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 Abstract

 In 1963 Vituškin, Ivanov and Melnikov constructed a compact set in
 the plane with positive linear measure which cannot be mapped, using
 a contraction onto a segment. Their paper is very concise and obscure.
 The question of the existence of such a set arose recently again. For this
 reason in this paper we construct this set again with a detailed proof.

 1 Introduction

 Kolmogoroff [3] (in 1932) calls a fi non-negative a- additive set function on the
 Borei subsets of Rn a measure function , if a contraction cannot increase the p-
 measure and there exists a measure unit J with fi(J) = 1. If this measure unit
 is the fc-dimensional unit cube, then fi is said to be a k-dimensional measure
 function.

 Kolmogoroff proved that there exist two Ar-dimensional measure functions:
 the minimal and the maximal k-dimensional measure (ßk and ßk) between
 which all the other measure functions are included. He also proved that

 oo

 (o) 1^{E) = sup { ^ 'k(fi(Ei)) : Ei C E disjoint Borei sets and
 i= i

 fi : Ei - ► Hk contractions }

 (where is the fc-dimensional Lebesgue measure.)

 Key Words: contraction, Hausdorff linear measure, Hausdorff-metric, Kolmogoroff min-
 imal measure
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 It is almost obvious that the fc-dimensional Hausdorff measure (fik) is a
 ¿-dimensional measure function, so 'ik > /A Kolmogoroff conjectured that
 these two measures are equal. Besicovitch [1] disproved this conjecture in
 1936 constructing a compact set in the plane with Hausdorff linear measure
 2 and minimal linear measure at most Vituskin, Ivanov and Melnikov
 [6] proved in 1963 much more: They showed that these two measures are
 incommensurable (if k=l). They constructed a compact set in the plane with
 positive Hausdorff linear measure and 0 minimal linear measure. Recently this
 construction became interesting again:

 A few years ago Miklós Laczkovich asked the following question: Can every
 measurable subset of Rn with positive (Lebesgue) measure be mapped, using
 a contraction onto a (n-dimensional) ball?

 If n=l then the answer is almost obviously "yes". David Preiss [5] proved
 that this is also true for n = 2. (His result has not been published yet. Jiří
 Matoušek [4] gave a shorter proof.) But for n > 2 the problem is still unsolved
 and seems to be very hard.

 Later the following natural generalization of this problem arose:
 Can every (fc-dimensional Hausdorff) measurable subset of Rn with positive
 fc-dimensional Hausdorff measure be mapped, using a contraction onto a ( k -
 dimensional) ball?

 This question proved to be very difficult even in the case k = 1. David
 Fremlin conjectured that any compact metric space with positive linear mea-
 sure can be mapped, using a contraction onto a segment. This would imply
 that in the case k = 1 the answer is also "yes". But Sergey Konyagin dis-
 proved Fremlin 's conjecture. He did not publish this result because soon after
 he found the above mentioned paper of A. G. Vituškin, L. D. Ivanov and M.
 S. Melnikov and he realized that their construction is a counter-example in
 the plane. Indeed, according to (o)

 ļj}(E) = 0 <<=>- ''(f(E)) = 0 for any / : E -» R contraction «<=>-

 <<==> E cannot be mapped, using a contraction onto a segment

 This counter-example gives a complete answer for the case Ar = 1. It implies
 that if k = 1 and n > 2 then the answer for the generalized question is
 surprisingly "no".

 But the paper of Vituškin, Ivanov and Melnikov is not only very concise
 but not completely accurate. Further, it contains only the sketch of the proofs.
 Many proofs are omitted, some have errors. Our purpose in this paper is to
 make the proof correct, complete and understandable. Our proof differs from
 the original one in some parts, other parts have simply been corrected and
 explained in greater detail. The construction of the set also slightly differs
 from the original construction.
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 Therefore in this paper, using the sketch of Vituškin, Ivanov and Melnikov
 we prove the following:

 Main Theorem. There exists a compact set in the plane with positive
 linear measure that cannot be mapped, using a contraction onto a segment.

 2 Notation

 We call a mapping contraction if the distance between any two points of the
 domain is bigger than the distance of their image. (In this paper we could
 also allow equality, that is we can replace all "contraction" by "Lipschitz-l".
 In fact in the papers of Kolmogoroff and Besicovitch they allowed equality in
 the definition of contraction but it is easy to check that this does not make
 any change.)

 We denote the 1-dimensional (linear) Lebesgue and Hausdorff measure by
 A and // respectively. (The linear Lebesgue measure is defined on R, the linear
 Hausdorff measure is defined on Rn for arbitrary n.) The girth of the set A
 (c(A)) is defined by

 c(A) = inf ļ y; diarrb4n : A C U£°=1Anļ .
 Obviously fi(A) > c(A). It is easy to verify that if A is compact then for
 computing c(A) it is enough to consider the finite covers of A.

 Denote the closed neighborhood of a set H with radius S by {/¿(Zf), that
 is

 U6(H) = {x : dist (x,JÏ) <i}.

 Denote the Hausdorff distance of two non-empty compact sets A and B by
 dn{A, .0), that is

 dH{AiB)=inf{S>0 : AcUs{B), BcU6{A)}.

 3 The construction and the proof

 1. Let R be a horizontal segment (with length d), k and m integers greater
 than 1. Divide this segment into 2k equal pieces and put every second piece
 above the previous one by the 2m-th part of the length of the small segments
 (see Figure 1.). Denote this transformation by Pk,m • Let Pk^R, 0) be the
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 _d_
 2k

 <r

 ř 4kmļ V V ' 4kmļ

 Figure 1: Transformation Pk¡m (k=3)

 union of the lower segments, 1) the union of the upper segments, that
 is if

 R = {(x, y) : a < X < a + d,y = c}
 then

 ~ v 2 id ^ (2Í+1W
 Pk,m(R> ~ °) = U {(*> y)-a v + -^<x<a ^ + - (2Í+1W - - , y = c}

 i=0

 _ /r) -v k'~~'r, X 2id ^ ^ (2¿+l)d d .
 -v 1) = ļj {(*, y)'-a X + -<x<a+ ^ ^

 1=0

 Pk,m{R) = Pk,m{R , 0) U Pk,m{R) 1)-

 We can apply the transformation Pktm to a finite system of horizontal
 segments applying Pk,m for each segment, that is if

