family is denoted
 by pV. By Theorem 2.1 we have

 pV C Af0.

 Evidently, every Dirichlet set is an almost Dirichlet set, i.e.

 V C aV.

 One can easily see that every Dirichlet set is an H-set. By the definition of
 an almost Dirichlet set, small neighbourhoods of points are Dirichlet sets and

 5The title of S. V. Konyagin's paper [Kon] is misleading - he proves actually the opposite
 inclusion.

 6This notion has been introduced under the name D-set in [BZl]. S. Kahane [Ka2]
 independently introduced the notion of a pseudo Dirichlet set.
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 so porous by Theorem 3.1ã Since porosity at a point is a local property of a
 set, we obtain that every almost Dirichlet set is porous7.

 Z. Bukovská [BZ1] proved

 Theorem 8.1

 (1) A set A is pseudo Dirichlet if and only if it is the union of an increasing
 sequence of Dirichlet sets.

 (2) aVÇpVC Va.

 (3) Every almost Dirichlet subset of [0,1] which is a subgroup ofM/Z is
 finite.

 By Theorem 2.2 and Theorem 8.1 we obtain (the proof of the fifth part is
 similar to that of Theorem 7.5 (3), see [Arb])

 Theorem 8.2

 (1) Every finite set is Dirichlet.

 (2) Every countable set is pseudo Dirichlet.

 (3) Adding a finite set to a Dirichlet set one obtains a Dirichlet set.

 (4) Adding a countable set to a pseudo Dirichlet set one obtains a pseudo
 Dirichlet set.

 (5) Shifts and expansions of Dirichlet sets and pseudo Dirichlet sets are
 Dirichlet sets and pseudo Dirichlet sets , respectively.

 We do not know to whom the following result should be ascribed. For a
 proof, see e.g. [Kah].

 Theorem 8.3 //Pi, . . . , Pn are pairwise disjoint perfect subsets of [0, 1], then
 there exists a Dirichlet (even Kronecker) set P such that PCiPi is (non-empty)
 perfect for i = 1, . . . , n.

 Summarizing the preceding results, we obtain the following chain of inclu-
 sions:

 (8.1) V Ç aV Ç pV C M) C A = Tl Ç Ua Ç U.

 Let us note that every H^-set is <r-porous and so is meager and has mea-
 sure zero. All inclusions in the chain (8.1) are proper. T. W. Körner [Kor]

 7Actually, Dirichlet sets are strongly symmetrically porous and hence almost Dirichlet
 sets are such too.
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 constructed a perfect non-Dirichlet set, all of whose proper closed subsets are
 Dirichlet (even Kronecker). By theorems 8.1 (3) and 8.2 (2), every infinite
 countable subgroup of K/Z is a pseudo Dirichlet set which is not an almost
 Dirichlet set.

 J. Arbault [Arb] proved

 Theorem 8.4 The A-set

 (8.2) {x E [0, 1] : lim sin22 irx = 0}
 n- *oo

 in not an N-set. Moreover, its subset

 oo

 {x £ [0, 1] : ^ I sin 22 7rx|2 < oo}
 n= 0

 is not an No-set.

 S. Kahane [Ka2] proved

 Theorem 8.5 If the increasing sequence of natural numbers {rc/c}¡tLo 25 suc ^
 that lim/e_^00(n^+i - n*) = oo, then the compact No-set

 oo

 {x G [0, 1] : ^ |sin2nfc7Tx| < 1}
 k = 0

 is not in Do and therefore not a pseudo Dirichlet set. Moreover , if the sequence
 {n/c+i - *s strictly increasing , then the A-set

 oo

 {x G [0, 1] : ^^sin2nfc7Tx converges }
 k= o

 ¿5 not an Na-set.

 By theorems 7.6 and 8.5, we have

 Mo g M £ A, A£N

 and by theorems 3.1 and 7.7, we have

 If L Ç ut, we denote

 I<l = € [0, 1] : there are x¿ = 0, 1 such that x = YÌì^l
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 One can easily see that the set Kl is perfect, assuming that L is infinite. The
 union Kl U Ku'l is a Z-basis. It is easy to see that if the complement of L
 contains segments of consecutive integers of unbounded length (such a set is
 called colacunary), then Kl is a Dirichlet set. So, we obtain the result proved
 by J. Marcinkiewicz [Ma2]:

 Marcinkiewicz Theorem 8.6 One can choose the set L in such a way that
 both sets I<l and Kw'l ar€ D-sets.

 Corollary 8.7 There are two perfect D-sets such that their union is a Z-basis
 and so neither an N-set nor an A-set.

 To define a new type of thin set, we first recall that a Borei measure /2
 on [0, 1] is a finite <7- additive measure defined on a <r-algebra S containing all
 Borei sets. We assume that all Borei measures are complete (see e.g. [Fri]),
 in the sense that every set of outer //-measure zero is in S . A set A Ç [0, 1] is
 universally measurable iff A is measurable for every Borei measure on [0,1].
 In particular, every analytic and so every Borei set is universally measurable.
 A set A Ç [0, 1] is said to have universal measure zero if for each non-atomic,
 non-negative Borei measure 'i on [0, 1], f¿(A) = 0.

 We define the notion of a weak Dirichlet set in two steps:
 i) A universally measurable set A Ç [0, 1] is weak Dirichlet if for every

 positive Borei measure /2 on [0, 1], there exists an increasing sequence
 such that

 lim f 'e2ninkX - 1| dfi(x) = 0.
 k^°oJA

 ii) Generally, a (non-universally measurable) set is weak Dirichlet if it is
 contained in some universally measurable weak Dirichlet set.

 The family of all weak Dirichlet sets will be denoted by wV. This def-
 inition of weak Dirichlet set was introduced by S. Kahane [Ka2]. B. Host,
 J.-F. Mela and F. Parreau [HMP] introduced this notion only for Borei sets,
 T. W. Körner [Kor] only for closed sets. Notice that D-sets and pD-sets are
 just the sets on which some sequence {e27rt nkX - 1}£L0 converges to 0 uniformly
 and quasinormally, respectively.

 Directly from the definition of a weak Dirichlet set, we obtain (part (1) is
 mentioned in [BZ1, Ka2], see also [Kor])

 Theorem 8.8

 (1) Every A- set is weak Dirichlet.

 (2) Every universal measure zero set is wV-permitted.
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 The following result on weak Dirichlet sets is folklore and the proof uses
 ideas which were known already to J. Arbault. The proofs of all analogical
 results for D-sets, No-sets and A-sets are almost the same - the only difference
 is in the choice of a convenient convergence of functions. This is one reason
 that we give its proof here, the other is that we are not able to give a complete
 reference (closure under shifts is proved e.g. in [Kal]).

 Theorem 8.9 Shifts and expansions of weak Dirichlet sets are weak Dirichlet
 sets .

 Proof. It is easy to see that 0 can always be added to a weak Dirichlet set.
 Hence, closure under adding a point will be a consequence of closure under
 translations. We use the equality |e2?r,nx - 1 1 = 2| sin^nx|. Let A Ç [0, 1] be a
 weak Dirichlet set, i^Oa real number, and lim^oo fA |sinn^7ry| dfi(y) = 0.
 We can easily find an increasing subsequence {n*., }ji0 of the sequence
 such that ||(n^>+1 - nk5)x || < 2~J and ||(n/..+1 - < 2~-7. Now for
 each y E A,

 I sin(nfci+1 - nk.)n(x + 1/)| <

 < I sin (nkj+1 - nkj)nx' + | sinnfcj+l;ry| + | sinnfcy7rj/|

 < 2~jn+ I sin 7ifcy+1 5ry| + | sinn^Trj/ļ.

 Integrating over y £ A and taking the limit as j - > oo, we get that the set
 X H- A is a weak Dirichlet set.

