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DESCRIPTIVE MAPPING PROPERTIES OF
TYPICAL CONTINUOUS FUNCTIONS

Abstract

We show that a typical continuous real function generates all analytic
sets as image of Gs-sets and all Borel sets as injective images of Gs-sets.

In this note we answer a question posed by G. Petruska during the K&K-
seminar in Salzburg, October 93.

Problem 1 Is it true that for typical real valued continuous functions f on
[0,1] there always exists a Gs-set whose f-image is not a Borel set?

The affirmative answer is contained in the following stronger result.

Theorem 2 For typical continuous f on [0,1] and for any analytic set A C
f([0,1]) there exists a Gs-set M with f(M) = A. Moreover, in the same
situation each Borel subset of f([0,1]) is an injective f-image of some Gjs-set.

The proof is based on the standard idea to represent analytic sets as pro-
jections of G plane sets and to use squarefilling Peano curves. However, since
a typical curve is not squarefilling (e.g. the image has Hausdorff dimension
one), we have to proceed more carefully. Before proving the Theorem we need
two auxiliary results.

Lemma 3 Let (X,p) be a metric space, F C X closed and M C X \ F. If
for each € > 0 the set {z € M ; dist(z,F) > €} is G5 in X, then M itself is a
Gg-set.

PRrOOF. We denote Uy = {z ; dist(z, F) > 1} and

1 .
U; = {1’; i+_5<dlSt(z’F)<

}foriZl.
3
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Since U2 Ui = X \ F, we need only to show that M NV, M N W and
M N Uy are Gs-sets, where V = |J;2; Uzi and W = |J;2; Uzi—1. Obviously,
Uo N M is G due to the assumption. Moreover, also for each i1 > 1 M NU; =
U.ﬂ{:c € M ; dist(z, F) > _1§_} is a Gs-set. Hence we find open sets G’: c U;,
j>1,with N2, G = MNU;. Since U,ﬂU,/ =0 for |i — i'| > 2, we see that

both VNM = Ut:l ﬂ]:l G2i - ﬂ =1 Ut— a.nd wWnM = ﬂ =1 Us—l G2t—
are Gs-sets. O

The next statement showing that a typical function is essentially the z-
coordinate of a squarefilling curve, is the “heart” of the paper.

Proposition 4 Let D, E be dense subsets of R. Then for typical continuous
: [0,1] = R and for any € > 0 there ezists a compact set C C [0,1] and
contmuous g :[0,1] = [0, 1] such that

(1) {(f(z),9(2)) ; = € C} = [min f([0, 1]) + ¢, max f([0, 1]) — €] x [0,1]
and that the map
(2) t = (f(t),9(t)) is injective on C\ (f~1(D) U g~(E)).

PRrRoOF. We use the Banach-Mazur game, see [1], to show that for any ¢ > 0
the family M, of all f € C([0, 1], R) for which there is a C C [0, 1] compact
and a g € C([0, 1], [0, 1]) fulfilling (1) and (2) is residual.

The following two simple observations (whose proofs are left to the reader)
will be used during the game:

a) Let K, I be compact intervals, f continuous on K with f(K) D I and let
€ > 0 be given. Assume max],min/ € D. Then for any N and § > 0
(we can always assume § < €) there is a function f' € U(f,¢), a §-fine
division J of I having all dividing points in D and there are mutually
disjoint closed subintervals K ; of int K (for I’ € 3 and 1 < ¢ < N),
such that f'(Kp ;) D U(I',%) and |Kp ;| < 4 holds for any of these
intervals.

b) Let {Kq,a € A} be a finite family of mutually disjoint closed intervals,
and let g be a continuous function with g(Ko) C J for some interval
J and all a. Whenever nonvoid J, C J are selected for all & € A,
then we find a continuous ¢’ such that ||g — ¢|| < |J| and that always
9 (Kq) C Ja.

Now, start the game and let us be given the answer U; C C([0, 1], R) of the
first move of player A. We find fi € Uy, k; with 2=% < ¢ and U(fi,2 "‘) C
Uy. We choose m € DN[min f; ([0, 1]), min £, ([0, 1])+ %), M € (max f,([0,1])—
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£, max f1([0,1])], and (27*1)-fine divisions J1,J; of [m, M] and [0, 1] having
all dividing points in D and E, respectively . According to the observations
we can select mutually disjoint closed intervals Ky, (I,J) € 31 x J1, not
longer than one and contained in int [0, 1], and functions f, € U(fi,27%:-2),
g2 € C([0,1],[0,1]) such that for any pair (I,J) € J; x J1 both fo(Kry) D
U(I,27%1~2%) and g2(K7,4) C J hold. Finally, we return our answer U =
U N U(f2,27%173) to player A.

