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 FINE VARIATION AND FRACTAL

 MEASURES

 Abstract

 Thomson noted that (in the line) the Hausdorff measures can be
 considered to be fine variations for appropriate choices of derivation basis
 and set function. We show that this point of view remains interesting in
 a general separable metric space. Use of the "centered ball" basis yields
 an alternate description of the covering measures of Saint Raymond and
 Tricot. Use of a "closed set" basis yields the Ha usdorff measures. This
 paper may be considered a counterpart of [7], where the corresponding
 study of the packing measure may be found.

 The best-known fractal measures are the Hausdorff measures H5 for s > 0.

 Saint Raymond and Tricot [12] defined a variant, known as the (centered ball)
 covering measures C5. They differ by at most a constant factor from the
 Hausdorff measures, so they may be used in the computation of the Hausdorff
 dimension.

 Thomson [13] studied "variation" measures defined on metric spaces. To
 a set-function, such as the s-th power of the diameter, he associated a "full"
 variation (or Method III measure) and a "fine" variation (or Method IV mea-
 sure). [The term "method III" has been used for other constructions as well,
 so we do not use it here.] For the interval basis on the line, the full varia-
 tion is related to the packing measure, and the fine variation is the Hausdorff
 measure. Meinershagen [10] showed that packing measure is exactly the full
 variation associated with the balanced-interval basis. This characterization

 was extended to general metric spaces in [7] .
 In this paper we show that the St. -Raymond-Tricot covering measure is

 a fine variation when we use the closed centered-ball basis. Corresponding

 Key Words: fractal measure, covering measure, Hausdorff measure, fine variation,
 derivation basis
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 integral and density results are proved for this setting. This paper may be
 considered a counterpart of [7] , where the corresponding study of the packing
 measure may be found, but the two papers may be read independently.

 The Hausdorff measures are treated in a similar way (with the same proofs
 in most cases) by changing to a different derivation basis in §6. Covering mea-
 sure defined using the diameter of a ball (rather than the radius) is discussed in
 §4. The upper density defined with diameter may be (in some metric spaces)
 a non-measurable function (Example 5.3).

 Background material on Caratheodory's outer measures and metric outer
 measures may be found in [4] § 1.3 or [5] Chapt. 5; but an even better reference
 is Caratheodory's original paper [3].

 1 Covering measure

 We begin with the definition of the covering measure (see [12]). It is a slight
 variant of the Hausdorff measure. Let (5, p) be a separable metric space. For
 X E S and r > 0, the open ball is

 Br{x) = {y£S : p{y,x) < r} ,

 and the closed ball is

 Br(x) = {y e S : p{y , x) < r } .

 The diameter of a set ECS is

 diam E = sup { p(x, y ) : x, y € E } .

 Let ACS be a set. A centered-ball cover of A is a countable collection

 {Bri (xi), Br2(x 2), • • • } of closed balls with center in A that covers A:

 Xi e A, AC Bri(xi).
 i

 A centered-ball packing of A is a countable disjoint collection

 [Br 1 (xi), Bf2 (£2), * * * }

 of closed balls with center in A:

 Xi G A , BVi (xt) H Brj (xj) = ? for i £ j.

 Let p, be a finite Borei measure on the metric space S. For any x E 5, the
 upper s-density of // at x is

 T¡>< ' v h f(Br{x)) T¡>< £>„(») ' = v h
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 If xq is an isolated point, then Br(x o) = {zo} for r small enough. So of
 course we define D^x o) = oo if p,({xo}) > 0. Let us say by convention that

 Dlixo) = 0 if |i({*o}) = 0.

 Proposition 1.1 Let fi be a finite Borei measure and let s > 0. Then the
 function Dp is a Borei function.

 Proof. First, we note that for fixed r, the map x fi(Br(x)) is a Borei
 function. Indeed, for given i > 0, we claim that the set

 V= {x€S :fi(Br{x)) <*}

 is an open set. Let xq G V. That is, p,(Br(x o)) < t. The balls Br+ i/n(xo)
 decrease to Br(xo )), so there is n with p>(Br+ '/n{xo)) < t. Now for any x with
 p(x,x o) < 1/n, the ball Br(x) is contained in Br+ i/n(xo) so n(Br(x)) < t.
 Thus V is an open set.
 Next, for fixed x, the map r fi(Br(x)) is right-continuous. Indeed,

 Bro (x) = D Br(x),
 r>r0

 ro{x )) as r ļ ro- SO n(Br(x)) -+ p{B
 The denominator (2 r)s is also a right-continuous function of r. So in the

 definition of Dfii the lim sup may be computed using only rational values:

 Õ'(x) ^ = n- lim f oo sup i I (2 r)s :r€Q,0<r<-ļ. n I ^ n- f oo I (2 r)s n I

 Therefore it is also a Borei function.

 Definition 1.2 Let s be a positive number . For € > 0, define

 C'c(A) = inîy£(2riy,
 i

 where the infimum is over all countable covers {Bri(xi)} of A by centered
 closed balls with r,- < e. [Of course, in Euclidean space diam Br(x) = 2 r} but
 in a general separable metric space this need not be true.] The ¿-dimensional
 covering pre-measure of A is

 C'(A) = iimCļ(A).

 The ¿-dimensional covering outer measure is the outer measure C5 de-
 fined by making Cs increasing :

 C*(j4) = sup { C'{E) : E Ç A } .
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 Then C5 is a metric outer measure on S. ([12] Lemma 3.1; the result
 remains correct in any separable metric space S.) We will restrict attention
 here to separable metric spaces, since C5(A) = oo for any non-separable set.