 Let mj be the nearest integer to (nfci+1 - i.e. ||(n/-i+1 - =
 I mj "" (n*j+i ~ nkj)x~1'. We can choose so that the sequence {mj}JL0 is
 increasing. Now for each y E A, 'xy' < |x| and

 I sinmjTrxyl < |sin(n/ti+I -nkj)iry' + ' sin ||(nfci+1 - nkj)x~l''itxy'

 < I sin nkj+1 iry' + | sinnkj7ry' + 2"J'7r|®|.

 Hence by integration and taking limit in these inequalities we get that xA is
 a weak Dirichlet set.

 □

 B. Host, J.-F. Mela and F. Parreau [HMP] proved the following

 Theorem 8.10 A Borei set A is an N-set if and only if there exists an Fc T
 weak Dirichlet set B containing A as a subset.

 Corollary 8.11 M fi Ta = wV Pi Ta.

 Let us remark that from this corollary we can obtain many known results on
 N-sets, e.g. Salem theorems 7.1 (1), (3), and the Arbault-Erdös Theorem 7.4.

 In [Ka2], the following result of G. Debs is presented:
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 Theorem 8.12 If A is an analytic (= weak Dirichlet set , then the group
 generated by the set A is also a weak Dirichlet set.

 By Theorem 8.12 and Corollary 8.7, we immediately get:

 Corollary 8.13

 (1) Every analytic weak Dirichlet set is meager and has Lebesgue measure
 zero.

 (2) There are two perfect Dirichlet sets whose union is not a weak Dirichlet
 set. Consequently j V a <£ wV.

 In Section 9 we show that the word "analytic" cannot be omitted in the
 above corollary.

 9 Borei bases

 By a simple computation, you can see that every D-set is contained in a closed
 D-set. Similarly, every pD-, No- and N-set is contained in an Fa set of the
 same family. An A-set is always contained in an A-set. Thus, the family
 V has closed basis, the families pV, No and M have F a bases, and the family
 A has an F^ basis.

 Can these computations be improved? In other words, can we find bases
 of these families consisting of simpler Borei sets? At least in a certain sense,
 the answer is "No" .

 The case of closed sets cannot be improved by open ones, since open sets
 are not small (e.g. they have positive measure). The case of Fa and Fas sets
 cannot be improved by G s sets: the set [0, 1] HQ is an F^ pseudo Dirichlet set,
 and every G<j set containing it is not meager and therefore neither an N-set
 nor an A-set.

 By Theorem 8.10, any A-set which is not an N-set is not contained in any
 Fa weak Dirichlet set. In particular, the A-set (8.2) is not contained in any
 F a A-set.

 We show that it is consistent with ZFC that wV does not have a Borei basis.

 Let 9JI be a transitive model of ZFC and let c be a Cohen real over 371 (for
 the details see e.g. [Jech]). It is well known that the set A = [0, 1] fl £01 of the
 reals of the ground model has universal measure zero and is not meager in the
 generic extension 9Jl[c]. So, the set A is weak Dirichlet and, by Corollary 8.13,
 cannot be contained in an analytic weak Dirichlet set.
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 10 A systematic approach

 The definitions of D-, pD-, No-, N-, R- and A-sets have a common structure:
 there exists some sequence of functions which converges on the set in a certain
 sense. In his thesis, P. Eliáš [Eli] investigated the possibilities of defining thin
 sets related to absolute convergence rather systematically. He considered nine
 types of conditions on a sequence {/fc}£L0 functions defined on a set A :

 (P) {fk)kL o converges pointwise to 0 on A,

 (QN) {fkjkLo quasinormally converges to 0 on A,

 (U) {fkjkLo uniformly converges to 0 on A ,

 (PS) Y2*kLo fk(x) converges pointwise on A ,

 (QNS) the sequence of partial sums of the series YllcLo fk{x) quasinormally
 converges on A ,

 (US) the sequence of partial sums of the series o /* (x) uniformly converges
 on A,

 (PNS) fk(x) pseudonormally converges on A , i.e. there is a sequence of
 positive reals {^}¡tL0 such that < +°° an<^ x € A)(3ko)
 (VA: > k0) 'fk(x)' < ekl

 (NS) A(x) normally converges on A, i.e. there is a sequence of positive
 reals {e/J^Lo such that o < +°° and i^x € A)(Vk) 'fk{x)' < e*,

 (BS) J2kLo fk(x) *s bounded on A.

 Four types of sequences of functions {//c}£L0 are considered:

 (51) fk{x) = I sin n/c7Tx| for some increasing sequence {n¿.}£L0 of natural num-
 bers,

 (52) there exists a sequence {a&}£L0 non-negative real numbers such that
 YlkL oak - +°° and /fc(x) = ak ' sin k7rx'}

 (53) there exists a sequence {a¡ tc}£L0 of non-negative real numbers such that
 lim sup > 0 and fy :(x) = ajt| sin kirx',

 (54) there exists a sequence {dk}kLo of non-negative real numbers such that
 limsup^QQ ak = -f 00 and A-(x) = a^| sin kirx'.
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 For example, a set A is a pD-set if and only if there exists a sequence of
 type (Si) satisfying the condition (QN). In this way, we obtain 36 definitions.
 However, it turns out that many of them are equivalent (e.g., (Si) is in our
 context equivalent to (S3)), and almost all of them were at least implicitly
 known. P. Elias [Eli] explicitly defined two new classes of thin sets which were
 implicitly considered already by S. Kahane [Ka2]: a set A is a Bo-set if there
 exists a sequence of type (Si) satisfying the condition (BS). A set A is a B-set
 if there exists a sequence of type (S2) satisfying the condition (BS). Evidently,

 BoÇB , Bo Ç Aio , B CAÍ.

 Modifying some classical reasoning, P. Elias [Eli] proved

 Theorem 10.1

 (1) By adding a point to a Bo -set or a B-set, one obtains a Bo-set or a B-set ,
 respectively.

 (2) Shifts and expansions of Bo -sets and B-sets are Bo-sets and B-sets} re-
 spectively.

 The main result of [Eli] can be expressed by the following table, which
 gives the family of thin sets (or the family of all subsets of [0,1], denoted by
 "all") corresponding to each combination of sequence type (S,) and conver-
 gence condition:

 (P) (QN) (U) (PS) |(QNS) (US) I (PNS) (NS) (BS)
 (51) A pV V ~o pV V ýD V B
 (52) ~~ āīi üi Āf Āf ~Bo pV~ V Wo
 (53) A pV V Aio pV V pV V B

 (54) pV pV V pV pV V pV V V

 The relationships between these families is given by the following diagram,
 where the arrow means the inclusion ťC' and tvD* denotes the family of
 all sets contained in a Eļ weak Dirichlet set.



 478 L. Bukovský, N. H. Kholshchevnikova and M. Repický

 U

 I
 na

 ^1"
 A

 x" z' Ba = M„
 PT>

 I ! aVÇV
 V ÇU CT

 D

 Note that the restriction to víD* in the above picture is necessary since
 every Luzin set which is non-meager while having strong measure zero is a
 weak Dirichlet set. Recall that an uncountable set X is a Luzin set if every
 meager subset of X is countable. Note also that, assuming the continuum
 hypothesis, there is a Luzin set X Ç [0,1] such that X - X = [0,1]. In
 particular this means that in Theorem 8.12, the restriction to E J sets cannot
 be dropped.
 In fact, all the inclusions in this diagram are proper, and no other inclusions
 between the families included in the diagram hold true. This is a consequence
 of these six inequalities: Bo £ Va (Theorem 8.5), pV B (by Theorem 8.2 (2)
 the set Qn [0, 1] is pseudo Dirichlet and is not a B-set, since the closure of a
 B-set is a B-set again), Va <£. viD (Corollary 8.13 (2)), B (Theorem 7.7,
 since Ua Ç Va), A £ Na (Theorem 8.5), and U (Theorem 6.6). One
 can also easily see that all the inclusions between the additional families are
 proper.

 To be sure that we did not forget any possible inclusion between these
 families, we will use this auxiliary notion: a family X in the diagram is said
 to be OK if for every family y in the diagram the inclusion X Ç y holds just
 in the case that there is a path X y in the diagram.

