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 STRONG SEMICONTINUITY OF REAL

 FUNCTIONS

 In various problems one encounters measurability of functions of several
 variables. Z. Grande [1] gave some theorems concerning measurability of real
 functions defined on the product of M . We show more a general theorem whose
 proof entirely differs from Grande's and appears more direct.

 Our proof is based on a theorem of Ślęzak [2] concerning classes of Baire
 set valued functions. To quote this theorem, some notation must first be
 introduced.

 Let (X, T(X)) and (Z,T(Z)) denote two topological spaces and let F : X ->
 Z denote a multifunction; i. e., F(x) is a nonempty subset of Z for x G X.
 Write F-(G) = {x e X : F(x) nG^¿0}.

 Let Ea(X) and ĪIa(X) denote, respectively, the additive and multiplicative
 classes a, a < Œ, in the Borei classification of the subsets of X] i. e., £i(A") =
 F„ IL^X) = G¿, Ezi-*) = GSai U2{X) = Faõi and so forth.

 Theorem 1 ([2], Thm. 1) Let (X, T(X)) be a perfectly normal topological
 space and let Z be a Polish space. Suppose that F : X - ► Z is a multifunction
 with closed values. Then the following conditions are equivalent: (1) F is of
 lower class a (a > 0); i. e F" (G) € £a(X) for every open G C Z; and, (2)
 there exist Borei a functions fn : X - ► Z, n = 1,2, .. . such that for every
 x £ X we have F(x) = cl{/n(x) : n G N}.

 Now we can prove the following theorem.

 Theorem 2 Let ( X , d) be a metric space and let (Y, p) be a separable and
 complete metric space . Let f : X x Y - > M be a function such that all its x-
 sections fx are quasi- continuous and upper semi- continuous (Such functions
 are called strongly upper semi- continuous.) and all its y-sections fy are B'.
 Then the function f belongs to the upper class 2 in the Young classification ;
 i. e /_1(- oo,r) G for every r G M.
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 Proof. Let S = { sn : n G N} C Y be p- dense. For (x,y) € X x Y,
 by the strong upper semicontinuity of /x, there exists an open set U C Y
 such that y G cl U and limz_»yAz€t/ /(x,z) = /(x, 2/)- Therefore to each point
 (x,y) G X x y, there corresponds a sequence n - ► sn(xiy) G S such that
 linin-K» Sn(x,y) = (*>2/) and limn-^oo/(iC,Sn(x,t/)) = /(x,y). Let (gn)n€W
 be an enumeration of the rational numbers. For every (n,m) G N x N,
 let us define a family of functions fnm : X 4 7 xl, putting /nm(i) =
 (sn(x, y),min(çm,/(x, s„(x, y)))). Clearly

 (1) fnm€Bu V(n, m)eHxM.

 Let -ff(x) = {/nmfi) : (n, m) G N x N} for x G X and let us define a multi-
 function F : X - ► y x R by the formula -F(x) = {(y, r) G y x M : /(x, y) >
 r} C y x M. Notice that

 (2) F(x) = cLff(x).

 According to (1) and (2) by Theorem 1 we have F is lower class 1; i. e.,
 F~ (G) G Fa for every open set G C Y x R. Let grF = {(x, y, r) G [X x y x M :
 (y, r) = F(x)} denote the graph of F. Observe that grF G and for every
 r G M and every r-section of the set grF

 (3) {(z.i/) : {x,y,r) € grF} = {(x,y) : f(x,y) > r} € F „i.

 Let r G M. Now we have

 f~l (-00, r) = {(x, y) 6 X x V : /(x, y) < r}
 = X x y - {(*, y)€XxY : f(x, y) > r}

 So, by (3) we have /-1(- oo, r) G G<$a, and the theorem has been proved.
 Theorem 2 is a generalization of [1, Theorem 5], and moreover, shows that

 the function / is in lower class 2. The measurability of / can be obtained after
 weakening the assumptions about y-sections of /.
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