G. Kwiecińska, Instyut Matematyki, 80-952 Gdańsk, ul. Wita Stwosza 57, Poland

W. Ślęzak, Instyut Matematyki, 80-952 Gdańsk, ul. Wita Stwosza 57, Poland

STRONG SEMICONTINUITY OF REAL FUNCTIONS

In various problems one encounters measurability of functions of several variables. Z. Grande [1] gave some theorems concerning measurability of real functions defined on the product of \mathbb{R} . We show more a general theorem whose proof entirely differs from Grande's and appears more direct.

Our proof is based on a theorem of Slęzak [2] concerning classes of Baire set valued functions. To quote this theorem, some notation must first be introduced.

Let $(X, \mathcal{T}(\mathcal{X}))$ and (Z, T(Z)) denote two topological spaces and let $F : X \to Z$ denote a multifunction; i. e., F(x) is a nonempty subset of Z for $x \in X$. Write $F^{-}(G) = \{x \in X : F(x) \cap G \neq \emptyset\}$.

Let $\Sigma_{\alpha}(X)$ and $\Pi_{\alpha}(X)$ denote, respectively, the additive and multiplicative classes $\alpha, \alpha < \Omega$, in the Borel classification of the subsets of X; i. e., $\Sigma_1(X) = \mathbf{F}_{\sigma}$, $\Pi_1(X) = \mathbf{G}_{\delta}$, $\Sigma_2(X) = \mathbf{G}_{\delta\sigma}$, $\Pi_2(X) = \mathbf{F}_{\sigma\delta}$, and so forth.

Theorem 1 ([2], Thm. 1) Let $(X, \mathcal{T}(\mathcal{X}))$ be a perfectly normal topological space and let Z be a Polish space. Suppose that $F: X \to Z$ is a multifunction with closed values. Then the following conditions are equivalent: (1) F is of lower class α ($\alpha > 0$); i. e., $F^-(G) \in \Sigma_{\alpha}(X)$ for every open $G \subset Z$; and, (2) there exist Borel α functions $f_n: X \to Z$, $n = 1, 2, \ldots$ such that for every $x \in X$ we have $F(x) = cl\{f_n(x) : n \in \mathbb{N}\}$.

Now we can prove the following theorem.

Theorem 2 Let (X, d) be a metric space and let (Y, ρ) be a separable and complete metric space. Let $f : X \times Y \to \mathbb{R}$ be a function such that all its xsections f_x are quasi-continuous and upper semi-continuous (Such functions are called strongly upper semi-continuous.) and all its y-sections f^y are B_1 . Then the function f belongs to the upper class 2 in the Young classification; *i. e.*, $f^{-1}(-\infty, r) \in \mathbf{G}_{\delta\sigma}$ for every $r \in \mathbb{R}$.

STRONG SEMICONTINUITY

PROOF. Let $S = \{s_n : n \in \mathbb{N}\} \subset Y$ be ρ -dense. For $(x, y) \in X \times Y$, by the strong upper semicontinuity of f_x , there exists an open set $U \subset Y$ such that $y \in clU$ and $\lim_{x \to y \land z \in U} f(x, z) = f(x, y)$. Therefore to each point $(x, y) \in X \times Y$, there corresponds a sequence $n \to s_n(x, y) \in S$ such that $\lim_{n\to\infty} s_n(x, y) = (x, y)$ and $\lim_{n\to\infty} f(x, s_n(x, y)) = f(x, y)$. Let $(q_n)_{n\in\mathbb{N}}$ be an enumeration of the rational numbers. For every $(n, m) \in \mathbb{N} \times \mathbb{N}$, let us define a family of functions $f_{nm} : X \to Y \times \mathbb{R}$, putting $f_{nm}(x) = (s_n(x, y), \min(q_m, f(x, s_n(x, y))))$. Clearly

(1)
$$f_{nm} \in B_1, \quad \forall (n,m) \in \mathbb{N} \times \mathbb{N}.$$

Let $H(x) = \{f_{nm}(x) : (n,m) \in \mathbb{N} \times \mathbb{N}\}$ for $x \in X$ and let us define a multifunction $F : X \to Y \times \mathbb{R}$ by the formula $F(x) = \{(y,r) \in Y \times \mathbb{R} : f(x,y) \ge r\} \subset Y \times \mathbb{R}$. Notice that

(2)
$$F(x) = \operatorname{cl} H(x).$$

According to (1) and (2) by Theorem 1 we have F is lower class 1; i. e., $F^{-}(G) \in \mathbf{F}_{\sigma}$ for every open set $G \subset Y \times \mathbb{R}$. Let $\operatorname{gr} F = \{(x, y, r) \in (X \times Y \times \mathbb{R} : (y, r) = F(x)\}$ denote the graph of F. Observe that $\operatorname{gr} F \in \mathbf{F}_{\sigma\delta}$ and for every $r \in \mathbb{R}$ and every r-section of the set $\operatorname{gr} F$

(3)
$$\{(x,y): (x,y,r) \in \operatorname{gr} F\} = \{(x,y): f(x,y) \ge r\} \in \mathbf{F}_{\sigma\delta}.$$

Let $r \in \mathbb{R}$. Now we have

$$f^{-1}(-\infty, r) = \{(x, y) \in X \times Y : f(x, y) < r\} \\ = X \times Y - \{(x, y) \in X \times Y : f(x, y) \ge r\}$$

So, by (3) we have $f^{-1}(-\infty, r) \in \mathbf{G}_{\delta\sigma}$, and the theorem has been proved.

Theorem 2 is a generalization of [1, Theorem 5], and moreover, shows that the function f is in lower class 2. The measurability of f can be obtained after weakening the assumptions about y-sections of f.

References

- Z. Grande, Quelques remarques sur la semi-continuité supérieure, Fund. Math. 126(1985), pp. 1-13.
- [2] W. Ślęzak, Some contributions to the theory of Borel α selectors, Problemy Matematyczne, 5/6(1986), pp. 69-82.