 The definition is a bit awkward to use, because of the "increasing" step
 added on the end. But the set function Cs is not increasing so this final step
 is needed.

 Here are a few observations about the definition. The proofs in [12] often
 apply unchanged for a general separable metric space.

 1.3 The covering measure C5 and the Hausdorff measure HÄ differ at most
 by a constant factor:

 2~SCS{E) <H S{E) <C *{E).

 In particular, the values of s for which H S(E) = 0 are the same as those for
 which C S(E) = 0; and similarly for W (E) = oo and C S(E) = oo. [12], Lemma
 3.3 .

 1.4 The value ofCs(E) is unchanged if we use covers by open balls rather
 than covers by closed balls.

 1.5 In Euclidean space , if p is a finite Borei measure, and E is a Borei set
 with C S(E) < oo, then

 C *{E) mfDsJx)<n{E)<Cs{E) supD'jx).
 X^E xeE

 [12], 1.1 ; we will see a strengthened version of this below .

 1.6 Is Cs a regular outer measure? That is, for any set A, there is a mea-
 surable set E D A with C S(E) = C5(^4). I do not know the answer.

 2 Fine variation

 We now consider (a special case of) Thomson's fine variation [13], [14]. The
 variations may be defined for a general "derivation basis". For the moment
 we will use only the "centered ball" basis, so reference to the basis will be
 suppressed from our notation and terminology.

 Let (5,/?) be a separable metric space. A constituent is a pair (r, x),
 where x E S is a point, and r is a positive real number. [The constituent (r, x)
 represents the closed ball Br(x). In a general metric space, different centers
 X, x' and/or different radii r, r' may represent identical point sets:

 Br(x) = Br,(x '),
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 so we emphasize a center and radius are given as the constituent.]
 A packing is a disjoint collection k of constituents: that is, Br(x) D
 Bri(x') = ? if (r, x), (r', x') G tt, (r, x) / (r',x'). A packing of a set A is
 a packing ir such that x G A for all (r, x) G tt. Note that since S is separable,
 any packing by balls of positive radius must be a countable packing. A cen-
 tered cover of a set A is a collection ß of constituents (r, x) with x G A and
 A Ç (J/ Br(x). A fine cover (or Vitali cover) of a set A is a centered
 cover p of A such that, for every x G A and every e > 0, there is r < e with
 (r, x ) € ß.

 We will need the following Vitali-type theorem. The usual (Banach) proof
 of Vitali 's theorem proves this without trouble (for example [4], Theorem 6.2.1,
 [8], Theorem 1.10). But note the use of closed balls.

 Theorem 2.1 Let (S,p) be a separable metric space , let E C S be a set , let ß
 be a fine cover of E, and let s > 0. Then there is a ( finite or infinite ) packing
 7 r = {(r¿,£¿)} Ç ß such that:

 either ^(2rt)5 = oo or C5 ' ĻJ Bri (x,)^ = 0.
 Definition 2.2 Let h be a finite nonnegative constituent function : that is, for
 each constituent (r, x), let 0 < /i(r, x) < oo. If ß is a cover , write

 Vß(h) = sup ^ h{r,x),
 (r,x)£n

 where the supremum is over all packings tt Ç ß. The fine variation of h is

 V*(h) = mfVß{h)i

 where the infimum is over all fine covers ß.

 The intersection of two fine covers may not be a fine cover at all, so this
 infimum is not a "limit" in the sense of Moore-Smith. If A(r, x) = 0 whenever
 x is outside a set A, then of course it is enough to use only fine covers ß of A
 in the infimum.

 When the constituent function h is of the special form /i(r, x) = f(x)( 2r)5,

 for some nonnegative point-function / : S -ï R, we will write Vß(f) = Vp(h)
 and V*(f) = V+(h). We will call Vf(f) the fine s- variation of /.

 The following is a special case of Thomson's general results on fine varia-
 tions [13]. We write Ti. a for the indicator function of a set A, and h 1a for the
 constituent function

 (h 1U) (r,a:) = h(r,x)
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 Theorem 2.3 Let h be a nonnegative constituent function. Then 'i defined
 by ļi(A) = V+(h 1,4) for all ACS is a metric outer measure on S.

 If S is a separable metric space, then the Cantor-Bendixson Theorem ([9],
 p. 253) states that S may be written as a disjoint union

 S = SoUQ,

 where Q is countable, and So has no isolated points. ( Q consists of all points
 xo such that Br(x 0) is countable, for some r > 0.) If a constituent function h
 is continuous in the sense that

 lim h(r. V x) 7 = 0 r-fO V 7

 for every x, then the measure V* ( h IL a) vanishes on single points, so it vanishes
 on countable sets like Q. This fact will be used to reduce many of our assertions
 to the case where the metric space S has no isolated points.

 3 Covering measure and fine variation

 Next is the main result. The fine variation measure defined by the set function
 ft(r, x) = (2r)5 coincides with the covering measure. The one-dimensional
 version (for Hausdorff measure) occurs in [14], Theorem 6.4.

 Theorem 3.1 Let (5,/?) be a separable metric space , and let s > 0. Then for
 every set ECS , we have V¿(1e) = CS(E).