 S = {ri,r2, . . .,rm}

 then let

 m m

 Pkfm{Sļ t) =■ (J Pktm{rpi^)ì Pk,m{S) = ļ^J Pktm(rp)-
 p- 1 p= 1

 Note that the transformation does not change the linear (Hausdorff)
 measure, which is in the case the sum of the lengths of the segments
 Let M be a horizontal segment with length do, let mo, mi, 7712, . . . be a
 nondecreasing sequence of integers greater than 1, let

 fc0, MO), Ml), • • • » MO), Mi), • • •

 be integers greater than 1. We will choose these numbers later properly. We
 are converting M by transformations Pk,m in the following way:
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 First we apply Pk0im0 to M (see Figure 2.). Let

 M(0) = ĄOimo(M,0) M( 1) = Pk0)m0(M, 1).

 At the second step we apply Pk1{o),m1 to M( 0) and Pkx{ i),mi to M( 1). Let

 M(t1,T2) = Pki(Tl)tmi {M (ri), T2).

 Continuing this we apply Pkj(Tj),mj to M(t', . . . , Tj) at the j + 1-st step and
 let

 Af (ri, . . . , Tj,Tj+l) = Pkj(Tj)tmj{M{ri,. . . , Tj),Tj+ 1).

 Let

 M* = (J M{TU...,Tj).
 ^"1

 The set we want to construct will be the limit of the sets M-7 by the Hausdorff
 metric.

 M1

 I
 I

 I 8()
 I
 I
 I

 I ^

 r,(0) r/0)

 By construction the set M(t', . . . , Tj) consists of fcoAri(ri) . . . fcj_i(rj_i)
 horizontal segments lying on the same height. Denote them by ti(ti, . . š, Tj),
 r2 (tí, . . . , Tj), . . . from left to right (see Figure 2.). Denoting their length by
 /(ri, . . . , Tj) we have

 (1) ,(ri

 Denote the distance of the horizontal lines of M(t', . . . , Tj, 0) and
 M(ri, . . . , Tj, 1) by ¿(71, . . . , Tj). Then by the definition of Pktm

 /o' f/ ' _ ¿(7*1 , ... ,Tj, Tj + l) _

 1' ' '' J 2 rrij
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 k,(l)=3

 k,(0)=2
 1

 r2(°) J(0,1)_J'

 ļTO

 :::: :::: ::::¡so,i) M' :::: :::: ::::
 - _ - - . š t /•- - ' - - - - }
 - -- _ - -- - . --H) š t ,^(0 /•- - ' -- - - - -- -

 rA°) ^0=4
 2 kj(0)=2

 i ^
 1(0,0^1 )

 - - - - ts(0,0) -

 Figure 2:

 Since the sequence ( rrij ) is nondecreasing and each kj(r) is at least 2, using
 (2) we obtain that

 (3) i(n, • • • , Tj>Tj+i) < S(Tl''^'Tj'
 This implies that the levels of the sets M{t') . . . , tj) do not 'cross each

 other', that is M(r i, . . . , Tj) lies higher than M(r[1 . . .rj), if and only if in the
 binary system 0, T' . . . Tj is greater than 0, t[ . . . rj.

 Let

 M(t i,...,TjY= ļj M(ti, . . . ,Tj,Tj + i, . . . , Tj+i ) .
 Tj+l,-,Tj+i=0,l
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 Let rp(r i, . . . , Tj)x be the part of the set M(ri, . . . , Tj )* which originated
 from the set rp(r i, . . . , tj) (see Figure 2.). Let Jí{t') . . . , r¿) be the number of
 the segments in rp{r') . . . , Tj)% . By construction

 (4) j,(n, . . . , Tj) = 2i Y, kj(Ti) ■ ■ ■ *i+<-i(ri+i-i)-
 Tj+i =o,i

 Proposition 1.1 The sequence M1 , M2, ... is convergent by the Hausdorff
 metric.

 Proof. Since R2 is complete the space of its nonempty compact subsets
 with the Hausdorff metric is also complete. Therefore it is enough to prove
 that M1, M2, ... is a Cauchy sequence.

 By the definition of Pkfm

 Pk,m{K) C U_¿_{R) and R C

 where R is a horizontal segment with length d. Using this, by construction

 Tj,Tj+i) C Us(TU...lTj)(M(TU...,Tj)) (ri,...,rj+i = 0 or 1),

 SO

 Mj+l C

 On the other hand M(t1} . . . , Tj) C • • • , Tj,Tj+i)),
 so M' C Umax¡ÍTl:..,iTj,TJ+l){Mj+l), therefore

 , M*+1) < max (maxá(ri, . . . , Tj),max/(ri, . . . , Tj, 73+1)).

 By construction

 l^n' 2mjT3^
 On the other hand the length of the segments (the numbers /(•••)) are always
 divided at least by 2, so

 /(tí, . . . , Tj, 7j+i) < 2^T (where do is the length of M).

 Comparing this to the previous inequalities we get
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 which implies that M1, M2, ... is a Cauchy sequence indeed. □

 Definition 1.2 Let M * = lim^oo M* .

 2. Now our aim is to prove, that if

 (*) kj(r) > rrij-i for all j and r

 then > |£. In fact we prove that c(M*) >

 Proposition 2.1 The condition (*) implies that

 /(7*1 , . . . , Tj , Tj + ' , Tj+2) ^ ^(TL ) • • • > Tj)

 for arbitrary r parameters.

 Proof. Using the formulas of I and S ((1) and (2)) we get
 Tīt *

 /(ri , . . . , Tj , Tj. j_i , Tj+ 2) = - - ) • • • ) Tj)
 kj + l(Tj + l)

 which implies the statement if (*) holds. □

 Proposition 2.2 Let Q be an axis-parallel square with side a. Then (*)
 implies that ji(Q D Mn) < 20 a for arbitrary n.

 Proof. Let j be the maximal index for which there exist t' , . . . , Tj such
 that

 Q fi Mn C M(ri , . . . , Tj)n~i .

