
 Real Analysis Exchange
 Vol. 20(2), 1994/5, pp. 227-243

 Andrzej Rychlewicz, Institute of Mathematics, Łódź University, ul. Stefana
 Banacha 22, 90-238 Łódź, Poland (e-mail: anrychle@plunlo51.bitnet)

 THE EXTENDING OF DARBOUX

 FUNCTIONS WITH FINITE VARIATION

 Abstract

 In this paper we investigate the problem of extending Darboux func-
 tions with finite varation in such a way that the sets of points of quasi-
 continuity are maintained.

 Paper [1] was devoted, among other things, to the investigation of the pos-
 sibility of extending Darboux functions defined on closed and convex subsets
 of the plane, taking their values in M2, in such a way that the original functions
 and their extensions should possess the same sets of points of continuity.

 In the present paper, the problem of extending Darboux functions with
 finite variation is studied. At the same time, we consider the situation where
 the sets of points of quasi-continuity of the extension and of the original func-
 tion are equal. However, quasi-continuity differs from continuity in that it
 may be 'realized from different sides'. Thereby, in Theorem 1 we demand not
 only that the sets of points of quasi-continuity of suitable functions be equal,
 but also that, for points of quasi-continuity of the extended function, the im-
 age of the open set non-disjoint from the complement of the domain of the
 original transformation should not be contained in a 'close neighbourhood' of
 the images of these points (the consideration of the notation Q/»(/C)).

 At the same time, it seems interesting to ask not only about the possi-
 bility of extending a given function to the whole plane, but also about the
 existence of extensions to some sets of the plane, with that we sought for
 as weak assumptions as possible, concerning the sets we extend the original
 transformations to. Let us note here that in this situation one cannot use the

 method of extending the transformation to the whole plane in order to restrict
 next the extended function to a fixed subset. As a result of this operation, the
 terminal transformation could possess many more points of quasi-continuity
 than the original function although the 'intermediate mapping' (mapping M2
 into M2) would satisfy the assertion of Theorem 1.
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 Throughout the paper, we adopt the standard symbols, definitions and
 notations. The letters N, Q, M denote: the sets of all positive integers, rational
 numbers and real numbers, respectively. Let Z be an arbitrary set and let 1Z
 stand for an equivalence relation; then we denote the set of all abstract classes
 of the relation 1Z by Z/1Z. Let X stand for a metric space; then we denote
 an arc in X with endpoints a, b by L(a, 6). If a, b are points belonging to the
 arc C C X, then L¿(a, 6) denotes the only arc included in C with endpoints
 a, b. The two-dimensional Lebesgue measure of the set A C M2 is denoted by
 rri2(Á). Let x,y G M2. The symbols HX1 H% mean: a half-line in M2 with
 initial point x, and a half-line in M2 with initial point x which includes a point
 y, respectively.
 Let p, q be two half-lines with the same initial point. It is known that the
 figure pU q cuts the plane M2 into two domains , K'. At least one of these
 domains is convex. Each convex set K^UpUq, K' Upöq will be called an angle
 determined by half-lines p and q and denoted by Z(p,q). The arc measure of
 the angle Z(p,g) is denoted by the symbol mZ(p, q).
 Let y be a subspace of the space M2, let £ denote a real nonnegative number

 and let 0 ^ /C C Then the symbol /C^ stands for the set {y G y : d(/C, y) =
 £}. We shall write /C¿ instead of /C®2. Let Bay. The set {£ G M : £ > 0 and

 B D /C^ 0} will be denoted by B or by Bjc when it is clear in what space
 our considerations take place.
 In the latter part of the paper we shall make use of spaces forming a wider
 class than locally connected ones. These spaces will be called stratiformly
 locally connected.

 Definition 1 We say that the space y is stratiformly locally connected with
 respect to /C C y (K^fy) if there exists a base B of this space such that Vjc is
 a connected set for any V G B.

 Definition 2 Let f : X - ► y , where X, y are arbitrary topological spaces.
 We say that f is a Darboux function if the image of each arc C C X is a
 connected set.

 Let / : y - ► M2. The symbols C/ and Qf denote the sets of all continuity
 points and the quasi-continuity points, respectively.