 Proof, (a) We first prove CS(E) < Vf(l e)- If V¿(1e) = 00, there is nothing
 to prove, so suppose V*(TLe) < 00 • Let ß be a fine cover of E with V^(l e) <
 00. Let e > 0. By the Vitali theorem (2.1), there is a packing {(r, •,£,•)} Ç ß
 with < e and either ^(2 r,)5 = 00 or Cs (E'[j Brt(xi)) = 0. But ^(2r,)5 <
 V¿{1 ÌE) < 00, so Cs(E'{jBri{xi)) = 0. Then Cļ(E ''jBrt{xi)) = 0 for all
 e > 0. Thus

 (00 •=1 ' / »=1 00 <£(2r0'< V?(1B).
 •=1 / »=1

 Now let e - y 0 to obtain C S(E) < rç(ls). Then take the infimum over ß to
 obtain CS(E) < Vf (He)- Finally, take the supremum of this inequality over
 all subsets, to obtain C S(E) < Vf(TL e)>
 (b) Next we prove: if CS(E) = 0, then Vf (He) = 0. Since S is separable,

 and Vf (l{x}) = 0 for any single point x) we may reduce to the case where E
 contains no isolated points.
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 Let e > 0. For each integer n, since C'/n(E) = 0, there is a centered cover

 { ( rin , xin ) : i e N }

 of E with r¡n < 1/n, a;,„ £ E, and

 ^2 (2 rin) < 2^+ī-
 i

 Now for each i and n let

 ßin = { (rin, y) - y € E, p(y, xin) < rin } .

 Then

 ß = {Jßin
 t}n

 is a fine cover of E . Let 7r Ç ß be a packing. For each n, because all elements
 of ßin contain the point z,n, there is at most one element of ßin in 7r. Thus

 (r,ar)67r i,n n

 Thus Vß(l e) < s. So VJ(1Íe) < s- But e > 0 was arbitrary, so V¿(1e) = 0.
 (c) Finally, we prove that V^(l e) < CS(E). Again, we may reduce to the

 case where E contains no isolated points of S. If C S(E) = oo, there is nothing
 to prove, so assume C S(E) < oo. Let p be the restriction of C5 to E : that is,
 ļi(A) = C*(^4 fi E) for all A. Then ¡i is a finite metric outer measure.
 We will decompose E using the upper s-density Dß. Fix a number a > 1.

 Write

 Ei = [x € E < a"3}
 E2 = {x e E .D'^x) > a~3} .

 Consider first E'. For n G N, write

 Fn = Í. x £ El : < a-2 for all r < - X .
 { (2r)5 n J

 Then Fn increases to E' as n - y oo, since a~2 > a~3.
 I claim that Cs(Fn) = 0. If e < 1/n, then when Fn is covered by {i?r. (#,-)}

 with ri < e, we have

 £(2r,-)' > a25>(Srł(*0) > a2ß (U^(«0) > "Vi*1») = <*2C '(F„).
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 Therefore C'e(Fn) > a2C'(Fn). Let £ ^ 0 to obtain C'{Fn) > a2C'(Fn).
 Therefore C'(F„) > a2Cs(Fn). Now C'(F„) < oo and a2 > 1, so C'(Fn) = 0.

 Thus CJ(Fn) = 0 for all n. By countable subadditivity, we conclude
 C5(£i) = 0. By part (b), V¿{lEl) = 0 as well.

 Next consider the set E 2. Since a~ 4 < a~3, the set

 ß = ļ (r, X ) constituent : x G £2, ^ > a~4 ļ
 is a fine cover of E 2. Now if 7r Ç ß is a packing, then

 (2r)5 < a*YsCS(Ēr{x)nE) < a4C°(E).
 (r,r)E 7T TT

 This is true for all 7r Ç /?, so V^(ll£2) < a4Cs(E)y and thus Vf(l e2) <
 a4Cs{E).

 Combining the two parts, we have

 Viii e) < + <0 + a4Cä(£).

 Take the infimum over all a > 1 to obtain V7(l#) < CS(E).
 For special h of the form f(x)(2r)si the fine variation Vf(f) is the integral

 with respect to the covering measure C5 . Note that / is not permitted to have
 the value 00.

 Proposition 3.2 Let S be a separable metric space , let s > 0, and let f be a
 nonnegative real-valued Borei function on S. Then

 v;(f) = ļsf(x)c(dx).

 Proof. First, by Theorem 3.1, we have Vf (TL a) = C5(^4) for any set A.
 Clearly, if a > 0 is a constant and / > 0 is a finite non-negative function, then
 V:(af)=aV;(f).

 Now both C5(^4) and Vf(fl.A) are metric outer measures, so Borei sets
 are measurable. If An are disjoint Borei sets and an > 0 are constants, then
 the simple function / = J2an^-An satisfies Vf(f) = fs f(x) Cs(dx).

 Finally, if / is a nonnegative Borei function, then there is a sequence fn of
 nonnegative Borei measurable simple functions that increases to /. If c < 1,
 then the sets

 En = {x : fn(x) > cf(x) }
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 increase to S. But V¿(fn) > cV¿(f l^), so limn V¿(fn) > cV¿(f). Let c - ► 1
 to conclude that Vf(fn) V^(f). Therefore we have

 v:(f) = lim V/(/B) = lim Í fn(x)C'(dx) = Í f(x)C'(dx),
 " n Js Js

 as required.
 Next is a strengthened form of (1.5). It identifies D as the Radon-

 Nikodym derivative of // with respect to C5. Because C5 is not cr-finite, the
 best we can hope for is equality for sets E on which C5 is finite (or (7-finite) .
 We must also rule out D^x) = oo.