 We start with some simple facts, proving that the families D, Bo, pV , V0,
 B , A, U are OK:

 V is OK.

 Bo £ Vç, implies Bo is OK.

 pV B implies pV is OK .

 Va wD implies Va is OK.
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 B ^ Tía implies B is OK.

 A £ Mff implies A is OK.

 U <£ Tiff implies U is OK.

 Now notice that for each family X in the diagram, either by one of the previous
 simple facts, X is OK, or there are at least two families y , Z so that the arrows
 y -> X, Z - ¥ X are in the diagram. Moreover, whenever both y,Z are OK,
 then (and this can be easily verified directly in the diagram) also X is OK.
 Hence, using this property of the diagram and induction, we can successively
 prove that every family in the diagram is OK.

 11 Ten questions

 Let T be a family of thin subsets of the unit interval [0,1]. We ask the following
 questions:

 Ql Is^an ideal?

 Q2 Does T have a Borei basis?

 Q3 Is T a subfamily of /C?

 Q4 Is ^ a subfamily of £?

 Q 5 Is every set in T cr-porous?

 Q6 Does T contain a perfect set?

 Q7 Is every countable subset of [0, 1] in TI

 Q8 Is for every A £ T and every x £ [0, 1] the union AU{i} also in

 Q9 Is for every A£T and every real x the shift x + A also in

 Ô10 Is for every A € T and every real x the expansion xA also in

 Since any family T of thin sets satisfies conditions a) and b) of the definition
 of an ideal, question Ql is equivalent to the question of whether T satisfies
 condition c). Therefore, question Ql is often referred to as the union problem.

 We raise another set of questions: what are the sizes of the cardinal charac-
 teristics of considered families of thin sets; i.e., what are the cardinals non(^),
 add (.?*), cov(^) and cof(^*) for the investigated families T of thin sets of har-
 monic analysis?

 The table on page 481 gives complete answers (except one) to questions
 Ql- 10 about the nine families of thin sets. However, the computation of
 cardinal characteristics in the following sections is far from complete.
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 12 Replacing countable

 The past twenty years of investigations in set theory have showed that very
 often the word "countable" can be replaced by "less than a small cardinal
 characterizing the structure of V(u)" . In Section 4, we introduced the small
 cardinals m, p, t, s, t, f), b and D. It turns out that they play an important
 role in the study of trigonometric thin sets. Now, we present the main recent
 results of this kind.

 Our story begins in 1985, when N. N. Kholshchevnikova [Kh2] improved
 Arbaulťs Theorem 7.5 (1) by showing that

 every set of cardinality smaller than m is an No-set.
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 Q I V pV I Mo A N I wV Bo I B T~W

 ļ No No No No No No No No No
 8.13 (2) (see also 8.7) 6.1 (3)

 2 closed F„ Fa Fas FCT 5N08 closed closed No
 Section 9 6.1 (2)

 g Yes Yes Yes Yes Yes Yes Yes Yes No9
 8.13 (1) (see also 1.4 and 3.1) 6.1 (5)

 Yes I Yes Yes I Yes Yes I Yes Yes I Yes No9
 4

 8.13 (1) (see also 1.3 and 3.1) 6.1 (5)
 Yes Yes Yes Yes No No Yes No No

 5

 3.1 7.7 3.1 7.7 6.1 (5)

 Yes Yes Yes Yes Yes Yes Yes Yes Yes
 6

 8.3 6.5

 No I Yes Yes I Yes Yes I Yes I No I No Yes
 7

 Q 8.2 (2) Q <Q> 1.1

 Yes Yes Yes Yes Yes Yes Yes Yes Yes
 8

 8.2 (3) 8.2 (4) 7.5 (2) 7.1 (3) 8.8 (2) 10.1 (1) 6.9

 Yes Yes Yes Yes Yes Yes Yes Yes Yes
 9

 8.2 (5) 7.5 (3) 7.3 (3) 8.9 10.1 (2) 6.1 (6)

 Yes I Yes Yes I Yes Yes Yes Yes I Yes No10
 10

 8.2 (5) 7.5 (3) 7.3 (3) 8.9 10.1 (2) [Ba2]

 4 "¿No" means that the negative answer is consistent with ZPC.
 9Compare with Theorem 6.2 and Theorem 6.4, respectively.
 10 If E Ç [0, 1] is a U-set and for each y € E, xy € [0, l], then the expansion xE is a U-set

 (see [MZ] or [Ba2]). Generally this is not true: Let Ei,E2 be Bernstein sets covering the
 interval [0,1]. Then the set E = (l/2E') U (1/2 + I/2E2) is a U-set but 2 E = [0,1).
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 In 1990 Z. Bukovská [BZ1] replaced No-set by pseudo Dirichlet set and the
 cardinal m by the "greater" cardinal p in this result. Actually, she proved a
 stronger result:

 Theorem 12.1 Let {Bs : s € S} be a family of Dirichlet sets. If'S' < p and
 for every finite T Ç S the union IJ5€T Bs is a Dirichlet set, then the union
 U ses & * 25 a Pseud° Dirichlet set.

 As a corollary, we obtain (see [BB]) that by adding a set of cardinality
 smaller than p to a pD-set one obtains a pD-set, i.e.

 non(Prm (pV)) > p.

 T. Bartoszy ński and M. Scheepers [BS] improved these results by showing that

 (12.1) non(Prm(pX>)) > f), non(Prm(A/o)) > f).

 L. Bukovský, I. Reclaw and M. Repický [BRR] considered topological
 spaces (and sets of reals), not distinguishing between pointwise and quasi-
 normal convergence of real valued functions. Let us recall the main notion of
 this paper: a set X Ç [0, 1] is called a wQN-set if for every sequence {/n}£°=o
 of continuous real- valued functions defined on X and converging to 0 on X,
 there exists an increasing sequence natural numbers such that the
 subsequence {/nfc(^)}^L o quasinormally converges to 0 on X. Let us recall
 that the inclusions

 wQAf n A Ç pV Ç A/o

 were the motivation for introducing the notion of a wQN-set in [BRR]. We
 can prove more.

 Theorem 12.2

 (1) If E E Aio and X is a wQN-set with 'X' < s, then E U X G No-

 (2) If E € pV and X is a wQN-set with 'X' < s, then EUX G pV.

 Proof. (1) Let {^fc}?Lo be an increasing sequence of integers such that the
 series (7.1) absolutely converges for x G E.

 By Corollary 4.1 to Booth's Lemma, there exists a subsequence {^}^=0
 of the sequence {nk}^L0 such that both sequences

 {sinm/c^xJ^Lo, {cos m/:7rar}^0

 converge on the set X. Without loss of generality we can assume that the
 sequence ik = m^+i - , k = 0, 1, . . . , is strictly increasing. Taking limits in
 the equality

 (12.2) sin ik Ttx - sin 'ttx cos m^7rx - sin rx cos mk+inx,
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 we obtain lim^oo sin i^x = 0 for x G X. Since X is a wQN-set, by Theo-
 rem 2.1 there is a subsequence {z*)?Lo suc ^ series

 oo

 (12.3) £ sinj^^x
 k=0

 absolutely converges for x E X. Using the inequality

 ļsinzfc7rx| < I sinmfc+i7rx| + IsinmfcTrsļ,

 one can easily see that the series (12.3) converges absolutely also on the set
 E.

 (2) This proof can be deduced from the previous one by replacing each
 instance of "the absolute convergence of a series" by "the quasinormal conver-
 gence of a sequence" .

 □

 Every set of reals of cardinality smaller than b is a wQN-set (see [BRR,
 p. 35]). Therefore

 Corollary 12.3

 (1) non(Prm(j?2>)) > min{s, b} ,

 (2) non(Prm(A/o)) > min{s, b}.

 Since there is a model of ZFC in which f) < min{s, b}, [She], this strength-
 ens (12.1). The hypothesis, "countable" in the Arbault-Erdös Theorem 7.4
 and in Theorem 7.9 was replaced with a small cardinal by Z. Bukovská and
 L. Bukovský [BB] and N. N. Kholshchevnikova [Kh2, Kh5]:

 non(Prm(jV)) > p, non(Prm(^4)) > m.