 Let F be a closed subset in y. We write xo G Q{F) when x0 G Qf
 and there exists a neighbourhood V of a point f(x o) in M2 such that, for
 each neighbourhood W of the point xo, open in y , the following condition:
 Int y (W fi /_1(V)) C F is satisfied.

 Let {As}ses be a cover of the space y and let {fs}s£S be a family of
 agree transformations, where f3 : As - ► M2 for s G S. Then the symbol v fs

 ses
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 denotes a combination of transformations { fs}ses • When S = {1,2, .. . , fc},
 the notation /1 V /2 V • • • V A is also used.
 We shall need the following lemma (cf. [1], Lemma 2).

 Lemma 1 Let /Ccl2 (7C ^ 0J be a closed convex set and letp G Int/C. Then
 if there exists non-negative real number £0 such that Hp D /C^0 ^ 0, then , for
 any £ > 0, the intersection Hp fl /C$ is a one-element set.

 The formulation of the main theorem of this paper will be preceded by the
 following lemma

 Lemma 2 Let /C ^ M2 be a convex and closed subset of the plane M2 such that
 Int/C ^ 0. Tften, for each element p G Int/C, each real number £ > 0 and any
 X G /C^, there exist arcs C = L(x,a), C' = L(x, 6) such that C,£ C /C^ and
 the sets £'{x}, £''{#} are contained in distinct open half-planes determined
 by the line the points p and x belong to.

 PROOF. Let p G Int/C, £ > 0 and x G /C^. Consider the ball K(x ,£). The
 closedness of the set /C implies the existence of kx G /C such that d(kXix) = £.
 Let I be the line tangent to the sphere S(xi^) at the point kx.

 Note that

 p<tP(l,K(x, 0) (1)

 where P(l1K(x ,£)) stands for a closed half-plane with edge /, containing
 the ball K(x, 0-

 We shall show that

 /C C P(l,p) (2)

 where P(Z,p) denotes a closed half-plane with edge Z, containing the point
 p. Indeed, let us suppose it is not so. Then there exists

 c€/C'P(Z,p). (3)

 Relations (1) and (3) allow us to deduce that e G P(i, K(xì^))'l. Since I
 is a line tangent to £(x, £) at the point kXi there exists an element e' of the
 non-degenerate segment [fcx,e], such that

 e' e K{x¿). (4)

 In view of the convexity of /C, from (3) and the condition kx G /C it follows
 that e' G /C. The last condition and (4) imply that x ļ /C$, which leads to a
 contradiction. Condition (2) has been shown.
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 In view of (1) and (2), it is not hard to observe that

 Kç C P(m,p) (5)

 where m is a line parallel to I such that x G ra; moreover, P(ra,p) stands
 for a closed half-plane with edge ra, containing the point p.

 Let z G K(x,Ç)'H% be a point such that /.(H*,Hp) has a negative orien-
 tation. Denote a = m/.(Hp , Hp).
 Denote a function t : [0,a] - ► M2 in the following way: for any y G [0,a],

 let HPiy denote a half-line with the initial point at p, such that

 ĄH;,HP%V) C ĄH*p,H1) and mĄH*p,HPiy) = y .

 Let {sy} = HPiy n /C^. In virtue of Lemma 1, the point sy exists and is
 determined uniquely. Let t(y ) = sy.
 The function tis, of course, injective. We shall show the continuity of this

 transformation.

 Let #o € [0, or] and let {xn}new be a sequence of elements of the interval
 [0, a], such that xn - > x$. In view of the definition of t(xn) for n = 1, 2, . . .
 and (5) it follows that

 t(xn)eT for n = 1,2,... (6)

 where T is a triangle determined by the half-lines HpiHp and the line ra.
 Let {t(x kn)} be any subsequence of {t(xn)}. In virtue of (6), we can choose

 a subsequence {t(xikn)} of {t(xkn)} converging to some

 qzĄH*p,H1). (7)
 We shall demonstrate that

 q G HPìx o (8)

 where HPìXo is a half-line with the initial point p, such that HPļXo C
 ¿(Hp,Hp) and m/.(HpìHPìXo) = xo . Suppose it is not so. There are two
 cases possible.
 Io Let xo G (0, a). Then there exist distinct half- lines Li, with the