 (There exists such a j since Q fi Mn C M(0)n and j < n.)
 If n - j = 0 or 1, then it is easy to prove the statement: In this case

 M(ri , . . . , Tj)n~i lies on 1 or 2 horizontal lines, so Q fl Mn does so as well. On
 the other hand Q 0 Mn ś's covered by an axis-parallel square with side a, so
 fi(Q O Mn) < 2a. Therefore we can assume that n - j > 2.

 Since j is maximal and

 M(rx, . . . , Tj)n~3 = M(ti, . . . , Tjt 0)n-J-1 U M(n, . . . , tj, l)n_J'-1)

 we have

 Q n M(n, . . . , 7-j,0)n--'~1 / 0 and Q n M(n, . . . , Tj, l)n-j-1 zfi 0.

 The points of M{t' .,Tj, 0)n_J_1 lies by at most

 ¿(tí, . . . , Tj, 0) + ¿(tí, . . . , Tj, 0, 1) + ¿(tí, . . . , Tj , 0, 1, 1) + . . . < ^¿(n, . ..,Tè)
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 higher than the line of M(r i, . . . , Tj). (We used the inequality (3).)
 On the other hand all the points of M(ri, . . . , rj, l)n~"J_1 lie not lower

 than the line of M(ri, . . . , Tj, 1), so they lie by at least S(r i, . . . , Tj) higher
 then the line of M(r i, . . . , Tj). Therefore if both M(r i, . . . , rj, O)71"-7"1 and
 M(t', . . . , Tj, intersect the square Q with height a then

 < a.

 Using this and Proposition 2.1 we get

 l(n,...,Tj,T,T)) < 2a (t, 77 = 0,1).

 On the other hand for fixed r and 77 the segments of M(t', . . . , Tj, r, 77)
 that intersect the vertical strip of Q are covered by the surrounding vertical
 strip with width /(ri , . . . , rj, r, 77) + a + /(ri , . . . , rj, r, 77). Therefore using the
 previous inequality these segments lie in a vertical strip with width 5a. Since
 (for fixed r and 77) they lie in a horizontal line we obtain that the sum of
 the lengths of these segments is at most 5a. The set M(t', . . . , Tj)2 consists
 of 4 set of type M{t', . . . , Tj, r, 77) therefore the sum of the lengths of those
 segments of M (ri , . . . , Tj) 2 that intersect the vertical strip of Q is at most 20a.

 By construction only those segments of M(t', . . . , rj)n"J (which is equal
 to (M(ri, . . . , rj)2)n~J~"2) can intersect the vertical strip of Q that originated
 of the segments above. (We used that rp(ri, . . . , rj, r, r])n~^~2 is in the strip
 above rp(ri , . . . , Tj , r, 77).) So the sum of those segments of M (ri , . . . , rj)n~J
 that intersect the vertical strip of Q is also at most 20a. On the other hand
 Q H Mn C M(ri, . . . , rj)n~J , so Q D Mn is a subset of the union of these
 subsets, therefore /i(Q fi Mn) < 20 a. □

 Proposition 2.3 If (*) holds then

 c(Mn) > ld0.

 Proof. Let Mn = (JJ° Hi. We have to show that Judiam Hi > For a
 fixed i take an axis-parallel square Q, with side diam Hi that cover Hi. Then
 Hi C <2,-nMn, so using the previous proposition we get //(#,) < fi(QiC'Mn) <
 20 • diam Hi, that is diami/,- > •

 Therefore

 - Z-, 20 - 20 20
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 f Ę>1 /^' ^ ĒŪĪ (T lv"'' Ti)2 f ^»1.1 /ür' ^|»U ^ /^' xslU. p (T lv"'' Ti)2 /ür' ,dE='

 l¿£j v,<w>i>^U=rJ ļzrj ļirj
 v " " J ]

 '^łsSSjj r'p=r^ ^ļ /

 I

 <^i Z - - --J
 'a,

 Figure 3: A piece of M(ri, . . . , Tj)n+l if n = 2

 Proposition 2.4

 c(AT) > *

 if (*) holds.

 Proof. It is an easily provable fact about the Hausdorff metric and
 the girth of a set that if lim^oo An = A (by Hausdorff metric) then c(A ) >
 lim infn_).oo c(An). Using this and the previous proposition we obtain the propo-
 sition. □

 3. Now we have to find parameters m¿ and kj(r) which satisfy (*) and
 for which M* cannot be mapped onto a segment by contraction. First we
 need some new notation and some statements without new conditions for the

 parameters.

 The set rp(ri , . . . , Tj , r)1 consists of 2fc¿+i (r) small segments. Let us denote
 those that belong to

 M (n, . . . , Tê,T, rj) by rPii(ri, . . . , 73, r, 77), . . . , rP)kj+lÍT)(r i, . . . , 73, r, 77)

 from left to right. Denote by rpg(ri, . . . , Tj, r, rç)*1"1 the part of the set
 M(r 1, . . . , Tji r)n which originated from rpg(Tļ, . . . , rjj r» */) (see Figure 3.).
 Then
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 M(r1,...,rj,r)n = |J rp(TU . . . ,rjtT)n =
 p= 1

 koki(Ti)...kj(Tj) kj+1(r)

 = (J U rpq(r1,...,Tj,T,0)n~1Urpq(Ti,...,Tj,T,í)n~1.
 p= 1 <7=1

 Notation 3.1 For given n and Ti,. Ě Ę}Tj let (see Figure 3.)

 Epq = rpq(n 1, 0)n_1 U rp,(ri , . . . , tj, 1, l)"-1

 L = n(M(Ti,...,Tj)n+1)
 I = /(r i,...,rj,l,0)
 S = S(TU...,Tj).

 Proposition 3.2 If (*) holds then

 dff(rp(ri, . . ■ , Tj, 0)", rp(ri, . . .,Tj, l)n) < AS ( = 4í(ti, . . . , r,) ),

 where djj is the Hausdorff metric.