 Theorem 3.3 (a) Let fi be a finite Borei measure on the separable metric
 space S and let E Ç S be a Borei set. Then

 fi(E)> i Dļ(x)Cs(dx).
 J E

 (b) If, in addition , C S(E) < oo, and < oo on E , then

 m= f m*)c '(dx). J E

 Proof, (a) Write E = Eo U Q, where Q is countable, and Eo has no isolated
 points. Then C5(Q) = 0, so fg Dß(x) C s(dx) = 0. Thus we may reduce to the
 case where E contains no isolated points.

 Let U 3 E be an open set. Let / be a finite Borei function, 0 < / < D ß
 with strict inequality f(x) < D ^(x) whenever Dß(x) > 0. Now

 ß = ļ (r, x) constituent : x £ 1 5, Br(x) Ç ř7, ^ > f(x) ļ
 is a fine cover of E'. If n Ç ß is a packing, then

 f(x)(2rY ^ (U^wi ^^u)-
 (r,ar)€7T ' *" /

 So Vß (/ Qe) < A*(^)> an<i therefore V^{/'e) < ß{U)> Taking the infi-
 mum over U, we obtain V?(/Ee) < ^(E). Now / < oo on E, so this
 means fE f(x)Cs(dx) < fi(E). But then by the choice of / we may conclude
 SEÖ'ß{x)C>{dx)<»{E).



 FINE VARIATION AND FRACTAL MEASURES 265

 (b) Now suppose Cs (E) < oo, and D' < oo on E. We claim that

 / Ď>)C ģ(dx)>p{E).
 JE

 Since < oo, we must have ß{{x}) = 0 for all x G E. So again we may
 reduce to the case where E contains no isolated points of S.

 We claim first that < C1 on E. Let F Ç E with C S(F) = 0. We must
 show fi(F) = 0. Since C S(F) = 0, we have C 1(F) = 0 for all € > 0. Now for
 n G N, let

 Fn = ' x € F : ^f (2r)' r[X^ < n for all r < - n ) . [ (2r)' n J
 So Fn increases to F since D'^x) < oo on E. Now if e < 1/n, then any
 centered ¿-cover {Bri(xi)} of Fn satisfies

 ^^(2r,)Ä > ^ ^2n(Bri(xi)) > -fi(Fn).

 Thus, C*(Fn) > (1 /n)fi(Fn). Therefore n(Fn) = 0. By the countable subad-
 ditivity of //, we conclude that ļi(F) = 0.
 Now let ß be a fine cover of E . Then

 ^={(r'i)e":ï^ûi:n»w+E}
 is also a fine cover of E. But by the Vitali theorem (2.1) there is a packing
 7T Ç ß' such that either = 00 or C*{E ' Ù7r5r(a:)) = 0 so that
 fj,(E ' (J* Br(x)) = 0. In either case

 £ (5,M(«) + e)(2r)'>/i(B):
 (r,x)G7T

 This is true in the first case since the left-hand side is oo, and in the second
 case since + £)(2r)5 > ^ n(Br(x)) > fi(E). Thus

 Vjity + e) 1B) > 11(E).

 The infimum over all ß yields V* ({D^ + e) He) > m(E)- The integrand is
 finite, so this means fE D^^C8 (dx) + eCs (E) > fi(E). Since C S(E) < oo, we
 may let € - > 0 to obtain fE D* (x)CÄ (dx) > fi(E).
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 Corollary 3.4 Let S be a separable metric space , let s > 0, and let E Ç S be
 a Borei set with C S(E) < oo.

 (a) Let ß be a finite Borei measure . When the products are well-defined
 [i.e. not 0 • oo], we have

 C °{E) inf DSJx) < fi{E) < CS{E) sup D°Jx).
 xeE

 (b) The density theorem: Let ļi be the restriction of Cs to E. Then D^x) =
 1 for Cs -almost every x G E and D^x) = 0 for Cs -almost every x £ E .

 Proof, (a) The constant inf x¿e ^(x) is a Borei function < D* . By Theorem
 3.3,

 C9(E) infĎ;(x)< f Dl(x)Cs(dx)<fi(E).
 x£E JE

 Similarly,

 CS{E) sup £*(*)> f DsJx)Cs(dx)>ti{E).
 x£E JE

 (b) Let fx be the restriction of Cs to E : that is, n(A) = CÄ(A fi E ) for all
 A. So ß is a finite Borei measure.

 For c < 1, let Ec = ļ x G E : D^x) < c |. Then

 C °{EC) = fi(Ec) < C 'EC) sup D^x) < cCs{Ec).
 x€Ec

 So Cs(Ec) = 0. Thus D*ß(x) > 1 a.e. on E.

 For c>lììetEc = {xeE: Dsß(x) > c ļ. Then

 C *(EC) = fi{Ec) > C °{EC) infcĎl{x) > cCs{Ec).

 So Ca(£c) = 0. Thus D^(x) > 1 a.e. on E.

 For c > 0, let Fc = ļ x G 5 ' E : DSß(x) > c ļ. Then

 0 = ß(Fc) > C 5 (Fc) Jļnf Ď* (x) > cCs{Fc).