 initial point p, such that

 Lx, La C ¿(H;,!!;), HPìX0 C Z(L!,L2) and q i ¿(LUL2)
 and

 raZ(Li,ířp) = ai G (0,£o) and raZ(L2,üfp) = 6i G (xq,q:).
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 Hence it appears that L' = HPiūl and ¿2 = Hp, h and xo £ (ai,&i). The
 way of choosing the lines Li, L<i implies that q £ R2'Z(Li,L2)- In view of
 the way of choice of the sequence {t(xikn )} and the definition of the mapping
 tj HpiXlk C M2'Z(Li,L2) for any n > no where no is some positive integer.
 Consequently, xikn £ [ai,&i] for n > no- This contradicts the convergence of
 the sequence {xn} to the point xq.
 2° Let xq = 0 or xq = a. Assume, without loss of generality, that xq = 0.

 Then there exists a half-line L with the initial point p, such that

 LcĄH^H^ qt¿(H;,L) and = b' e (0,a).
 Hence it appears that L = Hp¿> . In view of the definition of the line L and

 (7), it follows that q e Reasoning similarly as in Io, we
 infer that xikn £ [0, b'] for n £ Ñ sufficiently large. This, however, contradicts
 the convergence of the sequence {xn} to the point xo-

 Condition (8) has thus been shown. In virtue of the closedness of /C¿ , we
 conclude that q € /C¿. This means that q G /Cf D HPļXo. In view of Lemma 1
 and the definition of the mapping t, q = t(x o). The continuity of t has finally
 been proved.

 Thereby, we have demonstrated that t is a homeomorphism of the segment
 [0,a] onto the set C = £([0,a]). The arc C satisfies, as is easily seen, the
 conditions of the assertion of the lemma.

 The construction of the other arc (C') runs analogously.

 Theorem 1 Let K be a closed convex subset of the plane M2 which is not
 a boundary set and let f : /C - ► M2 be a Darboux function with finite vari-
 ation. Then , for each connected subspace X of the space M2, stratiformly
 locally connected with respect to IC, containing JC, there exists a Darboux func-
 tion f* : X R2 with finite variation^ being an extension of f to X, such
 that

 Qf = Qf* c Qf*(K)'

 Proof. In virtue of the assumptions, there exists a point p G Int/C. Let S
 be the union of all lines parallel to the co-ordinate axes and intersecting these
 axes at points with rational co-ordinates. Then

 7Ti2(<S) = 0 and Š = M2. (1)

 To make the further notation easier, let O = X) ç. It is easy to notice that
 if 0 = 0, then JC = X and it suffices to adopt /* = /. So, assume that 0^0
 (hence it appears that X'JC ^ 0). Note that

 * = K.U (J ACf . (2)
 «e©
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 Let

 the symbol A denote the set of all those elements x of the

 space X for which there exists a neighbourhood Vx of the

 point x in the space X, such that Vx C /C^ (3)
 where £x is a positive number such that x G /C^ ,

 Th

 and, to simplify the following notation, let O' = A%.
 We shall demonstrate that

 ICf fi A is an open subset of the space X for any £ G O'. (4)

 Indeed, let £ e O'. Then there exists x G /C* fi A. By virtue of (3), it
 follows that there exists a neighbourhood V of the point x, open in X , such
 that V C /C*. The last condition and the openness of V prove the veracity of
 the inclusion V C A. Condition (4) has been demonstrated.

 At present, we shall define a function g : A °nt°> S. With that end in view,

 for each £ G O' , define a function gę : K,* fi A °nt°> S. Let, for any £ G O' ,
 denote the family of all components of the set K fi A and let, for any

 C G Mç, the symbol xc denote some element of the component C (in order
 to avoid the necessity of repeating analogous explanations, the distinguished
 element of a given component will always be denoted by the symbol x with
 the index being the symbol of this component).