 Proof. By Aq we denote the left end-points of the segments
 , Tj, 0, 0) (q = 1, . . . , kj+ 1(0)) (see Figure 3.). These points are the

 left end-points of the parts with length 2Z(ti, . . . , Tj, 0, 0) of the partition of
 rp(r i, . . . , Tj, 0). So using this and Proposition 2.1 we obtain

 rp(ri, ••■>'5,0) C ^2/(Tll...,Ti,o,o)(Mi.---.^fei+1(o)}) C í72¿({Ai, . . . , ylfcj+i(o)})

 The set rp{r i, . . . , Tj, l)n is contained by the rectangle above rp(r i , . . . , Tj, 0)
 with height

 ¿(Ti, - • ->Tj) + á(ri, . 1) +<5(ti,. . .,Tj, 1, 1) + . . . < 2S(n, . ,.,Tj) = 26.

 So we can conclude that

 rp(Tl, • • • , Tj, 1)" C t/4á(Ml,---,^fci+1(0)})-

 Since the left end-points of the segments remain in every step,

 {Aî, . . . , Afcjf+1(o)} C rp(ri,...,7-j,0)n, so

 tp(ti , . . . , Tj , l)n C ř74i(rp(rl,---,Tj,0)n).
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 The set rp(r i, . . . , Tj, 0)n is contained by the rectangle below rp(r 1, . . . , Tj, 1)
 with height so similarly as above we obtain

 rP{Ti,...,Tj,0)n C U3s{rp(Ti,. .

 Therefore

 d/ř(rp(ri, . . . , Tj,0)n, rp(ri, . . . , 75, 1)") < 4¿. □

 Proposition 3.3

 diamEpq <21 ( = 2/(ti, . . . , tj, 1, 0) )

 Proof. The set Epq is contained by the rectangle above rpg (ti , . . ē , 75 , 1 , 0)
 with width /(ti, . . . , Tj, 1, 0) = I and height í(ti, . . . , Tj, 1)+¿(ti, . . . , Tj, 1, 1) +
 ¿(n, . . . , Tj, 1,1,1)+.. .. Applying (2) and (3)

 ¿(71, . . . , Tj, 1) + ¿(71, . . . , Tj, 1, 1) + . . .

 < ¿(n, . . .,Tj, i)(i + - + - + . . .) <

 <nn
 2m j+ 1 171 j+ 1

 So

 diamEpq <y/2 1 < 21. □

 Proposition 3.4

 dH(EPg,EPtg+ 1) <2/ ( = 2//(rp(ri, . . . , Tj, 1,0) )

 Proof. By construction if we translate Epq horizontally right by 21 we
 get EP}q+ 1, which implies the statement. □

 Now we are choosing the parameters in such a way that the set we get after
 N step ( Mn ) can be mapped by contraction only onto a very small segment.
 For this we can make the following restriction: let all the numbers rrij , &¿(0)
 and fco are equal to N. (Since in the first N step we use only the parameters
 rrij and kj(r) with index smaller than N it is enough to take care of these
 parameters.) We will need the following condition:

 (**) NJN-j{tu. • • , Tj-!, 0) < fcj(l) (j = 1, 2, . . . , N - 1).



 A Peculiar Set in The Plane 303

 Proposition 3.5 For a fixed TV we can choose the numbers kj{ 1) ( j =
 1, 2, . . . , TV - 1) in such a way that (*) and (**) hold if the numbers A?¿(0), rrij
 and ko (j < TV - 1) are all equal to TV.

 Proof. Using (4) and (0) = TV

 ) ' • • > Tj-1) 0) =

 = 2N~j ^2 M°)fci+i(ri+i) • • - äjv-i(t?v_i) =
 7j + i ,...,7-^-1=0,1

 = 2N~jN kj+1(rj+1)...kN-1(TN-1).
 Tj + l , - • - , 7-JV- 1=0,1

 Therefore i, . . . , r¿_i, 0) depends only on the parameters with index
 greater than j, so we can choose the numbers kj( 1) by recursion in the following
 way:

 Let &jv_i(l) = TV. If fc;v-i(l), fciv_2(l), . • .fcj+i(l) are already defined
 then let kj( 1) = NJn-j{tiì . . . , 0). Then (**) holds with equality. The
 condition (*) also obviously holds since kj( 1) > TV, fc¿(0) = TV, mj = TV for
 all j. □

 (It is easy to verify that

 (4TV)2"~J
 Ml) = -

 is also a good choice.)

 Proposition 3.6 If the numbers k 0, Ar,(0), m, (¿ = 1,...,TV - 1) are
 equal to TV, the conditions (*) and (**) hold and j + n < TV, then

 90

 '(f(M(ri,...,Tj)n)) < -fi{M(Ti,...,Tj)n),

 where f is an arbitrary M((ri, . . . , rj)n) - > R contraction. (' is the 1-
 dimensional Lebesgue , // is the 1-dimensional Hausdorff measure.)

 As a special case ( j = 0 and n = TV), with the same condition we obtain

 A (f(MN)) < = ^d0.
 Proof. We shall prove the statement by induction on n. Since / is con-

 traction, A(/(M(ri, . . .,7"j)n)) < fi(M(r i, . . .,rj)n), so the theorem is obvious
 if n < 20.
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 Suppose that n > 20 and that the proposition is valid for 1,2 , . . . , n. We
 have to show that then it is also valid for n+1, that is X(f(M (ri , . . . , r¿)n+1)) <
 (For the fixed n and 71, . . . , tj we use the notation Epqi L , /, and S

 (Notation 3.1).)
 By construction

 (5)

 , Tj,0)n) = fi(M(rlt . . .,tj, 1)") = ^h(M(tu . . . ,Tj)n+1) = ì L ,

 and

 (6) M('ri,...,rj)n+1 = Tj,0)n U Ai(rj, . . . , Tj, l)n.
 Case /.

 q on

 A(/(M(ri,...,ri,0)n)) < - - /i(Af(n, • • • , rj, 0)").

 In this case using (6), the induction assumption, (5) and finally n > 20:

 A (f(M(7i,...,Tj)n+1))<
 Mf(M(n tč, o)n)) + A (f(M(n t ... ļ Tj ļ i)")) <
 Q 90 90

 - ÎÔ^(M{n' ■■■' Tj'0)n) + ^(M(ri- " ■ ' ri' =
 .18 20. 1 20 _

 - 7Ï + TT^9 īl ¿ - r, 71 4- ■+- 1 1 7Ï īl ¿ - r, 71 4- ■+- 1 1

 Case IL

 A (/(M(r1,...)rj,0)n)) > ^^//(Ař(n, . . . , tj, 0)n) (= .
 The proof is quite complicated in this case, so by way of introduction we

 sketch the motivation of the proof.
 According to (6) if we show that a big part of , . . . , Tj , l)n) is covered

 by f(M(r i, . . . , Tj, 0)n), then this and the induction assumption would imply
 that the set f(M(r i, . . . , Tj)n+1) is small.

