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 MULTIPLYING DERIVATIVES

 As a tribute to Jan Marik, who died in January 1994, 1 would like to present
 some results from some of our joint work over the years. I will restrict myself
 to that part of our joint work concerned with multiplying derivatives. This
 is an appropriate topic to discuss in Poland since the first person to publish
 the fact that the product of two derivatives need not be a derivative was the
 Polish mathematician, W. Wilkosz in 1921.

 Theorem 1 (Wilkosz) The function

 ™-{rł liti
 is a derivative , but the function f2 is not a derivative.

 The question then naturally arises as to what functions can be written at
 the product of two or more derivatives? For example can the product of two
 derivatives fail to have the Darboux property? The answer is yes. In fact the
 characteristic function of {0} can be written as the product of two derivatives.
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 Continue constructing solid line segments and dotted ones as indicated.
 Then connect all of the solid ones with smooth curves that don't wander too

 far away from the given graphs and do the same thing for the dotted line
 segments. The resulting graphs will be graphs of two different i able functions
 the product of whose derivatives is zero except at 0 where the product is 1 .

 The general case of the characteristic function of an arbitrary closed set is
 somewhat more difficult, but is a consequence of the first general theorem I
 would like to present. To do so some notation and definitions are needed that
 will be used throughout the talk.

 Notation. Let n E N' 1 and for each i = 1, . . . n let /?,• G (0,oo). Set
 /? = E?=iä-

 The important objects for the statements of the first two theorems are the
 following sets.
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 Definition 1 For any set S C ® let

 V(S) = {/ : S -> R : /(*) = F'(x) /or some F : S -+R
 and for each a: € 5}

 where the derivative is computed relative to S. Also let
 n

 ns) = = :/ť€D(5) and
 t = l

 fi > 0 for i = 1,2,..., n}.

 We will be concerned with just two cases: when S is an open set and when
 S is an interval which need not be open.

 Theorem 2 Let G C M be open, let u G V{G) and let v £ ^(M). Set

 (u(x) if I € G
 w(x) V ; = <

 w(x) V ; = < 'v{x) ifx$G.

 Suppose u <v on G . Then w G V [G).

 If we let v be the function identically 1 and let u be the function identically
 0 on the complement G of a given closed set H , then the function w of the
 above theorem is the characteristic function of H . Clearly u and v satisfy the
 condition of the theorem with n = 2 and ß' = /?2 = 1. Consequently w can
 be written as the product of two derivatives

 Given that the characteristic function of a closed set is the product of two
 derivatives, what about the characteristic function of an open set? The next
 theorem has as a consequence that the characteristic function of a non-trivial
 open set can't be written as the product of any number of derivatives nor the
 product of an (fractional) powers of derivatives. The statement of the theorem
 requires some notation. We use the open interval (0, oo) but in fact any open
 interval could be used.

 Definition 2 Let u : [0, oo) -> M be Lebesgue integrable on [0, oo). For Í, 77 G
 (0,oo) let

 Srjjiu) = sup u : I is a subinterval of [0,6) with 'I' > 77<fo£(0,/)ļ .
 Note that decreases as S decreases to 0. So let

 sv(u) = i™ S *(ti).
 6-+0+
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 Also note that as rj decreases to 0, S^iu) increases. So let

 S(u) = lim Srj(u).
 7J-+0 +

 Note that if u > 1 on (0, oo), then S(u) >1.

 Theorem 3 Let u : [0,oo) - y M. Suppose u|(o,oo) £ ^(0,00). Then u G
 ^([Ojoo)) if and only if u( 0) >

 Note that for the function identically 1 on the interval (0,oo) we have

 SP(u?) = 1. Consequently if ti E ^([0,00)), then u(0) > 1. Thus the
 characteristic function of (0, 00) isn't in T(M) for any choice of n or of the
 numbers /%.

 There is a curious fact that was discovered when working with these prod-
 ucts. It is contained in the next theorem.

 Theorem 4 For each i = let fi G V(S) with fi > 0. Suppose
 nr=i fi* 25 approximately continuous at x € S. Then each fi is approximately
 continuous at x.

 For sums of powers of derivatives we have an analogous result. The role
 of the approximately continuous functions is played by the so-called Lebesgue
 functions. In what follows V = 2>(M).

 Definition 3 Let

 C = {/ : M -4 R : lim Ļ [ + I f(t) - fix) I dt = 0}.
 h->0 h Jx

 Theorem 5 Let p G (0, oo) and suppose fi G V for each i = 1, 2, . . . n. Then

 (XZr=i l/»lP)? € C if and only is fi G C for each i = 1, 2, . . . , n.

 Another class of functions important in the study of sum of powers of
 derivatives is the following class.

 Definition 4 Let

 M. = {/ G X> : fg for each g G bÁ]

 where

 bA = {g : M - > M : g is bounded and approximately continuous on M}.

 This class is simply called the multipliers of the class bA.
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 Theorem 6 Let p £ (0, oo) and let fi £ M for i = 1, 2, . . . , n. Suppose that
 for each x £ R

 ap lim inf ( Y] fi {y) J >0.
 v-** 'i= i )

 Then (£"sl /0* € V if and only i/Q2"=1 /»)* G M.

 The study of multipliers of various classes of derivatives is the topic of
 our latest work. Returning to the definition of C interpret the conditions as
 requiring that the i1 -norm of / - f{x) on the interval between x and x + h
 where the measure of that interval is normalized to be 1, tends to 0 as A tends
 to 0. That is, / is continuous in the L1-norm at x. The concept makes equally
 good sense for any p G (0, oo)

 Definition 5 Let p £ (0, oo) and set

 Cp = {fÇV: lim j*+h I f(t) - f{x)'p d?j = 0 for all x € M}
 and also set

 Bp = {/ e V : lim sup ^ J 'f(t)'p < oo.
 The second space can be thought of as the space of all derivatives that are

 locally bounded in the Lp-norm.

 Definition 6 For any S CD let

 M(S) = {feV:fgEV for all g e S}.

 Theorem 7 Let p £ (1, oo) and let let p' be such that ^ + p = 1. Then

 M(Cp) = Bť and M(BP) = Cp*.
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