 So C' {Fc) = 0. Thus dI(x) = 0 a.e. on S'E.
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 4 Diameter vs. radius

 Now let us consider a possible variant of the definitions used here. [In fact,
 these are the definitions I used at first.] Rather than using (2 r)s for a closed
 ball Br(x)i let us use the actual diameter (diam Br(x)) . In many metric
 spaces (such as Euclidean space) this makes no difference. But in other metric
 spaces (including certain subsets of Euclidean space) it does make a difference.
 In this section we will write the upper s-density of a measure fi as

 g.(.) = limsup , „ .
 r- ►() , (diam5r(x))

 In some metric spaces A* may fail to be a measurable function (Exam-

 ple 5.3). For fixed r > 0, the function x fi(Br(x)) is a Borei function
 (in fact upper semicontinuous) . But the function x diam Br(x) need
 not be a measurable function (Example 5.2). If the metric space satisfies
 linvļadiam Br(x) = diam Ba(x ), then x h* diam Br(x) is measurable, and
 then A^ will be measurable. See §7, below and [1], Lemma 3.

 In this section we will temporarily use the notation T5 for the appropriate
 covering outer measure:

 Definition 4.1 Let s be a positive number. For e > 0, define

 Tj(.A) = infÇ (diam Bri(xi)Y ,
 i

 where the infimum is over all countable covers of A by centered closed balls
 with diameter < e. The ¿-dimensional covering pre-measure of A is

 Ť 9 (A) V 7 = limTf(A). V ' V 7 e-+0 V '

 The ¿-dimensional covering outer measure is the outer measure T5 de-
 fined by making T5 increasing :

 T'(i4) = sup { T'(E) : E Ç A J .

 Then T5 is a metric outer measure on S.

 The fine variations to be used are, of course, the same as before, but we
 will write W* (h) and now we will use the notation Wļ (/) when the constituent
 function h is of the special form /i(r, x) = /(x)(diam Br (*))'•

 With the new notation, most of the same results are proved as before:
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 Theorem 4.2 Let (5,/?) be a separable metric space, and let s > 0. Then for
 every set ECS , we have W1(1e) = T8(E).

 Note that the sets Fn in the proof are not at first known to be measurable
 sets, but the argument shows they have outer measure zero, so they are, in
 fact, measurable.

 Proposition 4.3 Let S be a separable metric space , let s > 0, and let f be a
 nonnegative real-valued Borei function on S. Then

 Wļ(f) = J f(x)T*(dx).
 If g is a non-negative real function on 5, possibly not T5 -measurable, the

 integral Js g(x)Ts(dx) may not be defined. We will use the upper and lower
 integrals:

 j g(x)T{dx) = inf ļ j f(x)V(dx) :f>g,f Borei measurable ļ ,

 J g(x)T'(dx) = sup j J f(x)T'(dx)  '• f < 9if Borei measurable ļ .
 Theorem 4.4 (a) Let n be a finite Borei measure on the separable metric
 space S and let E Ç S be a Borei set. Then

 n{E)> i ā;(z)T '(dar).
 Ł-e

 (b) If, in addition, TS(E) < oo, and < oo on E, then

 fi(E)< J T„(x)T(dx).
 (c) If, in addition, is Borei measurable, then

 /*(£)= J / ā;(*)T '(dx). J E

 Corollary 4.5 Let S be a separable metric space, let s > 0, and let E Ç S be
 a Borei set with TS(E) < oo.

 (a) Let ļi be a finite measure. When the products are well-defined [i.e. not
 0 • oo], we have

 TUE) inf A°(x) * < fi(E) < T S{E) supĀ' (*). * XÇ.E

 (b) The density theorem: Let p, be the restriction of Ts to E. Then A^(x) =

 1 for T s -almost every x G E and A^(z) = 0 for T s -almost every x (£ E .
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 5 Irregular examples

 Here we display three examples showing that regularity properties (for diam-
 eter) may fail in certain metric spaces:

 (a) A set S Ç R and a finite Borei measure p on S so that

 H(Br( 0)) n(Br(0))
 lim sup

 r-fO (diam£?r(0)) Ti- r-» o (diam Br(0))

 (b) A set S Ç R2 so that the function x »->• diam B'(x) is a non-measurable
 function.

 (c) A (separable) metric space S and a finite Borei measure p on S so that
 is a non-measurable function.

 Example 5.1 Let s = 1 and a = 3/2. The set is
 oo oo

 s = {0} U U [2-n, 2~na] U ļj [-2~na, -2"n).
 n - l n = l

 Let p be the restriction of the usual metric of R to the subset S. Let p be a
 discrete measure with mass 2~n at the point 2~n, for n = 1, 2, • • • . Certainly
 p is a (regular) Borei measure on S with finite total mass.
 Now in the metric space S, for 2~n < r <2~n a,

 n(Br(0)) = M (Br( 0)) =
 diam 5r(0) diam 5r(0) 2 r

 For r = 2~n,

 n(Br( 0)) _ 2-" 1
 diamBr(0) _ 2~na a '

 fi (Br{ 0)) _ ~ 2-n+1 _ " 4 _8^1 ~ >
 diam Br(0) _ ~ 2"» + 2-""1a _ " 2 + a ~ 7 >

 And for 2~n~1a < r < 2~n,

 /*(Br(Q)) = a» (BAO)) = = i L
 diam Sr(0) diam 5r(0) 2~na a

 So we have

 lim.up =| 7 M l.msup/'B-<°;» <1. diami?r(0) 7 diami?r(0)
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 Figure 1: (a) labels; (b) ratios

 Example 5.2 Let V be a non- measurable subset of the interval [0, 1/2]. For
 example , let V be a Bernstein set: K fì V / ? and K ' V ^ ? for every
 uncountable closed set K Ç [0, 1/2]. Define SC R2 by:

 S = { (x, 0) : 0 < X < 1/2 } U { (®, 1) : x G V } ,

 a subset of two horizontal intervals. Then in the metric space S, the diameter
 of a unit ball B'(x)Q) is either > 1 or < 1/2, according as x E V or not. So
 diam B'(x) 0) is a non-measurable function of the point (a?, 0).