 T. Bartoszyński and M. Scheepers [BS] improved these inequalities as follows:

 Theorem 12.4

 (1) non(Prm(A f)) > i,

 (2) non(Prm(.4)) > s.

 F. Hausdorff [Hau] constructed a universal measure zero set of cardinal-
 ity Ni . A. W. Miller [Mil] proved that every set of cardinality smaller than
 cov(/C) has strong measure zero. Since every strong measure zero set has
 universal measure zero (see [Lav]), by Theorem 8.8 (2) we obtain
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 Theorem 12.5

 (1) There is an uncountable viD- permitted set.

 (2) non(Prm(it;2})) > cov(/C).

 For the considered families of thin sets, we cannot say whether there exists
 a permitted set of power c. A partial answer - a consistency result - will be
 given in the next section. J. Arbault [Arb] presented a theorem saying that
 there exists a perfect Af-permitted set. However, N. K. Bary [Ba2] has found
 a gap in his proof.

 Now we present some upper estimates for covering numbers of the families
 A and V. We need one more small uncountable cardinal.

 A family T of subsets of uj is said to be a refìning family if for every
 A Ç u) there exists a B G T such that B Ç* A or B Ç* u ' A. Thus, r is
 the least size of a refining family. A related small cardinal was defined by
 P. Vojtáš [Vol]: ter is the least size of a family T Ç [u;]'*' such that for every
 sequence Ani n £ uj of subsets of u there exists a B £ T such that for every
 n G cj, either B Ç* An or B Ç* u ' An. We say that T is a cr-reßning
 family. It is known [Vol, Vau] that r < xa and that ZFC + (D < c) + (ta < c)
 is consistent.

 Theorem 12.6

 (1) cov(.4) < t„,

 (2) cov(Z>) < max^,^}.

 Proof. Let us recall that for an infinite set L Ç w, L(n) denotes the nth
 member of L. Let T be a ťr-refining family of cardinality xa. We can assume
 that for each L G T the sequence {L(n + 1) - ^(^)}^Lo strictly increasing.
 For such L, we consider the A-set

 Vl = {y G [0, 1] : lim sin (L(n + 1) - L(n))7rx = 0}.
 n-¥ oo

 (1) For X G [0, 1] and q G [-1, 1] O Q we define

 LXtq = {k G : sin knx < q}, Kx = {k G w : cos knx > 0}.

 Let X G [0, 1] be fixed. Then there is an L G F such that for all q G
 [-1,1] fi Q, either L Ç* Lx>q or L Ç* u ' LXiq and either L Ç* Kx or
 L Ç* (jj'Kx. Similarly, as in the proof of Booth's Lemma 4.1, one can
 show that {sin k7rx}keL converges. Moreover, the sequence {cos k7rx}k^i does
 not change sign and therefore, also converges. Using equality (12.2) with
 mjt = L(k ), we obtain that x belongs to the set Vl.
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 Hence [0, 1] = (J ^ L *s uni°n °f t^-many A-sets.
 (2) Let 7i Ç Ww be a dominating family of size D. For / £7í, L £ T , and

 k £ w we consider the D-set

 ZLJ,k = {y £ Vl : (Vn > Jfc) | sin(L(/(n) + 1) - L(f(n)))ny' < l/(n + 1)}.

 For each g € [0, 1], there is an L £ T such that x £ Vl- We set

 g(n) = min{¿ : (Vm > fc) |sin(L(m + 1) - L(m))irx' < l/(n + 1)}.

 Since H is a dominating family, there exists an f £71 such that g <* /; i.e.,
 there exists a k £u> such that g(n) < f(n) for every n > k. Then x £ Zlj ,k-

 Now the proof is finished since we have

 [o,i]= (J U
 lzT fçTí k^w

 and 'T x 71 x u' = maxfî),^}.
 □

 13 7-sets are permitted

 If X is a subset of [0, 1] (or more generally, a topological space), we consider the
 set C(X) of continuous real- valued functions defined on X with the topology
 inherited from the product space XM. There exists a basis of this topology
 consisting of the sets

 {g £ C(X) : I g(xi) - /(*,-) | < for i = 0, , n},

 where / £ C(X), £ X> Ei > 0, i = 0,...,n, and n £ u. Moreover, a
 sequence {/n}£L o functions from C(X) converges to a function / £ C(X)
 in this topology if and only if it does so pointwise on X.

 F. Gerlits and Z. Nagy [GN] introduced the notion of a 7-set. A set X C
 [0, 1] is called a 7-set if C(X) is a Frechet space; i.e., if for every subset A
 of C(X) and every / in the closure of A , there exists a sequence of elements
 of A converging (pointwise) to /. A family V of subsets of [0, 1] is called an
 w-cover of a set X if for every finite set Xq Ç X there is a set V £V such that
 Xo Ç V. For the proof of the following characterization of 7-sets see [GN].

 Theorem 13.1 A set X is a y-set if and only if for every open u-cover V of
 X there is a sequence {Vk}k£u> of sets from, V such that X Ç |Jm=o fi£Lm

 According to [GN] and [GM] , we know that

 non (7-sets) = p.

 F. Galvin and A. W. Miller [GM] proved
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 Theorem 13.2 If p = c, then there exists a 7 -set of cardinality c.

 The proof of the next result is based on the ideas of J. Arbault [Arb] (see
 also [BB]).

 Theorem 13.3 7 -sets are J'f -permitted.

 Proof. Let X be an infinite 7-set, and let {2/fc}fcL0 be a sequence of dis-
 tinct elements of X. Let E be the set of absolute convergence of a series
 Yin=i pn' sinn7rx| with ^^°=1 pn = 00. We prove that E U X is an N-set.

 Set Sn = YHc=i Pk' applying the integral criterion for convergence and
 divergence of series to f(x) = 1/x and f(x) = l/(x1+1/p) we have

 00 00

 y] 17- - 00 and ^ ~~ Í~~T < 00 > ^or eac'1 P > 0-
 « - i l 1 c p « n - = l i n - 1 On

 We can easily find a monotone unbounded sequence of integers {pn}£Li such
 that (compare with [Ba2, Zyl])

 00

 EPn EPn 7^<0° n - 1 Sn

 Let us define p'n = p„/5n, = 1 /Sh,Pn and g(n) = min{m : YlT=n Pk > *}•
 By Theorem 2.2, for any reals xi, . . . , xPn G [0, 1], there is an integer kn <
 Sn = ( l/en)Pn such that | sin knn7rxi' < 27T£n, for z = 1,2,.. . ,pn- For integer
 ki let Qk be the set of all finite sequences of integers A(fc), '(k + 1), . . . , '(g(k))
 such that A(ra) < Sn for n = k,k + 1, • • • ,<?(&)• For k G v and A G ň/c, let

 U',k = {x e [0, 1] : (Vrz G [A:, ^(Ar)] Pi gj) | sin X(n)n7rx' < 2iren}

 and

 Vxtk = Ux,k'{yk}-

 Clearly, the family V = {V' ^ ' k G uj & À G fìfc} is an open uncover. Hence,
 there is a sequence {(A*, nk)}^L0 such that X C Um=o fl^Lm V^,nk - As
 t/n G X, the equality n = n k can hold true for at most finitely many k G
 Hence, without loss of generality we can assume that n/j+i > g(nk) for all
 k We prove that the series

 00 <7(rtJc)

 (13.1) ^ ^ sin Ajt(Ti)ia7rar|
 k=0 n=nk

 converges on E U X, and so E U X is an N-set.
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 For X € E,

 pfn'sin'k(n)n7Tx' < p'nSn' sinri7rx| = pn| sinnTnrļ

 and so the series (13.1) converges.
 For each x € X there is an m such that (VAr > m) x € V'kļTlk . Hence,

 OO y(nfc) OO 9(nk) OO 9(nk)

 S S Pn|sinAfc(n)nírx| < ^ E p'" 2irĒn = 2* 5Z 5Z i+"-¡- < °°-
 k=mn=m e kzzmn-nk k=mn=rik Sn Pn

 □

 We shall need the following fact [BRR]:

 every 7-set is both a wQN-set and a pseudo Dirichlet set.