 We shall show that for any index p f{rp(r i, . . . , rj, 0)n) covers quite a big
 part of f(rp(r i, . . . , Tj, l)n). For this we shall subdivide the set
 f{rp{T i» • • • > rj> l)n) into the union of the sets

 f{rpg{Ti, . . . , Tj, 1.0)"-1 U rpg(ri, . . . , Tj, 1, l)n_1) = f{Epq)

 and we shall show that among these subsets quite a lot are covered by a
 type of small segments of /(rp(ri, . . . , Tj, 0)n). This is made possible by (**)
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 and this condition implies that in each step we subdivide the upper parts
 (with last index 1) into much more pieces than the lower ones. For this
 reason the small segments of /(rp(7ļ, . . . , Tj, 0)n) are much bigger than the
 ones of /(rp(ri, . . . , Tj, l)n) and what is more they are also big relative to
 /(rp<?(ri> • • • j rj> 1) 0)n_1 U rpg(ri, . . . , Tj, 1, l)""1) = f{EPq), which consists
 small segments of /(rp(ri, . . . , l)n).

 Let

 Ap = min(/(rp(n, . . . , Tj,0)")), A'p = min(/(rp (n , . . Tj, 1)")),

 Bp =max(/(rp(ri,...,r>-,0)n)), B'p = max(/(rp (n , . . . , Tj, l)n)),

 (where p = 1,2, . . .,k(n, . .

 We shall prove that a significant part of /(rp(ri, . . . , Tj, 0)n)) lies in ApBp:
 Since / is contraction Proposition 3.2 implies that

 <M/(rp(ri, . . • , Tj, 0)n), f{rp(n, . . . , Tj, l)n)) < AS,

 SO

 'A'p-Ap'<AS, 'B'p - Bp'< AS.
 This implies that

 '{ApBp ' A'pB'p) < I A'p - Ap' + 'B'p-Bp'< 8Í.

 Using this and /(rp(ri, . . . , tj) 0)n) C ApBp we obtain that

 (7) x{f(rp(n, ... ,Tj,0)n) n A'pB'p)) > X(f(rp{T1,...,Tj,0)n)) -8S.

 Using the decomposition of the set M(r i, . . .,Tj, l)n we saw earlier (see
 Figure 3.) we obtain

 (8) f(M(Ti,...,Tj,l)n)
 koki j (Tj)

 P=1

 fcofcl(Tl)...fey(T>) *i+l(l)

 U U w™)-
 p=l q= 1

 Fix p. We shall show that the small segments of /(rp(ri, . . . , Tj, Q)n)C'ApBp
 cover a lot of sets of type f(Epq) (q = 1,2,..., kj+ i(l)):
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 Let Apq = min f(Epq). According to Proposition 3.4 the distance between
 two points of type Apq with adjacent index q is at most 21. Using Proposition
 3.3 we obtain

 (9) f{Epq) C 'Apq , Apq+2Í'.

 By the definition of A'p and Bpi using (8) and (9) there exists a point of type
 Apq coinciding with A!p and there also exists a point of type Apq to the right
 from Bp - 21.

 Let CD be an arbitrary subsegment of A!pB'p. Then [C, D - 21] C [Api B'p -
 21] , so using the previous observations at least - '= D~c _ 2 points
 of type Apq lie in [C, D - 21]. Then from (9) the sets f{Epq) corresponding
 to these indexes q lie in CD. Therefore CD contains at least D~lc - 2 sets of
 these type.

 By the definition of Jn, f{rp(r i, . . . , Tj, 0)n) n ApBp consists at most
 Jn{T', . . . , Tj, 0) small segments. The sum of their lengths is

 A(/(rp(n

 so according to (7) at least A (f{rp (ri , . . . , Tji 0)n)) - 86. For this reason using
 the result of the previous paragraph these segments contain at least

 A(/(rp(n,...,ri,0)B))-8i , .

 sets of type f{Epq) (for the fixed p). Therefore f(rp(ri1 . . . , 0)n) itself also
 covers at least so many sets of this type.
 Since this is true for arbitrary p = 1,2,..., fco^i(^i) • • • kj (rj), denoting by
 T the number of the sets of type f{Epq) covered by the whole
 f(M(ru...,Tj,0)n),

 (10) T > A(/(M(n , . . . , Tj, 0)")) - SSkpkijn) . . . kj(Tj) 21

 - 2fc0*i (n) • • • • -,^,0).

 Since according to (8) . . . , rj, l)n) consists of
 *o&i(tl) • • -kj{Tj)kj+ 1 (1) sets of type f(Epq)i denoting by K the number of
 the uncovered sets of this type,

 (11) K = kok1(n)...kj(Tj)kHl(l)-T.

 Using the induction assumption for rPq{r i, . . . , r^, 1, 0)n_1 and
 rjp«(7"i » • • • i 1) l)"-1 we get

 20

 Hf(rPq(ri, Tj, 1, Tj+2)n-1)) < - jn(rpq(TU . 1, rj+2)n_1).
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 By construction

 li(rpg(n,...,Tj,l,Tj+2)n~1) =
 fi(rPg(n , . . . , Tj, 1, Tj+2)) = fi(rPg(n, . 1, 0)) = I,

 so

 A (/(£„,)) < 2^1.
 Using this and the definition of K the measure of that part of

 /(M(ri , . . . , Tj, l)n) that is uncovered by , . . . , 0)n) is at most K
 Therefore

 40

 (12) A(/(M(ri,...,r,)n+1)) < A(/(M(ri, . . . , rjt 0)n) + K
 n - 1

 In the remaining part of the proof we only need to make calculations show-
 ing that with our conditions the estimation (12) implies the statement. That

 is we need to show that the right-hand side of (12) is at most -j^L.
 Using the induction assumption and (5)

 (13) . .,Tj,0)n) < ^//(M(ri,...,rJ)0)n) = ^-L.
 Let us find an upper bound for Kl. For this we need some simple estima-

 tions:

 By construction

 (14) = KM(tu ■ ■ ■ , Tj)) = h(M{tu. . . , 7j)n+1) = L.

