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 POINTS OF NON-DIFFERENTIABILITY OF

 TYPICAL LIPSCHITZ FUNCTIONS

 Abstract

 We show that typical Lipschitz functions on [0, 1] (more precisely,
 typical functions in the space of functions on [0, 1] with Lipschitz con-
 stant at most one endowed with the topology of uniform convergence)
 have much better differentiability behaviour then general Lipschitz func-
 tions.

 While the Lebesgue Theorem, according to which real- valued Lipschitz
 functions defined on the real line are differentiate almost everywhere, gives a
 complete answer to the question of size of sets of points of non-differentiability
 of such functions, its higher dimensional extension, the Rademacher Theorem,
 does not describe the full story. More precisely, for every E C t of Lebesgue
 measure zero one can find a Lipschitz function / : R 4 R which is non-
 differentiable at every point of E (see [1] or, for a complete characterization
 of sets of non-differentiability of Lipschitz functions, [7]), but there is E' C M 2
 of Lebesgue measure zero such that every Lipschitz function / : M 2 »->• M has a
 point of differentiability inside E (see [5]). The higher dimensional situation is
 full of puzzling open problems out of which our favourite is the question what
 happens if we consider pairs of Lipschitz functions instead of one function. In
 other words, is it true that for every set E C M 2 of Lebesgue measure zero one
 can find a Lipschitz mapping / : M 2 »->. M2 which is non-differentiable at every
 point of E ?

 Using the "argument" that typical functions have the worst differentiability
 behaviour, one may hope that this problem may be solved using the Baire
 Category Theorem in a suitable space of Lipschitz functions on, say, a square.
 Two such spaces seem to be reasonable candidates: The space of all Lipschitz
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 functions with the norm given by the Lipschitz constant and the space of
 Lipschitz functions with uniformly bounded Lipschitz constant (say, by one)
 in the topology of uniform convergence. However, for our purposes, the former
 space appears to have too many open sets; for example, it is non-separable,
 has no simple dense subsets, and different iable functions form a nowhere dense
 closed set (and therefore cannot be used as approximating functions) . Though
 the latter space has much better properties from this point of view, we show
 here that is has another disadvantage: It cannot be used in the way suggested
 because typical functions from it have much better differentiability behaviour
 then general Lipschitz functions. We will show this for Lipschitz functions
 on the interval [0,1] (instead of on the square); though this simplification
 is not necessary, it avoids some technical complications and makes even the
 formulation of the problem much clearer: Given a set E C [0, 1] of Lebesgue
 measure zero, is it true that typical Lipschitz functions / : [0, 1] »->■ M are
 non-differentiable at every point of E ? Our answer follows immediately from
 Lemma 2 (or, with little work, from the Theorem): Every residual subset of
 [0, 1] of measure zero contains points of differentiability of typical functions
 from this space.
 We shall therefore consider the space Lipi of all functions / : [0, 1] »->• M

 verifying ' f{y) - f(x)' < 1 for all x,y G [0, 1] (i.e., with Lipschitz constant not
 exceeding one) equipped with the topology of uniform convergence (which, in
 this case, is the same as the topology of pointwise convergence). Then Lipi
 is a complete (separable) metric space in which we answer the question of
 differentiability properties of typical functions in the following way.

 Theorem Let E be an analytic subset of[ 0, 1]. Then the following statements
 are equivalent.

 (i) The set of those functions f G Lipi which are differentiate at no point
 of E is residual in Lipi .

 (ii) The set E is contained in an Fa subset of [0, 1] of measure zero.

 To prove the Theorem we first introduce some notation, remind ourselves
 of the Banach-Mazur game, and prove two preparatory lemmas.
 We shall denote by V the family of all functions / G Lipi which are piece-

 wise affine and satisfy 'f'(x) ' = 1 at every point at which the derivative exists.
 It is easy to see that V is a dense subset of Lipi . By the word measure we
 shall mean Lebesgue measure on [0, 1] and we shall denote it by the sign of
 absolute value. A measurable set F C [0, 1] is said to have every portion of
 positive measure if for each open interval I C M the intersection I fi F is of
 positive measure provided it is non-empty.
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 In some situations it is more convenient to deduce the residuality of a set
 by using the Banach-Mazur game which is, in full generality, defined as follows.

 Let X be a topological space, S a subset of X and let two players, Player I
 and Player II, play the game in which a play is a non-increasing sequence of
 non-empty open sets

 U i D Ki D U2 D V2 D • • •

 which have been chpsen alternately; the Uk s by Player I, the Vk s by Player II.