 Now we prove

 Theorem 13.4 Every y-set is permitted for the families pV , Aio, A and wD.

 Proof. Assume that X is a 7-set and that E is a pD-set. There is a sequence
 {IK*ll}*Lo quasinormally converging to 0 on E. We can assume that rij- nt- =
 rik - m if and only if j = k and i = /. Thus, the set of all differences
 {nj-7ii : (3k) k <i<j< 2k} can be simply ordered as an increasing sequence
 {m*}?Lo- Theorem 2.2, the 0-function belongs to the closure of the set
 {||mfcx|| : k eu} Ç C(X). Since X is a 7-set, there exists a subsequence of
 this sequence converging pointwise to 0. Without loss of generality we can
 assume that ||rn^x|| - ► 0 pointwise on X. Since X is a wQN-set, there exists
 a subsequence of {||^nfc^||}?Lo converging quasinormally to 0 on X. Again, we
 can assume that ||m*x|| 0 quasinormally on X. Every m* is of the form
 njk ~~ nik j *k < 3k < 2 ik , and so each i can repeat only finitely many times
 in the sequence {i'fc}£L0- Hence without loss of generality, we can assume
 that the sequences and are both increasing. Therefore, since

 limali - > 0 quasinormally also on the union E U X.
 In the cases of E being an No- or A-set., the proofs proceed in the same

 way.

 Every 7-set has strong measure zero and consequently universal measure
 zero. Hence by Theorem 8.8 (2) it is tuD-permitted.

 □

 Corollary 13.5 One cannot prove that there is no pV-, Afo-t N-, A - or viD-
 permitted set of cardinality c (provided that ZFC is consistent).
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 Proof. Assuming that ZFC is consistent, there is a model of ZFC in which
 p = c, (see e.g. [Jech]). By Theorem 13.2, in this model there are 7-sets of
 cardinality c which are, according to theorems 13.3 and 13.4, pX>-, A/o-, Af-,
 A- and luD-permitted sets.

 □

 Unfortunately, wQN-sets are perfectly meager ([BRR, p. 31]), and so we
 did not obtain an example of a perfect permitted set. Moreover, every 7-set
 has strong measure zero [GN]. Thus, in Laverà model [Lav], every 7-set is
 countable. Hence, 7-sets are not the tool for finding big permitted sets in ZFC
 alone.

 14 Rademacher orthogonal system

 Rademacher orthogonal system is the sequence = {rn}£°=0 of functions

 rn(x) = sgn(sin2n7 ne), for x 6 [0, 1].

 For information about the properties of the Rademacher system, we recom-
 mend e.g. [Ale, Ba2, Zyl].

 For a real x, we denote

 Sx = {i eu : r,(x) = -1}.

 5 is a mapping from [0, 1) onto {A G V{ui ' {0}) : ui ' A is infinite} and it is
 one-to-one on the set of all non-dyadic reals.

 For a real x 6 [0, 1], we denote by x(z) the zth digit in the dyadic expansion
 of x; i.e.,

 X = ¿x(i)2-ť.
 1 = 1

 If x ^ 1 is a dyadic real, for clarity we assume that x = i x(2)2~% with
 x(k) = 1 and x(i) = 0 for i > k. Then for n > 1, we obtain

 r řxi= / for n = 1 , . . . , fc - 1 ,
 ' 0, for n> k.

 If x is a non-dyadic real then rn(x) = (- l)x(n) for all n > 1. Therefore, for a
 dyadic real x, Sx is finite; and for a non-dyadic real x,

 Sx = {i e W : x(i) = 1}.

 Since |rn(x)| = 1 for every non-dyadic x 6 [0, 1], the possibilities of defining
 thin sets for the Rademacher system are limited. We introduce the following
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 one: a set E Ç [0, 1] is an A* -set if there exists an increasing sequence
 {n*}fcLo of natural numbers such that the sequence {rnfc(®)}?Lo converges for
 every x G E.

 For an infinite subset L of u;, we denote

 XL = {x G [0, 1] : L Ç* Sx or L Ç* u ' Sx}.

 Therefore, x G Xl if and only if the sequence {x(0}»eL is eventually constant
 (i.e. constant for every i greater than some k) or, equivalently, if and only if
 Sx does not split the set L. In particular Xl contains all dyadic reals. This
 immediately implies that

 Xl Ç Xk if a nd only if K Ç* L

 The sequence {n(x)}t-€£ converges if and only if the sequence {z(0}t€L is
 eventually constant, and therefore we have

 Lemma 14.1

 (1) A is an A^-set if and only if there exists an L G [w]'4' such that A Ç Xl-

 (2) Every set Xl is Fa.

 Let x G Xl be a non-dyadic real. Then either for all but finitely many
 nGí, x(n) = 1 and {2n~1x} = J2ĪLo x(n + > 1/2 (and so {2n~1x -
 1/2} < 1/2), or for all but finitely many n G L, x(n) = 0 and {2n-1a:} =
 ¿Si x(n + < 1/2. It follows that Xl is an HĻ-set

 Thus, we can summarize:

 Theorem 14.2

 (1) Every A^-set is an Ha~set and therefore meager , negligible and e -porous.

 (2) The family {Xl '• L G [w]w} is an F0 basis of A*.

 (3) There are perfect A^-sets.

 (4) A set A is A^-permitted if and only if for every infinite L Ç uj there
 exists an infinite KCL such that A Ç Xk.

 Next we show

 Theorem 14.3

 (1) non(-4*) = s,

 (2) cov^^1) = r.
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 Proof. (1) It follows immediately from the definitions that every set A with
 |^4| < s is an A^-set.

 Conversely, let T, 'T' = s, be a splitting family; i.e., every infinite subset
 of u) is split by some set from T . One can easily check that the set

 {£«*«.> 2- K « Ą
 is not a subset of any Xl and therefore not an A^-set.

 (2) Let J be a refining family of the cardinality t. Let x G [0, 1]. Then
 there exists a set L € F such that L Ç Sx or L Ç* u ' Sx. In both cases
 x G Xl • Therefore

 [0,1]= U
 lïT

 and so cov^^) < r.
 Conversely, assume that C Ç A w covers the interval [0,1]. We can assume

 that C = {Xl : L E F} where T Ç [uj]u. We show that T is a refining family.

 Let K G [u]" be such that u ' K is infinite. We set x = 22»e/<-'{o} 2-t. Then
 there is a set L G T such that x G Xl, and so x(z) is either 1 for all but finitely
 many i G I or 0 for all but finitely many i G L. It follows that L Ç* K or
 L Ç* cj' K. Hence r < cov(Aūi).

 □

 We introduce a new small cardinal:

 t' = min{|£| : (VL G [w]w)(3.F G is dense in [w]w, Ç*
 and (VA' G T)(K Ç * L or K Ç* u ' L))}.

 If you choose one element from every fGÄ, you obtain a refining family.
 Thus r < ť.

 Theorem 14.4

 (1) non(Prm(.4w)) = s,

 (2) cov(Prm(.4*)) = c',

 (3) í) < add(Prm(^4w)) < ť.

 Proof. (1) Let X Ç [0, 1], 'X' < s. Let A G A**. By Theorem 14.2 (2) there
 exists an infinite K C lj such that A Ç Xk • Since {Sx H K : x G X} cannot
 be a splitting family on K, there exists an L G [^]w with L Ç K such that
 for every x G X either L Ç* Sx O K or L Ç* K 'SX. In both cases, x G Xl',
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 i.e., X Ç Xl- Since Xk Ç Xl , we obtain X U A C Xl G A*. The reverse
 inequality follows from Theorem 14.3 (1).

 (2) By Theorem 14.2 (4), for X G Prm^*) the set

 T(X) = {ÍG : X Ç Xl)

 is an open dense subset of [u;]", Ç*. If [0, 1] = U^€* X$ G Prm^*), then
 the family {F(X() : f G /c} satisfies the condition of the definition of ť, i.e.
 K > ť.