 Example 5.3 This example has non- measurable upper density A* . It is a
 bit more involved than the others. It is not clear to me whether there is such

 an example where S is (isometric to) a subset of Euclidean space Rn. (Of
 course , since the example below is a zero- dimensional separable metric space ,
 it is homeomorphic to a subset of the line R.^

 We will use the notation from my text [5], §4.3. Begin with an alphabet
 £" = {0,1,2,3}. These letters label the edges of a directed multigraph (Figure
 1). A compact space T of infinite strings is thus defined: Let T be the set
 of all infinite strings a from the alphabet E where all letters (with possibly a
 single exception) are O's and l's.
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 Next we define a metric p on T. The recursive rules are:

 p{ Oer, Or) = p(<r, r)/4

 p(la, It) = p(<r, r)/4

 p(2a, 2 t) = p(a, t )

 p(3<r, 3 t) = p(<r, t)

 p(0<r, lr) = 1

 p(0<r, 2r) = 1 + p(0cr, r)/4

 p{0<T, 3r) = 1

 p(l(T, 2r) = 1 + p{l<r, r)/4

 P(1<t,3T) = 1

 p(2<r,3r) = 2.

 Also, p(<r, r) = p(r, <r) and p(<r, cr) = 0. Verify by cases that p satisfies the
 triangle inequality. If a G {0, 1}(*) is a finite string of O's and l's, then the
 cylinder set [a] has diameter 4"'®' -2. Indeed, if <r, r G [a] do not involve 2 or 3,
 then p(c r, r) < 4" Ia'; except for (a2o-/,a3r/) the maximum is 4~l°rl+p(<T/, t') /4
 for certain o-', r' G [a], so it is < 4~'al + 4~lal • 2/4 = 4~l°il • (3/2).

 Now T is a "graph self-similar" set. It is made up of four parts: two parts
 A = [2], B = [3], which are (1/4, l/4)-Cantor sets; and two parts [0], [1]
 similar to all of T, shrunk by a factor 1/4.

 Next define a measure // by defining it on the basic cylinder sets [a'. If
 are finite strings of O's and l's, let:

 fi[a] = 4"'a'; fi[a2ß' = 0; ¿x[a3/?] = 4~'a' • 2_1~'^'.

 The measure may be thought of as constructed by a Markov chain with proba-
 bilities shown in Figure 2. Note that //(T' {0, 1, 3}^)) = 0: the set of strings
 with a letter 2 has measure 0.

 Now the subset K = contained in T is a copy of the Cantor set
 (with metric 1/4, 1/4). Let V be a non-measurable subset of it, say a Bernstein
 set. Define a subset S Ç T by removing all strings a2cr ' where acr' ^ V . Then
 S will be our (noncompact) metric space. We throw out only a subset of

 a closed set of measure 0, so /i is still a regular Borei measure
 on the remainder S.

 Consider a ball Br(<r) in 5, where <r £ K Ç S. Choose the integer k so
 that 4~k < r < 4~k+1. Write a for the first k letters of and (t' for the rest
 of cr (so cr = acr'). If A~k < r < 4~*+1, then

 Br(a) C[a'

 Br (a) D [aO] U [al] U [a3] U [a2ß]



 272 G. A. Edgar

 Figure 2: A Markov chain

 for a long enough prefix ß of a' . If r = 4 k , then

 Bt{<t) = [orO] U [al] U [o3] U {ala'} if a G V

 Br (<t) = [aO] U [al] U [a3] if <r £ V .

 So, for 4~k <r<4-*+1,

 p(BrW)=4-*, diam Br(tr) = 4~k 2, = i.

 And for r = 4~k, fi(Br{<r)) = 4_/c and diam Br(<r) = 4^* • 2 if G V but
 diam Br(a) < 4~k • (3/2) iï a ^ V so that

 = 1 if (Tg v but ,
 diam 5r((j) 2 diam Br(<r) 3

 Thus

 ļ«r€* :Ā>)<|} = V
 is a non-measurable set.

 Note that T 1(S) = 0 since dimT =1/2. But A*(cr) = oo for a that involve
 a letter 3, so this measure does not contradict (4.4 b) or (4.5 a).
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 6 Hausdorff Measure

 The Hausdorff measures H5 may be treated in a similar way. The derivation
 basis must be changed, however. The case for the metric space R was treated
 by Thomson [14].

 Let {SjP) be a separable metric space. A constituent is a pair (B,x),
 where B is a closed, bounded set with at least two points [or a single isolated
 point of S], and x £ B. A packing is a disjoint collection tt of consitutents.
 A closed cover of a set A is a collection ß of constituents (5, x) with x G A

 such that A Ç x^ßB. A fine cover of A is a collection ß of constituents
 such that, for every x G A, and every e > 0, there is B such that (£, x) G /?,
 x G A, and diam B < e.

 The Banach argument in the Vitali theorem fits this setting [8], Theorem
 1.10.

 Theorem 6.1 Let (5,/?) be a separable metric space} let E Ç S be a set , let ß
 be a fine cover of E, and let s > 0. Then there is a ( finite or infinite) packing
 7 r = {(£¿,x¿)} Ç ß such that:

 either ^(diam B{)s = oo or H5 = 0.
 Let s be a positive number, and let A Ç S be a set. For € > 0, define

 H£(A)=:inf ^ (diam B) 5 ,
 (Btx)eß

 where the infimum is over all countable closed covers ß of A. The
 s-dimensional Hausdorff outer measure of a set A is

 H5(A) = limH^(A) = supH^M).
 e>0

 The closure of a set has the same diameter as the set itself. Thus, in the
 definition of Hausdorff measure, we may consider only covers by closed sets.

