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 A NOTE ON MAJOR AND MINOR

 FUNCTION FOR THE PERRON INTEGRAL

 Abstract

 A function / that is almost everywhere the derivative of a continuous
 ACG* function is Perron integrable; a proof of this is given by a direct
 construction of continuous major and minor functions for /.

 The theorem of Hake-Alexandroff-Looman [1] shows that Perron integral
 using only continuous major and minor functions and that using general major
 and minor functions are equivalent. In that Proof, a basic proof, namely, the
 proof by category argument is used. But, a direct constructive proof of the
 theorem has been elusive for a long time. In this note, we give a constructive
 proof, in other words, we provide a technique which directly constructs contin-
 uous major and minor functions on the basis of the primitive of a P-integrable
 function. We remark that we have carried forward the Henstock method [2,
 p. 194].

 A function U is said to be a major function of / on [a, 6] if for every
 X G [a, 6]

 DU(x) > f(x)

 where D_ denotes the lower derivative, and DU(x) > - oo for all x. A function
 V is said to be a minor function of / on [a, 6] if -V is a major function of - /
 on [a, 6].

 A function / is said to be P-integrable on [a, b] if / has both major and
 minor functions and

 - oo < inf{ř/(6) - U (a)} = sup{V(6) - V(a)} < +oo
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 where the infimum is over all major functions U of / on [a, 6] and the supremum
 over all minor functions V of / on [a, 6]. The common value of inf{t/(6)- U (a)}
 and sup{K(6) - V(a)} is defined to be the P-integral of / on [a, 6].

 A function / is said to be Po -integrable on [a, 6], if

 inf{[/0(6) - U0{a)} = sup{K0(6) - V0(a)}

 where the infimum is over all continuous major functions Uo of / and the
 supremum over all continuous minor functions Vb of /. The common value is
 the Po-integral of / on [a, 6].

 A function F is ACG* if [a, 6] = U^X,- and F is AC* (Xi) for each z, i.e.
 for every € > 0 there is 77 > 0 such that for every finite or infinite sequence of
 nonoverlapping intervals {[a*, 6/ c]} with at least one of a*, 6* belonging to Xi
 for all k and satisfying

 ^2 'h - ak I < v we have ^ 'F(bk) - < e.
 k k

 It has been shown [3,4] that the above definition is equivalent to the clas-
 sical definition as given in Saks [1]. In particular, if F is the primitive of
 P-integrable function / on [a, 6], then F is ACG* .

 Theorem 1 If f is P-integrable on [a, 6], then f is P-integrable on [a, 6],

 This is obvious. Conversely, we have the following:

 Theorem 2 If f is P-integrable on [a, 6] with the primitive F) e is a given
 positive number , then we can directly construct a continuous major function
 Uo and a continuous minor function Vb such that

 Uo(a) = Vo(a) = 0, -00 ^ DUo(x) > f(x) > ĎVo(x) ^ +00 for all x G [a, 6],

 and Uo(b) - Vo(b) < e. That is, f is Po -integrable.

 Proof. If / is P-integrable on [a, 6], it is obvious, that the primitive F of /
 is continuous satisfying DF(x) = F'(x) = f(x) = ĎF(x) almost everywhere,
 and F'(x) = ±00 for x belonging to a set of measure zero only.
 Let Z be the set of points x of [a, 6] at which DF(x) = -00, and the
 measure 'Z' = 0. Since F is ACG*, there are Xi,X2, . . . , with union [a, 6],
 such that F is AC* (Xi) for each i. Let Vļ = Z D Xi for i = 1,2,

 F is AC*(Yi), for every e > 0 there is 77,- > 0 such that for any sequence of
 non-overlapping intervals {Ij} with Ij D Y¿ / <f> for each j and satisfying

 Ç 1-0 1 < m we have ^ | F(Ij)' < zT^2 .
 J j
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 Here F(I) denotes F(v) - F(u ), where / = [u, v]. Choose an open set G,
 (which is the union of a sequence of open intervals) such that

 'Gi' < rji and G, D

 where |G,| denotes the measure of G,.
 Now define

 H¡(x) = sup^|í,(/j)|
 j

 where the supremum is taken over all sequences of non-overlapping intervals
 {Ij} each of which is contained in Gì fi [a,x] with Ij fl Y¿ / (j) for each j.
 Obviously, H{ is continuous, nondecreasing

 Hi(a) = 0, Hi{b) < e2~'~2, and H¡{y) - Hi(x) > 'F(y) - F(x)'

 whenever [x, y] C Gì and [xì y] fi Yi ^ <ļ*ē Put

 oo

 H(x) = ^ Hi(x) for X E [a, 6].
 *=i

 Then H is still increasing on [a, 6], H(a) = 0, and H(b) < e/A. Therefore for
 every x E Z we have

 D(F{x) + H{x))> 0.

 Hence we have removed the points x at which DU(x) = - oo.
 Again, let Z' = {x'x E [a, 6], /(z) > D(F(x) + /^(x)) > - oo}. It is

 obvious that Z' is a set of measure zero. It follows from [2, p. 43] that for
 given e > 0, there is a continuous and monotone increasing function W such
 that

 W (a) = 0, W(b) < e/4, and W'{x) = +oo for all x in Z'.

 Since W is monotone and increasing we have clearly DW(x) > 0.
 Put Uo(x) = F(x) + H(x) + W(x), we obtain

 DU0(x) = D{F(x) + H(x) + W(x)) > D{F{x) + H{x)) + D{W{x))
 = +00 for all x E Z' .

 Therefore we have

 D(Uo(X)) > f(x) for every x E [a, 6], and Uo(b) < F(b) + e/2.

 Similarly, we can directly construct a continuous major function Vb, such
 that

 Vo(a) = 0, +00 ^ ĎVo(x) < f(x) for all x E [a, 6], and Vo(6) > F(b) - e/2.
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 Hence / is Po-integrable on [a, 6]. The proof is complete. □

 We remark that, as can be seen from the proof above, the full condition of
 ACG* is not used. Indeed, it is sufficient to assume F to have the so-called
 strong Lusin condition [4] in the place of ACG* .
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