Next, we consider the answer Us of A. Choose k2 > k; + 2 and f3 with
U(fs,27%3) C Us. Since fs € Uz, the inclusion f3(K;j) D U(1,2-%1-3)
holds for any (I,J) € 31 x J1. We put g5 = go and find Jo,Jo (27%2)-
fine divisions refining J; resp. J; and again having all the endpoints of the
corresponding subintervals in D and E, respectively. Oncemore applying the
observations we can select f4 € U(f3,27%2), and a map g4 € U(g3,27%1) into
[0, 1], and mutually disjoint closed intervals K; s for (I,J) € J2 x J2 of length
at most 1/2 such that K;j C int(Kp ) if ICI' €31, J C J' € J2 and
that fo(Kry) D U(I,27%2-2), g4(K1 s) C J for any pair from these second
divisions. Then we return Us = Us N U (f4, 27ka-3),

We continue the game in this way. All we need to show is that for any
f € Ni2, Us there are g and C fulfilling (1), (2) The way we played the
game ensures that f, = f and also that the g,,’s form a Cauchy sequence in

([/ 0], [1, 00]). Denote its limit by g. It is obv10us that maxf < M+ § +
S+27M3 <M + £ and analogous min f > m — =£. We also put

Kry=Krin(f,9) ' (IxJ)

for any (I, J) in some 3, X J,, and define

c=N U K

121 (I,J)ETn X Tn

We claim that always {(f(t),9(t)) ; t € K1} = I x J, by compactness and
monotonicity this implies also (1). To verify the claim it suffices to show that
foranyn > 1,z € I, y € J with (I,J) € 3, x Jn, and § positive there is
at € Kr gy with |f(t) — z| + |g9(t) — y| < é. For this purpose, we fix N > n
with 27%~-143 < § and (I',J) € Iy x I~ such that (z,y) € I' x J'. Hence,
I'x J' ¢ IxJand Kpjo C Kp,j. Observe that ||f — fan|| < 27F~-3,
and ||lg — gan|| < Z,_’g\ﬂ ~kia < 27kN-1+1) Hence, for K = K1 1 we have
9(K) C U(gan(K),2 1y c U(J, 2 "~-r+1) CU(y,275N 4 27kn-141)
Uy, %) Moreover, we know that there is t € K satisfying fan(t) = z, hence
If(t) — 2| <27*~=3 < § and |f(t) — 2| + |g(t) — y| < 9.

Now (2) follows easily. Indeed, let different ¢,¢' € C \ (f~1(D) U g~1(E)).
be given. Since the maximal lenght of the K ; goes to zero, we find an n and
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two different pairs (I, J), (I’,J') € 3, X Jn such that t € R['J and t’ € R["Jl.
Hence, f(t) € intI, f(t') € intI’, g(t) € intJ, and g(t') € intJ’. But this
implies that (f, g)(t) # (f,9)(t'). Hence, we can choose C to be an appropriate
subset of C. O

So we can turn to the
PrOOF of Theorem 2. We denote m = min f([0, 1]), M = max f([0, 1]) and
F = f~}({m, M}). Now let A be any analytic set contained in the range of f,
obviously we can restrict to the case A C (m, M). We decompose A for k € Z
into the analytic sets

_ ) f)—-m 1
Ar = {t € A; tan(n( ¥ 2))E[k,k+1)}.

Therefore, we can always choose plane Gs-sets Sk contained in Ax x [0, 1] with
Ay = proj,(Sk). Now Proposition 4 ensures the existence of a continuous
map gk : [0,1] = [0,1] such that the range of the map hi(t) = (f(¢), 9x(t))
contains the whole set Si (and even its convex hull). Therefore, the Gs-set
Gk = hi'(Sk) C [0, 1]is mapped onto Ak by f. So we are done if we prove that
G = Uykez G is a Gs-set again. Obviously, GN F = @. Further, compactness
easily implies that for any ¢ positive {z € G ; dist(z, F) > €} is an open
subset of some finite union of Gi’s, and consequently also an Gs-set. Hence,
an application of Lemma 3 finishes the first part of the proof.

In the second part, let B C (m, M) be any Borel set. Obviously, it suffices
to proof that B! = B\ Q as well as B2 = BNQ are injective f images of some
Gs-sets. We define the B,l ’s and B,f ’s analogously to the Ag’s. Since these
sets form a partition of B, again it suffices to show that each single Bj is of
the desired kind, i.e. is an injective f-image of some Gs-set G. Fori =1 we
set D =Q,fori=2D =R\Q and E = Q in both cases. Because Bj is
Borel, there is a relatively closed subset Si of [0, 1] x ([0, 1]\ E) which is under
the z-projection injectively mapped onto Bi. Obviously, S} is of type G5 in
the plane and according to Proposition 4 there is a compact set C € [0, 1] and
a continuous g : C — [0, 1] such that (f,g)(C) D Si. Moreover, the Gs-set

i =CN(f,9)71(S}t) is disjoint with f~!(D) Ug~!(E). ;From (2) we know
that (f,g) maps this set injectively onto S;. Since f = proj, o (f,g), we are
done.
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