 Let // be a finite Borei measure. The upper s-density required for this
 basis, defined for non-isolated points x G 5, is:

 d'Jx) 7 = lim I sup < : B closed, iG5,0< diam B < r .
 7 r-K) V I (diam B)s J J

 If S is Euclidean space, then since the convex hull of a closed set is a closed
 convex set with the same diameter, the same upper density is obtained if we
 restrict the sets B to convex sets; thus d is sometimes known as the upper
 convex density [8], p. 21.
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 Proposition 6.2 The upper density d^x) is a Borei measurable function
 of X.

 Proof. First note that open sets may be used in the definition:

 = JIÍS (SUP { (diami/)' : U °pen' x£U>0< diam U < r }) '

 Indeed, for any closed set 5, the l/n-neighborhood Un of B decreases to B ,
 and diam Un - ► diam B' fi(Un) - > fi(B). And for any open set U ) the set
 Bn of points with distance at least l/n from the complement is closed, Bn
 increases to ř7, and diam Bn -> diam U ; i¿(Bn) -¥ p(U).

 Now for fixed r > 0, write

 0r (x) = sup I : U °Pen> X e U,0 < diam U < r ļ .

 We claim that 6r is a Borei function. In fact, for each t) the set Lt =
 {x : 6r(x) > t} is an open set. To see this, suppose xq G Lt . Then there
 is an open set U with xo G U, 0 < diam U < r, and

 MCP . ,
 (diam U Y

 But then, for any x G U, the same set U shows that 6r{x) > t. Thus Lt is
 open.

 Finally, d^x) = limn 0i/n(x) is the pointwise limit of a sequence of Borei
 functions, so it is Borei.

 If h is a non-negative real- valued constituent function, the fine variation is
 defined much as before: if ß is a closed cover, then

 i^(ft) = sup h(B,x),
 (B,x)čn

 where the supremum is over all packings tt Ç ß' the fine variation of h is

 v+(h) = inf Vß(h),

 where the infimum is over all fine covers ß. When h(B,x) = /(x)(diam B)s ,
 write vsß(f) = vp(h) and vl(f) = v+(h).

 The following results are proved in the same way as before. Replace Ta by
 HÄ, "centered cover" by "closed cover", Vß by Vß , by cř^, and so on. The
 Vitali theorem (6.1) should be used.
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 Theorem 6.3 Let h be a nonnegative constituent function. Then p defined
 by p{A) = v+(h Ha) is a metric outer measure on S.

 Theorem 6.4 Let (S,p) be a separable metric space, and let s > 0. Then for
 every set ECS, we have ^(1#) = US(E).

 In part (c), define

 Fn = ' X G E' : , < a~ 2 f°r & with x ^ diam B < - ļ .
 Ļ (diam , By n J

 Proposition 6.5 Lei S be a separable metric space, let s > 0, and let f be a
 nonnegative real-valued Borei function on S. Then

 Vi(f) = j f(x)H'(dx).

 Theorem 6.6 (a) Let p be a finite Borei measure on the separable metric
 space S and let E Ç S be a Borei set. Then

 li(E)> f Tß(x)W(dx).
 JE

 (b) If, in addition, H5(i£) < oo, and d* < oo on E, then

 p(E) = [ 3>)H °(dx). Je

 The following corollaries are known; see [1], [15], [8], Theorems 2.3, 2.4.

 Corollary 6.7 Let S be a separable metric space, let s > 0, and let E Ç S be
 a Borei set with H S(E) < oo.

 (a) Let p, be a finite Borei measure. When the products are well-defined
 [i.e. not 0 - oo], we have

 H S(E) inf ds (x) <n(E) <H5(£) sup d*(x).
 X€E x£E

 (b) The density theorem : Let p be the restriction of W to E. Then d^x) = 1
 for H5 -almost every x E E and d* (x) = 0 for H s -almost every x £ E .
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 7 Open-ball diameter covering measure

 Let us consider an alternative for the diameter covering measure. We are
 interested in using open balls in the centered covers and in the upper density.
 Since closed balls appear in the Vitali theorem (2.1), some care must be taken.
 A simple variant of the lim sup and liminf will be used. They are the
 limsup and liminf if we ignore countable sets.
 Suppose q(r) E R is defined for each r > 0. Then

 (a) ulimsupr_f0 <l(r) is the infimum of all a such that, for some rj > 0, we
 have q(r) < a for all but count ably many r with 0 < r < rj.

 (b) ulimsup^Q q(r) > a means: for all e > 0 and all 77 > 0, there are
 uncountably many r with 0 < r < rj and q(r) > a - e.

 (c) u lim infrio q(r) is the supremum of all a such that, for some 77 > 0, we
 have q(r) > a for all but count ably many r with 0 < r < 77.

 (d) u lim infrio q{r) < a means: for all e > 0 and all rj > 0, there are
 uncountably many r with 0 < r < rj and q(r) < a + e.

 Let us begin with the density. First, note that the lower density is the
 same for open and closed sets.

 Proposition 7.1 Let (5, p) be a metric space , let x G S be a non-isolated
 point , let p, be a finite Borei measure, and let s > 0. Then the following four
 values are all equal :

 P, = liminf, y(R(*» ,
 f-»-0 (diam5r(x))

 ¿>a = uliminf . ,
 r->o (diamJör(x)) .