 Conversely, if T Ç [u;]14' is dense, then the set

 X(T) = {x G [0, 1] : (VL Gf)IC 5X or LCu;' 5*}

 is ^l^-permitted. If Â is a family from the definition of ť, then one can easily
 see that

 [J X(^) = [0,1],

 i.e. cov(Prm(w4ÍH)) < ť.
 (3) Let X Ç Prm^*), 'X' < f). By the definition of f), the set T =

 f]x^X is a dense subset of [w]^. Since clearly [JX Ç X(^), the set
 is .^-permitted, and therefore addiPrm^*)) > f).

 The second inequality follows from part (2).
 □

 We show that there are perfect ¿l^-permitted sets. We start with an
 auxiliary result.

 Lemma 14.5 Let T Ç [w]" and let xl G X^l for each L G T. If T is an
 almost disjoint family (i.e. K fl L is finite for any different K>L G T), then
 the set {xl : L G T) is -permitted.

 Proof. Let A G A**. Then there exists a K G [u]" such that A C Xk- We
 have two possibilities.

 If for every L G T the intersection L fl K is finite, then we set N = K.
 Otherwise, there exists an M G T such that the intersection KOM is infinite.
 In this case, we take an infinite set N Ç KOM such that {£m(0}*€N is
 constant on JV, i.e. xm G Xn-

 In the former case for any I G i' and in the latter case for any L G T
 except M, the intersection N fl L is finite and therefore N Ç* uj'L. Thus,
 xl G Xu'l Ç Xn for every L G T.

 □

 Theorem 14.6 There exists a perfect A^ -permitted set.
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 Proof. Let us fix an enumeration {sì : i G u/} of the set <u>2 of all finite
 sequences of O's and Vs. For a G ^2, we denote Ca = {i G w : s,- C a}. For
 any ß a, the intersection Ca(^Cp is finite. Thus, {Ca : a G w2} is an almost
 disjoint family.

 Lët g : w2 -> [0,1] be defined by #(a) = X^»€ctt'{o} 2~' Then g(a) G
 Xu'ca f°r every a G ^2, and the set {^(a) : a G "2}, as a one-to-one con-
 tinuous image of a compact space (the set w2 is endowed with the product
 topology), is perfect and by Lemma 14.5 also .^-permitted.

 □

 For Aw-sets, we know more. However, the proof uses some deep methods
 of logic (absoluteness). For the notion of a Mathias real, see e.g. [Mat].

 Theorem 14.7 Each perfect set. P contains a perfect -subset.

 Proof. Let 9Jt be a transitive model of ZFC containing P and let m be a
 Mathias real over 9ÏÏ. Then in 9Jt[m] there is a K G [w]*" such that

 {Vx€Pnm){I< Ç* Sx or K Ç* u>'Sx).

 Since P fi 9Jt is uncountable in 2Jt[m], the Borei set

 {x G P : K C* Sx or K Ç* u ' Sx}

 is uncountable in 3Jt[m]. Therefore it contains a perfect subset. Thus we have
 shown that in Qnfm] the following formula holds:

 (3 K G M^KaP' perfect )(Vx G P')[P' CP t (K C* Sx or K C * lj' 5,)].

 As this formulais Ej, by the Shoenfield Absoluteness Lemma (see e.g. [Jech]),
 it also holds true in 9JI.

 □

 15 Consistency of ť < c

 About the cardinal characteristic ť, at the moment, we only know that r < ť.
 Hence, the equality cov(Pim(A^)) = Ni is not provable. We show that the
 equality cov(Prm(.4w)) = c also cannot be proved in ZFC. To do this, we
 describe a generic model of ZFC in which ť = Ni < c. For terminology, see
 e.g., [Jech].

 Let 371 be a transitive model of ZFC + Ni < c. Given an ultrafilter V Ç
 V(u), we consider the forcing notion

 P(V) = {(a, L) : a Ç u finite, L G V}
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 with the ordering

 (s, L) < (*, K) iff 5 D t & (s ' t) U L Ç K.

 This forcing notion is C.C.C. , so cardinals are not collapsed when forcing with
 it. If G is an SDt-generic filter on -P(V), then the infinite set

 i'rG = U{*:(3¿)(s,¿)€G}

 is a pseudo-intersection of V. Consequently,

 (VL G V(lj) n fflt) Ng Ç* L or NG Ç* u ' L.

 For any infinite L C w, L G QJl, if /l G an is a one-to-one function from uj
 onto L (e.g. /l(^) = L(n)), then the set Nq,l = Íl(Ng) Ç L is in SDZ[G] and
 is such that

 (15.1) (VA' G V(u>) n 971) NGìL C * K or NGîL Ç* u ' K.

 Now we construct a sequence of models by finite support iteration:

 (15.2) <STO€ : Í < W!)

 such that

 (i) an0 = an,

 (ii) an^+i = ane[Ge], where Gę is an Sm^-generic filter over -P(Vf) where
 Vf G art^ is an ultrafilter on u, and

 (iii) for f limit, is the finite support iteration limit of the sequence (SDt^ :
 »? < 0-

 Let 91 be the model of ZFC which is the limit of the chain (15.2). Then
 and On have the same cardinals and Ni < c in 91.

 Now set

 &T) = {NGiiL : L g [u/]w n an¿ & 77 < £}•

 Since for each K G 91, K G [^]w, there exists a f < wi such that K G 9n^,
 all the sets 77 < u>i, are dense subsets of ([uf)^, and using (15.1) we can
 easily verify that the family {Âv : 77 < u>i} witnesses the equality ť = Ni in
 91.
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 16 Walsh orthogonal system

 We denote the support of a natural number n by

 Sn = the unique finite set L such that n = YlieL ^ % •

 Thus, e.g. So = 0, S2* = {"}•
 The Walsh orthogonal system is the sequence 2U = {it;n}^Ļ0 of func-

 tions defined by

 W„(x) = n r/c+i(x), for a non-dyadic x G [0, 1],
 k€Sn

 and satisfying the equality

 wn(x) = i lim (Wn(x - h) + wn(x- h h))
 2 /t- ► 0+

 for all x G [0, 1], where wn(0 - h) = wn(l - h) and wn( 1 -f h) = wn(0 H- A). It
 is known (see e.g. [Ale]) that the system 2Ü is a complete orthonormal system
 in L2([ 0, 1]). Clearly rn+1 = and r0(x) = tuo(z) for x G (0, 1).

 As for the Radem acher system, we say that a set E Ç [0, 1] is an A?® -set
 if there exists an increasing sequence of natural numbers such that
 the sequence {wnfc(x)}£L0 converges for every x G E. As before, the family of
 all A^-sets is denoted by .

 The values of Rademacher functions for a non-dyadic real x are determined
 by the set Sx • Let us introduce similar sets for Walsh functions:

 Tx = {n G UJ : wn(x) = -1}.

 Thus, for any non-dyadic real x we have

 w (x) - / if n g Tx ,
 ifnerx.

 Instead of the set Xl , for an infinite L Çu we introduce the set

 Xl = {* G [0, 1] : L Ç* Ts V L Ç* u; ' Tx}.

 We begin with showing that the set is <r-porous. Let

 Y£n = {z€[0,l]:L'nCTI},
 Yïn = {xe[0,l}-.L'nÇu,'Tx}.

 Clearly Yi = Unew^n U Y[n. Let rik = L(k) and let mk = max Snk •
 Without loss of generality, we can assume that {mfc}£l0 is strictly increasing.



 Thin sets of Harmonic Analysis and Infinite Combinatorics 495

 Given n £ u and any k > n (note that > k > n) divide the interval [0, 1]
 into 2mfc equal intervals. Then for each three neighbouring intervals, one is
 disjoint from Y¿ and one is disjoint from Y£ . Therefore, all the sets Y¿" ,
 Y£-n are porous, and consequently Yl is <r-porous.