 Using this, the formula (2) of i(ri , . . . , 75) and n < N we obtain

 (15) «oMn) ■ -M'i) = ī^ļīīā =
 Similarly, using the formula (1) for Z(ri, . . . , 75, 1, 0) we obtain

 (.6) = =

 By the condition (**) , using j + n + 1 < N we get

 (17) Jn (i"i , . . . , 7j° , 0) < JAr_j_i(ri,...,ri-,0) <
 iv 71
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 Replacing T by the estimation (10) in the formula (11) and multiplying
 by 4/, then using the estimations (15-17) and the condition of the Case II we
 obtain

 4 Kl < 4lk0ki(n) . . .kj{Tj)kj+1(l) - 2A(/(Ař(ri, . . . , rjt 0)")) +

 + 16áfc0fci(n) • - + 8^0*1 (n) • 0) <

 (18) <L-,iL+ìÈk+ n An 4ArJ-_|_i ^ (1) W>, n n An 4ArJ-_|_i (1) n

 ' n n n J ' n J

 Finally using (13) and (18) in (12), with trivial estimations and transfor-
 mations we obtain the inequality we wanted to prove:

 A(/(W(«,.., r, )»«))< + i(i_i?) JL =

 10 L (i 'n + -L n- 1 - -7^-rr) n(n - I) J < 10L (- 'n + -Î- n - 1 - -y^r) n(n - 1) ) = 'n n- 1 n(n - I) J 'n n - 1 n(n - 1) )
 2n- 4 Anr 1 n-2 1 n 20 _

 10L-

 n(n- 1) nn - 1 nn- fl n- hi

 4. Now we are ready to construct a proper set M£. Let do = 1» that is the
 initial segment M has length 1. We will denote this segment by Mo. We are
 constructing the parameters kj(r) and rrij in the following way:

 Let Niy 7^2, . . . be an increasing sequence of integers greater than 1. (We
 will choose this sequence later.) For all Na take the parameters constructed
 in Proposition 3.5, that is let

 m] =NS (j = 0,l,...,7V5-l), ks0 = NSi fcj(O) = iV. (j = 1, 2, . . . , iV, - 1),

 and let kj( 1) (j = 1, 2, . . . , Ns - 1) be chosen such a way that (*) and (**) holds
 for the parameters with upper index s. Then let the sequences kj(r) and rrij
 be these sequences successively, that is let

 mWi+iV2+...+JV,_1+» = 771,- (= Ns) (¿ = 0, 1, . . Ns - 1; s > 1)

 *N1+tfa+...+N._1(r) = ks0(= Ns) {s > 1; r = 0, 1)
 kNl+N2+,..+N,_1+i(T) = ksi(r) (i = l,2,...,7Va - 1; s > 1; r = 0,l).



 A Peculiar Set in The Plane 309

 Note that using these parameters in the construction means the following:
 First we apply the transformation M -y MN of Proposition 3.6 to the unit seg-
 ment Mo with N = N'. Then we apply this transformation to the horizontal
 segments we got with N = N2, then to the new segments with N = 7V3,...etc

 Proposition 4.1

 p{M¿) > and what is more c(Ař0*) >

 if Mq is constructed by the above described way.

 Proof. According to Proposition 2.4 it is enough to check validity of the
 condition (*) . That holds for the indexes j = N' -f AT2 + . . . + NS) since

 kN1+N3+...+N,{T ) = N'+l > N» = mNi+N3+...+N,-i+(N,-l)-

 Condition (*) also holds for the other indexes, since we made them so. □

 Now we only have to prove that for a proper (rapidly increasing) sequence
 Ns the set cannot be mapped onto a segment by contraction. For this we
 are parallel constructing the sequences of parameters Ns and <rs such that

 for arbitrary positive integer s and contraction / : R2 - > R

 ' for arbitrary positive integer s and contraction / : R2 - y R

 »..(M0"lł ♦"•) 3 (if r > s)

 (*") j and
 A(t/<7.(/(M0JV'+-+JV')))<^

 First we prove that this is enough.

 Proposition 4.2 If the parameters 1 < N' < 7V2 < . . . , <r 1,02,... satisfy
 the condition (***) then Mq cannot be mapped onto a segment by contraction .

 Proof. Suppose that /0 : M¡ R is such a contraction. Then
 A(/o(Mq)) > 0. Using Kirszbraun theorem (see e.g. in [2]) /0 can be extended
 to an / : R2 - > R contraction. Obviously A(/(Mq )) = A(/o(Mq )) > 0. Let s
 be so big that

 A(/(M0*)) >
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 We are proving from (***) that

 (19) M0* Ct/a,(M0Nl+- ••+"-).

 Suppose that x G Mq ' i/<7, {Mq1 + •+n' ). Since Uat(M^1+'"+N§) is closed
 there exists an e > 0 such that x £ U£(Ua8(MQ1+"'+N')). Using (***) this
 implies that x £ U€(M^1+"'+Nr) if r > s. But since • •+Nr tends to
 M¡ ( r -> oo) by the Hausdorff metric, this implies that x £ Mq which is a
 contradiction.

 Since / is contraction, (19) implies that

 /(Mo*) C f(U„, (M^1+-+n>)) C t/..(/(M0JVl+-+JV*)).

 This is a contradiction since A(/(Mq )) > ^ but according to the condition
 (***) ,

 A(^.(/(M0JVl+- "+JV')))<^.Q S S

 Therefore now we only have to choose sequences Ns and crs with the prop-
 erty (***) . For this we are proving two statements:

 Proposition 4.3
 on

 for arbitrary <t > 0, positive integer s and f : R2 - > R contraction, where Js
 denotes the number of the segments of M^1+"'+Nt .

 Proof. The set consists of horizontal segments and the
 sum of their length is 1. We constructed M^1^'"+N' applying transformation
 M -y Mn of Proposition 3.6 with its conditions and N = Ns to each segment
 of Mq1^"'+N'~1. Therefore using Proposition 3.6 we obtain

 A (/«■+"+»•)) < H.