 Fix £ e O' and C G M$. Let az = m/.(Hļ;c ,Hļ) for any z G C and let
 N = {az : z G C}. Note that

 IntffiiV^0. (5)

 Indeed, since xc C /C* fi A , therefore, in view of (4), we may deduce that

 K(xc,s) fi X C ICf for some € > 0, (6)

 where K(xc , s) is a ball in M2 and the closure operation is considered in M2,

 too. Let C = L(xc, à) C /C^ and C' = L(xc, b) C /C^ be the arcs, described in
 Lemma 2, for the point xc and let {pi,p2} = (Fr K(xcj¿)) n H*c . We may
 assume that pi G (p,p2)- In view of Lemma 1, P',P2 ^ By virtue of the
 continuity of the function p ► d(/C,p), we may infer that there exist numbers
 61,62 > 0 satisfying the condition

 K{pii6i) fi/C¿ = 0 for ¿ = 1,2. (7)
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 Let ra = rb = ĄH$c,Hbp) and r = raurb. Moreover, let L
 be a line containing Hļc . The definition of the angle and the way of defining
 the arcs C and C' imply that

 (L'H%c)nr = <b and H*c C T. (8)
 We shall now show that

 there exists q' such that Lc{xc,q 1) C A

 or there exists <72 such that L&(xciq2) C A.

 Suppose to the contrary that condition (9) is not satisfied. This means that
 there exist sequences {^}n€N C £'(.4U {xc}) and {#ļ}n€N C £''(*4U {xc})
 such that

 lim q' = lim ql = xC-
 n- >00 n-too

 So, let no be a positive integer such that

 A = z(h;c,h¡Ío) u z(h^,h^°) c r, (10)
 A nFrÄ"(xc,£) c K(pi,6i)'JK(p2,62)

 and

 ^(ic.íioJuifííc.ížo) C K(xc,e). (11)

 Denote by the symbol Pi segments of K(xc,e) n Hpn° for i = 1,2. Then,
 by virtue of (6), Pi fi X C /C* for i = 1,2. By Lemma 1, Pi D /C^ = {^0} for
 i = 1,2. Let z be a fixed element of the set {1, 2}. If qlnQ G A', then, in virtue of
 (6) and the condition qlnQ G K(xcìs) following from (11), we would have, by
 (3), the relation qlnQ e A. This leads, in view of the way of defining the element
 qxno, to a contradiction. This means that qxnQ £ X for i = 1, 2. In consequence,
 PiC'X = 0. In view of (7) and (10), J' n Pr(ÜT(xc, £)) H /C¿ = 0. Relationship
 (6) allows us to deduce that i~i C'¥v{K{xc^))f'X = 0. The reasoning carried
 out leads to the conclusion that if T = Pi U Pi U (i~i D Fr(if(xc,£))), then
 T D X = 0. Since T cuts M2 into two separated sets, each of them containing
 elements of the connected set X , therefore T fi X ± 0. The contradiction
 obtained completes the proof of (9).
 In view of (9) and the fact that C U C' C /C^, we may deduce that the
 component C contains some arcs Lc(xc,qi) or Lo(xciq2)- Assume, with
 no loss of generality, that Lc(xc>qi) C C. Let ao = m/.(Hļc ,q{)' then
 (0, a) C N.

 Indeed, let ý € (0, a) and let Hìpì be a half-line with the initial point p, such
 that /.(H*0 , H^) C /.(H*0, Hļl) C r and m/.(Hļc , üfy) = tļ;. It is sufficient
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 to show that H 'p fi Lc{xc, qi) ļ1 0- Suppose that H D Lcfac, qi) = 0- Then
 the figure (L'H£C) U cuts M2 into separated sets such that xc belongs to
 one of them, and q' to the other, which leads to a contradiction.
 The proof of condition (5) is finished.
 In the set N we shall define an equivalence relation 7£i in the following

 manner:

 alZib «=> a - b is a rational number (for any a, 6 G N).
 Let N* = N/ 1Z'. By virtue of (5),

 the cardinality of the set N* equals the continuum. (12)

 By (12), it follows that there exists a bijection /¿ : N* - ► S. Let a function

 gC . çt °nt0) $ be defined as follows:

 9f (c) = , Hļ))ni ) for any csC,
 where the symbol [ stands for the abstract class of the relation 1Z'.