 Lemma 16.1 The family

 W = {L G [w]" : {wn(x)}neL converges for every dyadic x G [0, 1]}

 is an open dense subset o/ja;]4", Ç*.

 Proof. For x G [0, 1], the set Wx of all sets L G [u;]" such that {u>n(z)}n€L
 converges is an open dense subset of [u;]", Ç*. So the set W, being a countable
 intersection of open dense sets for x dyadic, is open dense (see e.g. [Vau]).

 □

 Now one can easily prove

 Theorem 16.2

 (1) A* C Aw.

 (2) K Ç* L implies Yl CYk-

 (3) A G A ^ if and only if there is an L 6 W which is not split by any set
 Tx for x £ A, i.e. if AC Yl-

 (4) Every Yl is a a-porous Fa set and so is meager and negligible.

 (5) The family {Yl : L G W} is an Fa basis for Aw .

 (6) AmCV*.

 Note that (3) cannot be reversed: take an infinite set M Ç {2n : n G u}-
 Then for any sets L , K such that M Ç L, K Ç M Ö {M (k) + M (k + 1) + M (k +
 2) : k G a;}, we have Yl = Yk = Ym (recall that M(k) is the kth element of
 M).

 There exists a close relationship between A1*1- and A^-sets, expressed by

 Theorem 16.3 There is a Borei mapping h : [0, 1] - > [0, 1] which is one-to-
 one on the set of all non-dyadic reals and such that for any x G [0, 1] and any
 Lew

 (16.1) x G Yl if and only if h(x) G Xl-

 Therefore ,
 A™={h-l{A) :AeA*}.
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 Proof. Let

 h(x) = ^ 2~n, for X G [0, 1].
 n€Tx

 If X, y 6 (0, 1) are two distinct non-dyadic reals, then the sets TXi Ty are also
 distinct. As the complement of any of these two sets cannot be a finite set,
 h(x) h(y). Clearly, a real x is dyadic if and only if h(x) is dyadic, and h
 restricted to the set of all non-dyadic reals is continuous. Therefore h is Borei
 measurable. For a non-dyadic real x and n > 1,

 MM*» = <-!)*">• = { !};

 and so tun(£) = rn{h(x))} for all n £ cj. Consequently, using the fact that Xl
 and Yl both contain all dyadic reals for LEW, we obtain (16.1).

 □

 Theorem 16.4

 (1) : A £ Prm (A*)} C Prm {Aw).

 (2) Each perfect set PC [0, 1] contains a perfect A^° -subset.

 (3) s < noníPrm^2^)) < non {Aw).

 (4) cov^l®) < cov(Prm(>l2rr)) < ť.

 Proof. (1) if A e Prm {A*), then (VL € Hw)(3/ř € HW)(AUXL C XK).
 We can always choose such a K from the family W. Hence (VL E [v]t")(3K E
 [wDÍâ"1^) U Yl Ç Yk) and so

 A"1^) € Prm (Aw).

 (2) Let P be a perfect set. By Theorem 16.3, h(P) is an uncountable Borei
 set, and therefore h(P) contains a perfect subset. By Theorem 14.7, there is
 a perfect A^-set P' Ç h(P). Hence by (1), h ~1(P') is an A^-set, and since it
 is uncountable Borei, it, contains a perfect subset.

 (3) If 'X' < s then by Theorem 14.4 (1), h(X) E Prm^^), and by (1),
 X € Prm(^®).

 (4) If X Ç Prm(*4w) is a covering of the interval [0,1], then by (1),
 Ç Prm(>t2rr) is also a covering. Hence the inequality is a consequence

 of Theorem 14.4 (2).
 □



 Thin sets of Harmonic Analysis and Infinite Combinatorics 497

 17 Sets of uniqueness for Rademacher and Walsh sys-
 tems

 In Section 6, we defined sets of uniqueness for trigonometric series. Simi-
 larly, we define: a set A Ç [0, 1] is a îf*-set (a Lr^-set) if the only series

 0 anrn(x) (5ir=o fln%W) converging to zero on the set [0, 1] ' A is the
 series with an = 0 for every n = 0, 1, -

 S. B. Stechkin and P. L. Ul'yanov [SU] proved the first part and, more
 recently, A. V. Bakhsheciyan [Bak] proved the second part of the next theorem.

 Theorem 17.1

 (1) Whenever A Ç [0, 1] and p,{A) <1/2, A is a if* -set.

 (2) Every if* -set A Ç [0, 1] of Lebesgue measure < 1 is contained in a if
 set with countable complement.

 Similar results for category were obtained by J. E. Coury [Cou] (the first
 part) and by N. N. Kholshchevnikova [Kh5] (the second one):

 Theorem 17.2

 (1) Every meager set is a lf*-set.

 (2) Every set AC [0, 1] which is either meager or 'A' < c is contained in a
 lf*-set with countable complement.

 Moreover, N. N. Kholshchevnikova [Kh5] proved

 Theorem 17.3

 (1) The set [0, l]'{2~n : n > 1} is a if* -set and the set [0, l]'{2~"n : n > 2}
 ¿5 not a if* -set.

 (2) A set A Ç [0, 1] containing all dyadic reals is a if* -set if and only if there
 are non-dyadic reals xn,yn £ [0, 1] ' A such that rn+i(xn) ^ rn+2(zn)
 and rn+1(yn) = rn+2(t/n) for all n£u.

 A. A. Shneïder [Shn2] obtained the first fundamental results about Up-
 sets.

 Theorem 17.4

 (1) Every countable subset of [0,1] is a iß0 -set.

 (2) Every if® -set has Lebesgue inner measure zero.
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 (3) There exists a Lebesgue measure zero set that is not a iß0 -set.

 (4) There exists a if® -set of cardinality c.

 (5) The union of a finite number of closed if® -sets is a if® -set.

 W. R. Wade [Wad] improved part (5) by showing that

 the union of a countable number of closed if® -sets is a if® -set.

 N. N. Kholshchevnikova [Kh4] generalized this result in the style of Theo-
 rem 6.8 as

 Theorem 17.5 Let An, n £ w be if® -sets that are closed relative to their
 union A = (J^°=o Then A is also a if® -set.

 Moreover, N. N. Kholshchevnikova [Kh3] proved an analogous result to
 Debs and Saint- Raymond 's theorem 6.4:

 Theorem 17.6 Every if® -set with the Baire property is meager.

 18 More on non-absolute convergence

 The combined results of several authors [Rad, PZ, Kol, Zy2] give the following
 classical theorem on Rademacher series (/i means the Lebesgue measure; for
 a proof, see e.g. [Ba2]):

 Theorem 18.1 Let {cn}£L0 be a sequence of reals. Then the following con-
 ditions are equivalent:

 (!) E~=0 Cn < 00,

 (2) /i({x € [0, 1] : £~=0 cnrn(x ) converges}) = 1,

 (3) n({x £ [0, 1] : cnrn(x) converges}) > 0.

 For category, S. Kaczmarz and H. Steinhaus [KS] obtained a similar result:

 Theorem 18.2 The following conditions are equivalent :

 (1) E~oM = c*,

 (2) {x € [0, 1] : cnrn{x) converges} is meager,

 (3) {x € [0, 1] : £^=0 c„rn(x) converges} # [0, 1].
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 Let {/n }n=o be a sequence of Borei measurable functions defined on the
 interval [0, 1] with 'fn(x)' < 1. For a real p > 1, we denote by

 £P({/n}~o)

 the family of sets A Ç [0, 1] for which there exists a sequence {cn}JJL0 with
 lcttlP = 00 such that the series J2™=ocnfn{x) converges for all x € A.

 Clearly, E^2({/n}~=0) Ç E Pl({fn}%L0), whenever 1 < px < p2.
 Using the result of A. A. Shneider [Shnl] which says

 the series cnWn(x) converges on (0, 1) for every non-
 increasing sequence {cn}JJL0 of reals converging to zero,

 we obtain that the interval (0, 1) belongs to EP(2ÏÏ) for every p > 1. Thus, the
 family EP(2U) is uninteresting.