 Player II is said to have won a play provided fļ^Li Vk C S; otherwise, Player I
 has won. We say that Player II has a winning strategy if, using it, she wins
 every play independently of Player I's choices.

 The connection with residuality of S (which, in this generality, means that
 there are dense open subsets Gk of X such that S D fļfcLi Gk) is given in the
 following (the proof from [3] may be easily generalized, or see [6, Theorem
 4.23]):

 Proposition. Player II has a winning strategy if and only if S is a residual
 subset of X.

 Lemma 1. Suppose that f E V and that 0 < e < 1. Then there exists an open
 neighbourhood V of f in Lipi with diam(V) < e such that for every g EV DV
 one can find an open set G C (0,1) having the following properties:

 (1) |[0, 1] ' G| < s,

 (2) (g - f)'{x) = 0 at every x E G, and

 (3) I (g{y) -g{x)) - (f{y) - f{x)) | < e'y-x' whenever x e G and y e [0, 1].

 Proof. We show that the statement holds with

 V = jíl e Lipi : max{|<7(x) - f(x) ' : x € [0, 1]} < ^ + ļ ,
 where N is the number of points at which / is not differentiate; V is clearly
 an open neighbourhood of / verifying diam(V) < e.

 Whenever g £ V and / C [0, 1] is an interval on which / is affine, we use
 that either f'{x) = 1 for all z E I or f'(x) = -1 for all x E I to deduce that
 the function g' - f does not change its sign on I. Hence

 jW{x)-f'{x)'dx = (i'(x) - f'{x)) dx
 < 2max{|ý(x) - /(x)| : x € [0, 1]}

 e3

 < 32(7V + 1)
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 Since almost all of [0, 1] is a union of N + 1 such intervals, we conclude that

 jo W(x)-f'{x)'dx<^.

 Let g E V fi V. Let Fo be the (finite) set of all points at which at least
 one of the functions f,g is not differentiate, let Fi be the set of those points
 x £ [Oj 1] ' Fo at which f'{x) ^ 9,{x)) and let F 2 be the set of those points
 x £ [0, 1] ' {Fo U Fi) for which one can find y G [0, 1] such that y / x and
 l(</(y) ~9(x)) - ( f(y ) -/(*)) I > e'y-x'.
 Since /, <7 E P, the sets Fo, Fo U Fi, Fo U Fi U F2 are closed, |Fo| = 0, and

 I g'{x) - f'{x) ' = 2 for every x G Fi. Hence

 l^i I < ' Í b'M - f'(x) I dx < e/2.
 Jo

 To estimate the measure of the set F2, we recall from, e.g., [2, 21.76(i),
 p. 424] that the Hardy-Littlewood maximal operator M <p which is defined for
 measurable functions tp : M »->■ M by

 M <p{x) = sup ļ ļyļ J 'ip{x) ' dx : I is an interval containing x ļ

 verifies the inequality

 j (M^(z))2 dx < 8 j <p2{x) dx.

 Since M(^' - f'){x) > e for every x E F2, we obtain

 'F2' < e-2 j(M(g'-f>)(x))2dx<8e-2 ļ(g'-f)2(x)dx

 < 16e~2 J I g' - f I (x) dx < e/2.

 Consequently, |Fo U Fi U F2I < e, and all the statements of the lemma hold
 with G = (0, 1) ' (Fo U Fi U F2).

 Lemma 2. Let F C [0, 1] be a non-empty closed set with every portion of
 positive measure and let E be such that E fi F is residual in F . Then the set
 S of those functions from Lipi which are differentiate at least at one point of
 EOF is residual in Lipi .
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 Proof. Let E' D D • • • be relatively open dense subsets of F such that
 PlfcLi Ek C E. To prove that the set S is residual in Lipi, we describe a
 winning strategy in the corresponding Banach-Mazur game in which, in addi-
 tion to the non-empty open subsets Vk of Lipi , Player II is choosing functions
 fk £ Vk H V and non-empty relatively open subsets Mk of F in such a way
 that the following properties are verified:

 (1) diam(VL) < 2"*+1.

 (2) For every g G Vk fi V there is an open set G C (0,1) such that

 (a) |[0, 1] ' G| < I Affe PI Ek'}

 (b) ( g - fk)'{x) = 0 at every iGG, and

 (c) I (g(y) -g(x)) - (fk(y) -/*(»)) I < 2_fc|y-a:| if x € G, y € [0,1].

 (3) At every point x of Mk the functions /1, /2, • • • , /* are differentiate and
 /1(2) = fa(*) = ••• = /*(«)•

 (4) Mk C Mk-i H Ek-1 if Ar >2.