 Put
 „ C ^ a onto r»

 9i= „ g* C :)C? n ^ A a
 CGMt

 and let
 „ A onto 0

 g = „ v '"A A

 At present, we shall define a function h : X'(A U /C) °nt°> <S. For the
 purpose, we first define an equivalence relation 7^ by the following formula:

 OL'R,2CL2 & a' - c*2 is a rational number (for any ai,a2 G O).
 Let G/K2 = N. Since 0^0, and X is a connected space, therefore

 the cardinality of the set N equals the continuum. (13)

 Condition (13) implies the existence of a bijection v ' N S. For any
 X G A''(^. U /C), let

 h(x) = v([ax}n2)

 where the symbol [ ]n2 denotes the abstract class of the relation IZ2 and ax -
 a positive real number such that x G K*x .

 Let /* =fsjh^g:X^>R2. We shall demonstrate that /* is the
 sought-for function. To this end, we shall first show that /* has the Darboux
 property.

 Let C' C X be an arc. It should be shown that /*(£1) is a connected set.
 The following cases are possible:
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 I. C' D A 0. Then there exists xq G £i D A. Let £o be a number such
 that xo G IC*Q n A. By virtue of (4),

 K(x0^)riXclCfonA for some 77 > 0. (14)

 Let zo G £i'{£o} be a point such that £ = Lc^xq^zq) C K(xo,rj) H X
 and let CXo G M$0 be a component of the set JC*Q D A , containing xo. Since,

 by (14), £ C IC*o fi A , therefore £ C CXo. For each l G £, denote

 Besides, let us adopt N' = {ai : l G £}.
 Note first that N' is not a one-element set.
 So, let ft, (0i < 02) be elements of the set A^x. We shall first show the

 veracity of the inclusion

 [ft,A]C (15)

 Indeed, for let us assume that this inclusion does not hold, that is,

 there exists 0 G (0i,02)'^i- (16)

 Let Iq, Z/2 be distinct half-lines with the initial point p, such that

 mZ(HpCxo , Li) = mZ{HpCxa , La) = /3.

 Then (16) and the definition of the set N' imply the equality

 (L' U La) n £ = 0. (17)

 Of course, L' UL2 cuts the plane into two disjoint open sets tĄ, t/2. With-

 out loss of generality it may be assumed that xcXQ G U'. Since 0i G iV and
 01 < 0, there exists Zi G fi C such that = 0i- In an analogous way
 one can justify the existence of /2 G U2 H C such that = 02. The above
 considerations as well as (17) allow us to ascertain the disconnectedness of the
 set £, which leads to a contradiction with the assumption we have adopted.
 Condition (15) has thus been shown.

 By (15), in view of the definition of the relation T^i, we may infer that N'
 is a set non-disjoint from any abstract class belonging to TV*. Consequently,
 9¡:°(C) = ß(N*) = S. The definition of the function f* and the inclusion
 C C C' allow one to deduce the veracity of the inclusion <S C /*(£i)v The
 connectedness of the set S and the condition (1) imply the connectedness of
 the set /*(£1).

 II. £1 nA = Q. Then the following cases may take place:



 236 A. Rychlewicz

 i) If Ci C K,* for some £ € 0, then is a one-point set.

 ii) If C' C /C, the set /*(£1) = /(A) is connected.

 iii) So, let £i'/C 0 and £i'/C^ ^ 0 for any f G 0. There exist £1,62 € 0
 satisfying the conditions

 and AnACg^i/An/Cg. (18)
 It is not hard to verify that then

 £1 n /Cf 0 for any £ e (6,6)- (19)
 Conditions (18) and (19) as well as the assumptions of case II imply the

 following relationship:

 £in(£fV4) ¿Ç) for any £ G [6.6]- (20)
 In view of (20), we may deduce that the segment [£1,^2] intersects each

 abstract class belonging to N, which, in virtue of the definition of the mapping
 /1, means the equality S = h(C' D ( X'JC )). The definition of the mapping
 /* allows one, in turn, to ascertain the truth of the inclusion S C
 Consequently, the connectedness of S and (1) imply the connectedness of the
 set /*(£1). Thereby, the Darboux property has finally been proved.