 ¿>3 = liminf
 r->° (diam Br(x))

 , li(Br(x))
 D4 = u lim înf ,

 (diam

 Proof. The relevant facts are: Br+e(x) ļ Br(x) as € ļ 0, so

 (i) //(i?r+e(£)) -

 and Br-£(x) f Br(x ), so



 FINE VARIATION AND FRACTAL MEASURES 277

 (ii) n(Br-c{x)) -t/z(Br(x));

 (iii) diam Br-e(x) -¥ diam Br{x).

 To begin, D' < D 2 and D3 < D 4 are clear.
 Next, suppose a > D'. For 77 > 0, there is r with 0 < r < 77 and

 f(Br(x)) : _
 (diam 5r(x))5

 Use (ii) and (iii): if e > 0 is small enough, then

 (diam Br-£ (z))*

 Thus we have D4 < a. This holds for any a > Di, so this means D4 <D'.

 Next suppose a > D3. For rj > 0, there is r with 0 < r < rj and

 *(«■(*» - a,
 (diam Br(x))s

 If e > 0 is small enough, then n(Br+e(x)) « /i(J5r(x)) and diam Br+e(x) >
 diam Br(x)y so

 7 - :

 (diam Br+e(x))

 Thus we have Di < a. Therefore D2 < D$.

 To summarize: D' < D2 < £>3 < Dą < D' , so they are all equal.

 The lower density A^(x) is defined by any of the four expressions. It is
 a Borei measurable function: for a fixed r, the functions x i-> fi(Br(x)) and
 X diam Br(x) are both lower semicontinuous, hence measurable. For fixed
 X, the functions r ļi(Br(x)) and r diam Br(x) are continuous from the
 left, so the liminf called D' above is the same when computed using only
 rational r. So is a measurable function of x.

 An example (5.2) shows that things are not as nice for the upper density.

 Proposition 7.2 Let (5, p) be a metric space, let x G S be a non-isolated
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 point, let fi be a finite Borei measure, and let s > 0. Write:

 D' = lim sup
 r-+o (diam5r(x))

 n{Br{x))
 ß! = Ul™.SUP(diMn EMY

 Dą = lim sup "Pi»*') ,
 r- »-0 (diam5r(z))

 //(5r(x))
 4 - u lim sup

 r- »-0 (diam^r(x)j

 Then D' - D2 - Dą ^ D%.

 Proof. First, £>1 > D2 and D3 > Dą are clear.
 Next, suppose a < £>1. For 77 > 0, there is r with 0 < r < tj and

 aW*)) a
 (diam Sr(x))5

 For 6: > 0 small enough,

 //(ďr-e(g)) a
 (diam Br-£(x))s

 Thus D4 > a. This proves Dą> D'.
 Now as e decreases to 0, the open ball Br+e(x) decreases to the closed

 ball Br(x). But diam Br+e(x) need not converge to diam Br(x). However,
 diam Br(x) is a monotone function of r, so it is continuous at all but countably
 many values of r. Wherever it is continuous,

 diam Br(x) = diam Br(x) = lim diam Br+£(x).
 £-¥ 0

 Next let a < Dą. For 77 > 0 there are uncountably many r with 0 < r < 77
 and

 »(Mx))
 (diam Br(x))

 In particular, there is such an r where diam Br(x) = limero diam Br+e(x).
 So for e > 0 small enough,

 n(Br+e{x))
 7 - :

 (diam Br+e{x))
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 Thus, as usual, > Dą.
 In summary, Di > Dą > D' > so these three are all equal. Also,

 Z^3 > Dą, but this inequality may be strict.

 Write D^(ar) for the upper density defined by D' = D2 = D4. Clearly
 < A* (x). But (because it is defined by D') is a Borei measurable

 function of x.

 The covering measure to use in this connection is defined with centered
 covers by open balls. This measure differs from C5 (and from H 5 and T5) by
 at most a factor 2s . In particular, measure 0 and finite measure are the same
 as for the other measures.

 Now consider the Vitali theorem (6.1). A constituent will be a pair
 (Br(x), x)' an open ball and its center. Let us say that a collection ß of open
 constituents is a very fine cover of a set A iff for every x G A and every
 e > 0, there exist uncountably many r with 0 < r < e and (Br(x)ì x) G ß . If
 ß is a very fine cover of a set E , then

 ß' - { ( Br (x) , x) : ( Br (x) , x) G /?, diam Br(x) = diam Br (x) }

 is a fine cover of E by closed balls. Thus, (2.1) may be applied to ß' . We
 get {¿?i, 1?2, * * *} Ç ß with either ^(diam Bi)8 = 00 [open or closed balls
 the same] or T S(E ' (J»5i) - 0; here we get only closed balls. But the
 result may still be used in the applications (3.1) and (3.3), provided we use
 very fine covers. In a very fine cover, we may delete all balls Br(x) with
 diam Br(x) ^ diam Br(x ), and if p is a finite Borei measure, we may similarly
 delete all balls Br(x) with fi(Br(x)) ^ fi(Br(x)).

 The very fine variation will be defined as

 'mfVß(h)

 with infimum over all very fine covers ß (by centered open balls) .

 The results of §4 should remain correct, using the density D^, the very fine
 variation, and the covering measure defined with centered open ball covers.
 Because the upper density is Borei measurable, there is no need to use
 upper and lower integrals.
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