 Since f(M^1+'"+N') consists of Js segments (or points) the measure of its
 neighborhood with radius a is at most by 2a Js greater than the measure of
 itself. This concludes the proof. □

 Proposition 4.4

 D M?1+-+Nr, if r>s.
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 Proof. The set ••+Nr is obtained by applying the transforma-
 tion Pk,m to the segments of Mq1*"'*n' Ns+ i + . • • + Nr times. We are
 going to prove that the part of M^1+ •+Nr originated from a fixed segment of

 fyfNi +...+N, ļg ļn (closed) neighborhood of the segment with radius 2n8+1 •
 The part originated from a fixed segment is above the segment. So it is

 enough to prove that a point of a segment of cannot go upward
 more than 2nb+1 during the process.

 By the definition of Pk}m during a transformation PkiTn a point of a segment
 can go upward at most the 4fcm-th.part of the length of the segment. So
 since 4¿o+1rag+1 > Ams0+1 = 4ATs+i, at the first step a point of a segment
 of -+N' can go upward at most the 4ATa+i-th part of the length of the
 segment. Since the segments are divided into at least 2 parts in each step a
 point can go upward at most the 2JVa+i-th part of the length of the original
 segment after arbitrary many steps. On the other hand the length of any
 segment of M^1+'"+N' is at most 1 (indeed much smaller). Therefore a point

 of M^1+ "+n' can go upward at most 2n +1 > which concludes the proof. □

 The previous 3 statements show that now we only have to choose sequences
 Ns and <rs with the following conditions:

 (0 1 < Ni < N2 < N3 < . . .

 ("» sib s '•
 (>») TT + Î -

 Iys s

 (s= 1,2,...).

 If (i) holds, then Ns > s, so Therefore (iii) can be replaced by
 the condition 2asJs < j. We can construct such a sequence by recursion:

 Let Ni be an integer greater than 1. If N' , . . . , Ns ; <t' , . . . , <rs_i are already
 defined (s > 1), then let

 = 2I77'
 Then let Ns+i be an integer greater than and Ns. (We used that Js
 depends only on N' , . . . , Ns .)

 The constructed numbers obviously satisfy the desired conditions. So ac-
 cording to the previous 3 statements if we use these parameters then Mq can-
 not be mapped onto a segment by contraction. On the other hand according
 to Theorem 4.1 its linear measure is at least
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 Therefore Mq is indeed a compact set in the plane with positive linear
 measure but it cannot be mapped onto a segment by contraction, so we proved
 the Main Theorem.

 Corollary 1. The Kolmogoroff minimal linear measure and the linear
 Hausdorff measure are incommensurable.

 Corollary 2. If n > 2 and k = 1 then it is not true that every (k-
 dimensional Hausdorff) measurable subset of Rn with positive k-dimensional
 Hausdorff measure can be mapped, using a contraction onto a segment.

 Remark. The author does not know anything in the missing cases, that
 is when n > 3 and 2 > k > n. (The case n=k=l and n=k=2 is mentioned in
 the introduction.)

 References

 [1] A. S. Besicovitch, On the Kolmogoroff Maximum and Minimum Measures ,
 Math. Annalen 113 (1936-37), p. 416-423.

 [2] H. Federer, Geometric Measure Theory , Springer 1969

 [3] A. N. Kolmogoroff, Beiträge zur Maßtheorie, Math. Annalen 107 (1932),
 p. 351-366.

 [4] J. Matoušek, On Lipschitz mappings onto a square , Tech. Report, Depart-
 ment of Applied Math., Charles University, Prague, 1993; submitted for
 publication

 [5] D. Preiss, manuscript, 1992

 [6] A. G. Vituškin, L. D. Ivanov, M. S. Melnikov, Incommensurability of Min-
 imal Linear Measure with the Length of a Set (in Russian), Daklady Akad.
 151/6 (1963), p. 1256-1259. (In English: Soviet Mathematics 4 (1963), p.
 1160-1164.)


	Contents
	p. 291
	p. 292
	p. 293
	p. 294
	p. 295
	p. 296
	p. 297
	p. 298
	p. 299
	p. 300
	p. 301
	p. 302
	p. 303
	p. 304
	p. 305
	p. 306
	p. 307
	p. 308
	p. 309
	p. 310
	p. 311
	p. 312

	Issue Table of Contents
	Real Analysis Exchange, Vol. 20, No. 1 (1994-95) pp. 1-371
	Front Matter
	EDITORIAL MESSAGES [pp. 1-1]
	Tadeusz Świa̹tkowski - OBITUARY [pp. 2-5]
	CONFERENCE ANNOUNCEMENTS [pp. 6-9]
	CONFERENCE REPORTS
	REPORT ON THE SUMMER SYMPOSIUM IN REAL ANALYSIS XVIII, UNIVERSITY OF VIRGINIA CHARLOTTESVILLE, VIRGINIA JUNE 22-25, 1994 [pp. 10-13]
	Carathéodory's outer measures: 80 years [pp. 14-17]
	DISTORTION THEORY FOR FUNCTIONS IN A ZYGMUND SPACE Λ [pp. 18-19]
	PACKING CONICS IN THE PLANE [pp. 20-21]
	ORDINARY AND STRONG DENSITY CONTINUOUS FUNCTIONS ON THE PLANE [pp. 22-24]
	MEASURE PRESERVING CONTINUOUS SMOOTHING OF FRACTIONAL DIMENSIONAL SETS [pp. 25-25]
	SMOOTHING Λ-SEQUENCES [pp. 26-27]
	ω-LIMIT SETS FOR CERTAIN CLASSES OF FUNCTIONS [pp. 28-30]
	ω-LIMIT SETS AND CONTINUOUS FUNCTIONS WITH CONTROLLED GROWTH [pp. 31-32]
	Ap-WEIGHTS AND RELATED TOPICS [pp. 33-35]
	LIMITS AND SERIES OF EXTENDABLE CONNECTIVITY FUNCTIONS [pp. 36-36]
	BOUNDED HARMONIC VARIATION AND THE GARSIA-SAWYER CLASS [pp. 37-38]
	ON SOME PROBLEMS OF FRACTIONAL DERIVATIVES [pp. 39-40]
	INFINITE CONFORMAL ITERATED FUNCTIONS SYSTEMS AND MEASURABILITY OF MEASURE AND DIMENSION FUNCTIONS [pp. 41-42]
	THE MULTIFRACTAL SPECTRUM OF RIEMANN'S FUNCTION [pp. 43-44]
	RANDOM WALKS AND GENERALIZED RIESZ PRODUCTS [pp. 45-46]
	LIMITS UNDER THE INTEGRAL SIGN [pp. 47-47]
	LIMITING CASES OF THE SOBOLEV IMBEDDING THEOREM [pp. 48-49]
	ON VECTOR-VALUED HENSTOCK AND DENJOY INTEGRALS [pp. 50-50]
	NEW INTEGRALS AND THE GAUSS–GREEN THEOREM WITH SINGULARITIES [pp. 51-54]
	HAUSDORFF AND PACKING MEASURES OF SOME SELF-AFFINE SETS [pp. 55-57]
	COMPLETENESS IN TOTALLY ORDERED ABELIAN GROUPS [pp. 58-58]
	ON CONVERGENCE OF FOURIER SERIES IN THE HAUSDORFF METRIC [pp. 59-60]
	POSITIVITY OF THE HAUSDORFF MEASURE FOR RANDOM SELF–SIMILAR FRACTALS [pp. 61-61]
	MULTIFRACTAL MEASURES [pp. 62-62]
	ON VARIOUS POROSITY NOTIONS IN THE LITERATURE [pp. 63-65]
	A SET IN THE PLANE WITH PECULIAR MEASURE-THEORETIC PROPERTIES CONSTRUCTED BY VITUŠKIN, IVANOV AND MELNIKOV [pp. 66-66]