 At present, we shall show that f* is a function with finite variation.
 For the purpose, consider the Banach indicatrix A//* of the function /* . Let

 y £ S. Since f*X'ic = 9 V h and (g v h)(X'K) = <S, therefore (f*)~1(y) C /C.
 Hence it appears that (f*)~1(y) = f~l(y)> Consequently, Af/*{y) = Nf{y) for
 any y £ S . The functions A//* and A// differ from each other on the set S of
 measure zero, thus the measurability of A// implies the measur ability of A //* ,
 and

 V(f*)= [ Aíf* (y)dy = [ A í/(y)dy< [ Nf(y)dy < +00.
 Jm2 Jr2's Jm2

 Consequently, we have proved that /* has a finite variation.
 We shall demonstrate that

 Qf = Qf ■ (21)

 Let us now observe that

 f*(V) D S for any set V open in X, satisfying the condition V'IC ^ 0.
 (22)
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 Indeed, let V be the set satisfying the assumptions of condition (22) and
 let r G V'/C. Since X is locally stratiformly connected, there exists a neigh-
 bourhood V' (in X) of the point r, such that V' C V'K and V'K is a connected
 set. The following two cases are possible:
 Io Let V'K be a one-element set and let V'K = {fr}. This means that

 Vi C /C^ . Prom the definition of the set A it follows that Vļ C /C^ n A. Let C
 be an element of M^r such that r e C and let 6r > 0 be a number for which

 K(r,6r) nXcVi. (23)

 Let now, for any z G C fi K(r, <5r), az = m/.(Hļc ,H1) and let N2 = {az •
 zGCnX(r,ir)}. Then

 Inti N2 i 0. (24)

 Indeed, there are two possible cases.

 1. Let xc = r. Then the proof of condition (24) is analogous to that of
 relation (5), except that in this case the role of e will be played by the
 number <5r.

 2. Let ic / r. So, let Cr and CĻ be the two arcs described in Lemma
 2 (for the point r). Then the sets £r'{r}? £J,'{r} are contained in
 distinct open half-planes determined by the line the points p and r belong
 to. Let ar € Cr and br G CĻ be elements satisfying the conditions:
 ar,6r G K(r, <5r), the angle r* = Z(i7pr,i/pr) contains r and does not
 contain xc, and /C^r D T* C K(r, 6r).

 Note that then

 Hļ ncn K{r , Sr) í 0 for any half-line Hļ C Z(fÇ, Hp)

 or ÍÍJnCn K(r, <5r) ^ 0 for any half-line H$ C (25)

 For let us suppose it is not so. Then there exist two half-lines Ai,A2 with
 the initial point p, contained in Z(//£, Hp) and /(#£, H^r ), respectively, and
 such that

 Ai n C n K(r, 6r) = 0 for ¿ = 1,2,.

 It is not difficult to deduce from this that Ai D C = 0 for i = 1,2. Note
 that the figure Ai U A2 cuts the plane IR2 into two domains (r belongs to one
 of them, while xq to the other) and is disjoint from C. This fact leads to a
 contradiction with the connectedness of C. Condition (25) has been proved.
 This relationship, in turn, implies condition (24).



 238 A. Rychlewicz

 On the ground of conditions (23), (24) and the method of constructing the
 functions g$r and /*, we may write down

 f*(V) D fl€r(Vk) D gír(K^Šř)nX) D g^C n K(r,6r)) = ß(N*) = S.

 This proves the veracity of condition (22) in this case.
 2° Let now V'K be a non-degenerate interval. If V' D A ^ 0, then there
 would exist £ G O' such that W' = ViiMC* C' A would be, by (4), a non-empty
 set open in X, and W'K = {£}. For W' , one can carry out an analogous
 argument as for Vļ in Io. So, let V' fi A = 0. Then, in view of the definition
 of the function h, it follows that

 f*(V)Dh(Vl) = S.

 Thereby, the proof of condition (22) has been finished.
 The inclusion

 Qf* C Qf (26)

 is a consequence of this condition.
 Indeed, note first that Qf* C IC and let xo € Qf •• We want to show the

 relation xo e Qf. Let U be an open neighbourhood of the point xq in /C and
 let V = K(f(xo),6) where 6 > 0. Then there exists a neighbourhood U' of
 the point xq in X such that U = U' fi /C. Since xo G Qf*, and V is an open
 neighbourhood of the point f*(x o) = f(x o) in M2, there exists a non-empty
 set W d U' open in X , such that

 f*(W) C V. (27)