 By theorems 18.1 and 18.2, E2(SH) Ç CD IC and E1(3ł) Ç IC. Immediately
 we have

 Theorem 18.3

 (1) non(E1(SH)) < non(/C),

 (2) cov(/C) < cov(E1(9tl));

 (3) non(E2(9t)) < min{non(£), non(/C)},

 (4) max{cov(£),cov(/C)} < cov(E2(SH)).

 The following result is a variation on a Rothberger's result [Rot] concerning
 measure and category.

 Theorem 18.4

 (1) cov(£) < n<m(&({fn}Z=0)),

 (2) non(£) > cov(E1({/„}~=0)).

 Proof. Fix a sequence {cn}£L0 in £2 '£1, e.g. cn = l/(n + 1), and consider
 the set

 oo

 A = {(x,y)€[0,l]x[0,l]:]Tcn fn(x)r„(y) converges}.
 n=0

 By Theorem 18.1, for every x € [0, 1], the set

 Ax = {y€ [0, 1] : (*, y) € A}
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 has Lebesgue measure 1, and for any non-dyadic y € [0,1], the set

 Ay = {x € [0,1] : (x,y) 6 A)

 is in E1«/»}" „)•
 If X Ç [0,1] with 'X' < co v(£) then there is a non-dyadic real y such that

 y G Ax for every x G X. Let c'(n) = r„(y)c(n). Then £ £2 - £l
 and H™=ocnfn(x) converges on X. Hence cov(£) < non(E 1 {{fn}%Lo)) •

 If Y is set of non-dyadic reals, Y £ £, then for each x € [0, 1] we have fl
 Y^0; i.e., there exists a real y £ Y such that x £ Ay . Hence the family {Ay :
 y £ Y} Ç o) is a covering family and therefore cov(E1({/n}^o=0)) <
 non(£).

 □

 Theorem 18.5 For P > 1,

 ç

 Proof. Let L be an infinite subset of u. We set

 ,j n ' i (- l)Ä/lnfc, for n = L(k), k > 1,
 ' n ļ 0, for n G cj ' L and for n = L(0), n = L(l).

 Since the series l/(lnn)p diverges for any p > 1, X^°=2 lc(^>n)lP = 00 >
 and so the set

 oo

 = {x € [0, 1] : ^ c(L, n)rn(x) converges}
 n=0

 is in EP(ÍH). We show that
 Xl Ç BL-

 Let x G -Xf,. Then either L Ç* Sx or L Ç* u ' Sx- Assume first that e.g.
 L Ç* Sx. Then there is an no such that for every n > no, n G L, we have
 rn(x) = -1. Therefore,

 oo oo

 ^2 c(L,n)rn(x) = - ^ c{L,n)
 n=L(n0) n=L(n0)

 and the series on the right side does converge. Thus, x G Bl-
 In the case Z C* u ' Sx we obtain rn(x) = 1 for all but finitely many n' s

 (without loss of generality we can assume that x is not a dyadic real) , and the
 result follows in the same way.

 □

 So, by Theorem 14.3, we obtain
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 Corollary 18.6 For each p > 1,

 (1) non(Ep(ÍK)) >5,

 (2) cov(E*(9t)) < r.

 The next results for the Rademacher system now follow from Theorems
 18.3, 18.4 and Corollary 18.6.

 Corollary 18.7

 (a) For p = 1,

 (1) max{5,cov(£)} < non(E1(9[')) < non(/C),

 (2) cov(/C) < cov(E1(ÍH)) < min{t, non(£)}.

 (b) For 1 < p < 2,

 (1) 5 < non(57(ÍH)) < non {IC),

 (2) cov(/C) < cov(E1(ÍH)) < t.

 (c) For p>2,

 (1) 5 < non(Ep(£H)) < min{non(/C), non(£)},

 (2) max{cov(/C),cov(£)} < cov(Ep(SH)) < t.

 19 Some open problems

 For the sake of brevity, in this section we understand by a CTT S- family (=
 a family of classical trigonometric thin sets) any of the families V , pV , A/o, À f,
 B , Bo , A, vfD , U.

 In Section 11 we raised ten questions about a family of thin sets. For
 the CTTS-families, all, except one of them, were answered. So, we raise one
 unanswered and one refining question:

 Problem 19.1

 (1) Is it consistent with ZFC that wV has a Borei basis?

 (2) Are the expansions of Borei U-sets again U-sets?

 One can easily see that we have answered questions Ql, Q3-5, Q7-10 for
 the families Prm(^"), whęre T is a CTTS-family, with the exceptions
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 Problem 19.2

 (1) Is every M -permitted or B-permitted or wD -permitted set cr-porous?

 (2) Is every countable set U -permitted?

 For the remaining questions, we do not know the answers. So

 Problem 19.3 Let T be a CTTS-family.

 (1) Does the family Prm(^) have a Borei basis?

 (2) Does the family Prm(^) contain a perfect set?

 In connections with these problems it seems to us that the following holds
 true.

 Conjecture 19.4 No perfect set is T -permitted for T being a CTTS-family.

 We raise three further questions.

 Qll Does everý perfect set contain an uncountable subset belonging to

 Q 12 Does every perfect set contain a subset of cardinality c belonging to T!

 Q13 Does every perfect set contain a perfect subset belonging to

 Let us remark on the following fact. Let J be a family of thin sets with a
 Borei basis. If a perfect (or Borei) set P contains an uncountable subset B £ T
 then there exists a perfect subset P' of P in T . Therefore, for a family with a
 Borei basis, the answers to questions Q11-Q13 are equivalent. For a CTTS-
 family, an affirmative answer to questions Q11-Q13 follows from theorems 6.5
 and 8.3.

 The property "to be a 7-set" is topologically invariant. Therefore, if there
 exists a 7-set of cardinality c, then every perfect set contains a 7-subset of
 cardinality c. Thus by the results of Section 13, it is consistent (even Martin's
 Axiom implies this) that the answer to question Q12 is affirmative for the
 families Prm(^*), T = pV, A/o, A/' «4, wD. We do not know the answers in the
 general case.

 Problem 19.5 What are the answers to questions Q 11-13 for Prm(^), where
 T is a CTTS-family?

 In Section 10 we collected some inclusions and non-inclusions between the

 CTTS-families and/or some families of small sets. To obtain the complete
 picture of relationships between all of them, we need to answer the following
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 Problem 19.6

 (1) Bo cn, Bo CV?

 (2) aV Ç7Í, aVÇ B0, aV Ç B?

 (3) Va QU?

 (4) Is every Borei (in particular closed) U-set a-porous?

 In connection with the results of Section 12, we ask:

 Problem 19.7 Let T be a CTTS-family.

 (1) Is Prm (T) a c-ideal?

 (2) Is there a convenient characterization of either of the cardinals non(^)
 and cov(!F) ?

 (3) Similarly, is there a convenient characterization of either of the cardinals
 non(Prm(^")) and cov(Prm( F)) ?

 Although we know answers to more than half of the thirteen questions
 Ô1-Q13 about the families A*, Aw, U *, Uw , £*(!*), Prm(.4*), Prm (Aw),
 we are far from being able to give complete answers as we did in the case of
 CTTS-families. Here are the questions we are not able to answer.

 Problem 19.8

 (1) Is the family Ep (ÍH) an ideal?

 (2) Do the families Prm^*), Prm^20) have Borei bases?

 (3) Is every set from EP(£H) a -porous?

 (4) Is the family EP(ÍH) closed under adding a point?

 (5) Are the families A*, Aw , U Uw , £P(ÍH), Prm^*), Prm^23*) closed
 under shifts and expansions?

 (6) Does every perfect set contain an uncountable subset belonging to ,
 Ep(ÍK), Prm(.4*), Prm^®)?

 (7) Does every perfect set contain a subset of cardinality c belonging to ,
 57(91), Prm^*), Prm(.4®)?

 (8) Does every perfect set contain a perfect subset belonging to U^ , Ep(9');
 Prm(-4*), Prm (Aw)?
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