	RESEARCH ARTICLES
	ON CONVERGENCE THEOREMS FOR AP INTEGRALS [pp. 67-76]
	ON A GENERALIZED DOMINATED CONVERGENCE THEOREM FOR THE AP INTEGRAL [pp. 77-88]
	ON THE MEASURABILITY OF EXTREME PARTIAL I-APPROXIMATE DERIVATIVES [pp. 89-93]
	EXTREME PROBABILITY SUBMEASURES ON 3 POINTS [pp. 94-101]
	Density continuous transformations on ℝ² [pp. 102-118]
	A CONVERGENCE THEOREM FOR GENERALIZED RIEMANN INTEGRALS [pp. 119-124]
	THE STRUCTURE OF MINIMAL ATTRACTION CENTERS OF TRAJECTORIES OF CONTINUOUS MAPS OF THE INTERVAL [pp. 125-133]
	Λ-VARIATION AND BAIRE CATEGORY [pp. 134-139]
	FUNCTIONS THAT HAVE NO FIRST ORDER DERIVATIVE MIGHT HAVE FRACTIONAL DERIVATIVES OF ALL ORDERS LESS THAN ONE [pp. 140-157]
	DIMENSION OF SETS OF NUMBERS WITH MULTIPLE REPRESENTATIONS [pp. 158-162]
	DENSITY TOPOLOGIES FOR PRODUCTS OF σ-IDEALS [pp. 163-177]
	ON THE TRANSFORMATIONS OF MEASURABLE SETS AND SETS WITH THE BAIRE PROPERTY [pp. 178-182]
	LIMITS AND SUMS OF EXTENDABLE CONNECTIVITY FUNCTIONS [pp. 183-191]
	APPROXIMATE CORE TOPOLOGIES [pp. 192-203]
	MAXIMAL ADDITIVE AND MAXIMAL MULTIPLICATIVE FAMILY FOR THE CLASS OF SIMPLY CONTINUOUS FUNCTIONS [pp. 204-211]
	MULTIPLIERS FOR SOME GENERALIZED RIEMANN INTEGRALS IN THE REAL LINE [pp. 212-218]
	POINTS OF NON-DIFFERENTIABILITY OF TYPICAL LIPSCHITZ FUNCTIONS [pp. 219-226]
	THE EXTENDING OF DARBOUX FUNCTIONS WITH FINITE VARIATION [pp. 227-243]
	ON THE SUMS OF DARBOUX UPPER SEMICONTINUOUS QUASI-CONTINUOUS FUNCTIONS [pp. 244-249]
	INEQUALITIES OF MINKOWSKI'S TYPE [pp. 250-255]
	FINE VARIATION AND FRACTAL MEASURES [pp. 256-280]
	CARDINAL INVARIANTS CONCERNING FUNCTIONS WHOSE PRODUCT IS ALMOST CONTINUOUS [pp. 281-285]

	INROADS
	ON SCORZA DRAGONI'S PROPERTY FOR THE DENSITY TOPOLOGY [pp. 286-290]
	A PECULIAR SET IN THE PLANE CONSTRUCTED BY VITUŠKIN, IVANOV AND MELNIKOV [pp. 291-312]
	THE SHORTEST ENCLOSURE OF THREE CONNECTED AREAS IN ℝ² [pp. 313-335]
	A NOTE ON MAJOR AND MINOR FUNCTION FOR THE PERRON INTEGRAL [pp. 336-339]
	PATH INTEGRAL: AN INVERSION OF PATH DERIVATIVES [pp. 340-346]
	AN ELEMENTARY PROOF OF THE BOREL ISOMORPHISM THEOREM [pp. 347-349]
	ON ITERATIONS OF DARBOUX FUNCTIONS [pp. 350-355]
	ON DARBOUX BAIRE ONE FUNCTIONS [pp. 356-358]
	DESCRIPTIVE MAPPING PROPERTIES OF TYPICAL CONTINUOUS FUNCTIONS [pp. 359-362]
	KURZWEIL-HENSTOCK ABSOLUTE INTEGRABLE MEANS McSHANE INTEGRABLE [pp. 363-366]
	EVERY BOUNDED FUNCTION IS THE SUM OF THREE ALMOST CONTINUOUS BOUNDED FUNCTIONS [pp. 367-369]

	QUERIES
	A QUERY CONCERNING SARD'S THEOREM FOR POINTS OF NON-DIFFERENTIABILITY [pp. 370-371]

	Back Matter