 If W'K ^ 0, then, by (22), f*(W) D S and condition (27) would not be
 satisfied. The set W C /C D U' = U is a non-empty set open in /C and, by
 virtue of (27), #o € Qf • We shall further demonstrate that

 Qf C Qf*. (28)

 Indeed, let xo G Q/, let U be an open neighbourhood of the point xo in X
 and let V be an open neighbourhood of the point /*(x o) = f(x o) in M2. Then
 U' = U fi K is an open (in /C) neighbourhood of the point xo- Consequently,
 there exists a set W' open in /C, such that W' C U' and f(W') C V. To prove
 (28), it is sufficient to show that Int* W' ^ 0. For the purpose, it suffices to
 notice, in turn, that Inti2 W' ^ 0.
 On account of the fact that p G Inti2 /C, we may deduce the existence of

 q G W' such that q ^ p. Let 7 > 0 be a real number such that K(q, 7) fl /C C
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 W'. Of course, p G Int^ /C, therefore to a line M perpendicular to H
 such that p G M, there belongs some element pi G IC'{p}. By virtue of the
 convexity of /C, the triangle A(p1piìq) C /C. Consequently, the non-empty
 set A(pìpiì q) n K(q , 7) is contained in the set W' and possesses a non-empty
 interior in M2. Condition (28) has been shown.
 Relationships (26) and (28) imply equality (21).
 Now, we shall show that

 Q/CQH/C). (29)

 Indeed, let x G <?/*. Relationship (21) implies the relation x G /C. Let
 V = K(f*(x ), 1) and let W be an neighbourhood of the point x open in X.
 It should be demonstrated that Int*(W H (f*)~1(V)) C /C. For if it were not
 so, then the set lntx{W n ( f*)~l{V))'IC ^ 0 would be open (in X) and, by
 (22), the inclusion

 raintxiwniry'ivmvDS

 would take place.
 However, on the other hand,

 r(intx(w n (rr'iv))) c r((r)-'v)) c v.

 This contradicts the definitions of S and V. Condition (29) has been shown
 and, thereby, the proof of the theorem has been completed.

 A natural problem appearing after the analysis of Theorem 1 is the question
 concerning the possibility of extending a Darboux function with finite variation
 in such a way that the terminal transformation should possess as many points
 of continuity and quasi-continuity as possible. The answer to this question is
 included in the following theorem.

 Theorem 2 Let /C be a closed non-empty subset of the plane M2 and let
 f : /C - ► M2 be a Darboux function with finite variation. Then there exists
 a Darboux function f* : M2 - ► M2 with finite variation such that f*K = f and

 Qr=Qf U W'ÍČ and Cr D M2'/C.
 Proof. If /C = M2, then the function f* = f satisfies the conditions of the
 assertion of the theorem. So, let /C ^ M2. Then there exists x' G M2'/C.
 Denote d' = d(/C, x'). In view of the separability of the space M2, it follows
 that there exists a set {qn : n G N} dense in M2. Let Ln = [qn,qn+i] for any
 n G N and let the mapping

 Ï-T7' n + 1 "I n ^£nc(U¿cM2 ^ n + 1 n ^
 L J ieN
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 be a homeomorphism satisfying the condition

 (j) = ^ ^
 for j = n, n + 1 and n = 1,2, -
 Moreover, let

 fto(x) = gi for X e [d', +oo).

 It is easy to show that combination

 h = '/hn : (0, +oo) R2
 n€NU{0}

 is a continuous function.

 Consider a mapping /* : M2 - ► M2 defined by the formula

 f*( X

 ļ/(x) when x G /C.
 We shall demonstrate that /* has the Darboux property.
 Let £ be an arc contained in M2. If £ C /C, then the set /*(£) = f(C)

 is, of course, connected. So, let C'JC ^ 0. Then the following two cases are
 possible:

 Io Let C n /C = 0. Then /*(£) = (h o djc){C) where d*; stands for the
 function I2 9xh d(/C,x) G [0, +oo). Since h and djc are continuous
 transformations and £ is a connected set, therefore /*(£) is a connected
 set, too.

 2° Let C n /C 0. Denote by no a positive integer such that G d/c(£).
 Evidently, 0 G djc(C). By virtue of of the continuity of ¿k. and the
 connectedness of £ as well as the condition d/c(/C) = {0}, the inclusion

 (0,- )cd,c(C')C)
 no

 follows.

