Real Analysis Exchange Vol. 20(2), 1994/5, pp. 436-437

Lee Larson, Department of Mathematics, University of Louisville, Louisville, KY 40292, email: lmlars01@homer.louisville.edu

SOME GENERAL METHODS FOR SHOWING DERIVATIVES ARE IN B_1

Define a function $h : \mathbb{R} \to \mathbb{R}$ to be a parameter function if all the following are satisfied: (1) h is measurable; (2) h(G) is measurable whenever G is measurable; and, (3) if A_n is a sequence of Borel sets such that $|A_n| \to 0$, then $|h^{-1}(A_n)| \to 0$.

Parameter functions such as these can be used to define a generalized derivative as follows. If $f : \mathbb{R} \to \mathbb{R}$, let

$$Q(x,t) = \frac{1}{g(t)} \sum_{i=1}^{n} a_i f(x+h_i(t))$$

where the a_i are constants, the h_i are parameter functions and g is an arbitrary nonzero function. Q(x,t) is a generalized difference quotient, and it can be used to define a derivative as

$$f^*(x) = \lim_{t \to 0} Q(x,t)$$

whenever this limit exists. By taking appropriate one-sided limits, the one-sided versions of this derivative, f^{*+} , f^{*-} can be defined. Approximate versions, f^*_{ap} , f^{*+}_{ap} , f^{*-}_{ap} are defined in the obvious way.

Theorem 1 ([1]) If f is a measurable function such that f_{ap}^{*+} exists everywhere (even with infinite values), then $f_{ap}^{*+} \in B_1$.

By choosing the parameter functions and constants in appropriate ways, it is possible to use this theorem to show that many common generalized derivatives are in B_1 . For example, choosing g(t) = 1, h(t) = t and Q(x,t) = f(x+t), it follows that any right or left approximately continuous function is in B_1 . Choosing g(t) = 2t, $h_i(t) = (-1)^{i-1}t$ for i = 1, 2 and $a_i = (-1)^{i-1}$ shows that the approximate symmetric derivative of a measurable function is in B_1 .

Problem 1 What are the "proper" conditions on the parameter functions to extend this to the case of I-approximate limits?

Problem 2 Can this method be generalized to selective limits?

GENERAL METHODS

References

 Lee Larson. A method for showing generalized derivatives are in Baire class one. In *Classical Real Analysis*, volume 42 of *Contemporary Mathematics*, pages 87-95. Amer. Math. Soc., 1985.