 The above condition allows one to prove the following relationship:

 f*(C) D U Ln. (2)
 Tl^Tl 0
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 Indeed,

 r (£) d r (A*) = /|W(A£) = h(dK(c'ic))

 N ' n>no

 Since Un>n0 Ln {Qu ' n > no} and the set {gn : n > no} is dense in M2,
 therefore

 U ¿n = ®2. (3)
 n>n o

 Of course, Un>n0 *s a connected set, which, in view of (2) and (3),
 allows one to infer that f*(C) is a connected set, too.

 Now, we shall show that /* is a function with finite variation. So, let Mf
 and Mf* denote the Banach indicatrices of the functions / and /*, respectively.
 It can easily be noticed that wi2(UneN ^n) = ^his means that the functions
 Mf and Mf* differ from each other on at most the set of measure zero. Con-
 sequently, the function Mf* is measurable and /* has a finite variation since
 the functions Mf and /, respectively, have such properties.

 Note now that

 M2'/CC Cf*. (4)

 Indeed, let x G M2'/C and let e > 0. Then there exists <5i > 0 such that
 K(x, ¿i) n /C = 0. Since h o dfc is a continuous function, therefore

 (hodicmx^cKdhodic^e)

 for some 6 e (0,¿i). In view of the equality = hodjc, condition (4) is
 proved.

 We shall show that

 Qf* = Q/UM2'£. (5)

 For the purpose, we shall first prove the inclusion

 Qf* DQ/UP'Č. (6)

 Let x e Qf U M2'/C = (Qf D Int/C) U M2'/C. It should be demonstrated
 that x e Qf*. Let U 3 f*{x) and V 3 x be open sets in M2. The following
 three cases are possible:
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 i) x G Qf n Int /C. Then Vļ = V fi Int /C is an open set in /C and in M2. In
 view of the quasi-continuity of the function / at the point x,

 f(W)=f*(W)cU (7)

 for some subset W of the set Ví, open in /C. The openness of the set W in /C
 implies the existence of a set W' open in M2 such that W = n /C. The last
 condition and the inclusion W C V' allow one to deduce that W = W' D Vļ ,
 which, in view of the openness of the sets V' and W' in M2, means that the
 set W is open in M2. Consequently, the relation x G Qf* follows from (7) and
 the inclusion W C Vļ C V.
 ii) x G R2'/C. Then x G Qf* by (4).
 iii) x G Fr/C = Fr (M2'/C). Let Z stand for some open ball with centre at

 a point x, contained in V. Of course, Z'K ^ 0. In view of the connectedness
 of /C, a; G ICD Z. Consequently, in virtue of the assumptions concerning the
 number d' and the connectedness of Z, there exists a number n i G N such that
 for any number r < , there exists an element xr G Z satisfying the condition
 djc(xr) = r. Let n<i > n i bea positive integer so chosen that qn2 G U (the
 existence of such a number follows from the density of the set {qn : n > ni} in
 M2). It is easy to check that the element xq = x d¿_ has the following properties:

 n 2

 a) xq G Z'K 1,

 b) £o £ C/» ,

 c) /*(x0) = Çn2 G U .

 In view of these facts, there exists a set W open in M2, such that W C
 Z'K C V and f*(W) C Î7. The proof of condition (6) has thus been com-
 pleted.

 We shall now show that

 Qf* cQfuW'iC. (8)

 Let x e Qf* and suppose that x £ Qf U M2'/C. Then x G Int/C. Let
 Ç > 0 and rj > 0. Then there exists rji < rj such that K(xirji) C /C. In view
 of the quasi-continuity of the function /* at the point x, we may infer that
 there exists a ball K(yiT]2) C K(xìtji) such that f*(K(y,r¡2)) C K(f*(x)X)-
 Of course, if (t/, 772) C K(x,rj) fl /C, therefore /(if (2/, 772)) C if(/(x),C), too,
 which proves that x e Qf. This fact contradicts our assumption, and thus,
 condition (8) has been proved.

 Conditions (6) and (8) imply (5).
 Thereby, the proof of the theorem has finally been completed.
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