 (5) '{fk(y) - fk(x)) - (fk-i(y) - /fe_i(ar))| < 2- fc+1 1 j/ - x| whenever k > 2,
 x e Mk, and y 6 [0, 1].

 The required strategy for Player II can be described as follows: The con-
 struction of the answer of Player II to the first move CĄ of Player I starts by
 picking an arbitrary /1 G U' fi V. Then M' is defined as the set of points
 of F at which /1 is differentiate; this clearly verifies (3). Since F ' M' is
 finite, M' is non-empty and relatively open in F. Since E' is a dense rela-
 tively open subset of F, the set M' C'E' is a non-empty relatively open subset
 of F and therefore has positive measure. Hence Lemma 1 with / = f' and
 e = min{l, 'MiDEi'} gives an open neighbourhood V' of /1 such that (1) and
 (2) hold. This choice verifies all our requirements, since the remaining ones,
 (4) and (5), do not concern the case k = 1.

 If k > 2 and open sets Lipi D U' D V' D • • • D Uk-i D Vk- 1, functions
 /1, . . . , /fe-i, and non-empty relatively open subsets Mi, . . . , Mk- 1 of F ver-
 ifying the above conditions have been already defined and if U k C Vk- 1 has
 been the next move of Player I, then Player II chooses an arbitrary fk G UkC'V
 and uses (2) with k replaced by k - 1 and with g = fk to find an open set
 G C (0,1) such that

 (a) |[0,1]'G| < |M*_i n£*_i|,

 iß) {fk - fk-i)'{x) = 0 at every x G G, and
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 (7) Il fk{y) - fk{x)) - ifk-i(y) - fk-i{x))' < 2-/c+1| y - x' if X e G and
 y e [0,1].

 Since the set G fi Mk-i H Ek-i is relatively open in F and since (a) implies
 that it is non-empty, there is a non-empty relatively open subset Mk of F such
 that Mk C GnMk-inEk-i. Because of (a-7), this choice verifies (3-5). The
 remaining part of the construction is similar to the case k = 1: Since Ek is a
 dense relatively open subset of F, the set Mk E k is a non-empty relatively
 open subset of F and therefore has positive measure. Hence Lemma 1 with
 f = fk and e = min{2_/í, | Mk C' E k |} gives an open neighbourhood Vk of fk
 such that (1) and (2) hold.

 It remains to show that any function / G flfcLi Vk is differentiate at some
 point of EOF. Because of (1), there is at most one such function / and
 fk - y /. In view of (4), 0 fļfcLi Mk C E, so it suffices to show that
 / is differentiate at every x G To prove this, we use, for any
 m = 1,2, . . ., the inequality (5) together with fļn(x) = f[(x) (which follows
 from (3)) to estimate

 /(»)-/(*) x//_x ^ fm(y)~fm(x) e,
 y-X -W x//_x Ź ^

 fk{y) - fk(x) _ fk+l(y) - fk+l{x)
 y-x y-x

 k-m

 < /m(y)-/m(a;) _/^(x) +2"m+1.
 y-x

 Consequently,

 limsup -f[(x) <2"m+1,
 y-¥x y x

 which shows that f'(x ) = f[(x).

 Proof of the Theorem. Suppose first that (ii) holds. It clearly suffices to
 assume that E' is a non-empty closed set of measure zero. Let Gk be the set of
 those / G Lipi for which one can find S > 0 with the property that for every
 x G E there is y G [0, 1] such that S < 'y - x' < and

 /(»WW >w+ii
 y - x

 Clearly, Gk are open subsets of Lipi, so to prove that G = fļfcLi Gk is a
 residual subset of Lipi it suffices to show that it is dense. Whenever / G Lipi,
 let x

 fj(x) = f((i)+[ Jo
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 where <fj{t) = f'(t) if dist (t,E) > 1/j and <Pj{t) = 1 if dist {t,E) < 1/j. Since
 E is a closed subset of [0,1],

 lim '{t G [0, 1] : dist(ť, E) < l/j}' = 0.
 j-too

 Hence fj - > /, which, since clearly /j G G, shows that G is a residual subset
 of Lipl. Thus the set S = G fi {/ G Lipi : - / G G} is also residual in Lipl.
 Using the definition of G to infer that every / G S verifies

 = 1 > - 1 = liminf /<»>-"*>
 y^x y X y-+x y-x

 for every x G E, we conclude that the functions from S are differentiate at
 no point of E , which proves (i).
 Suppose now that (ii) fails, i.e., that E cannot be covered by any Fa set

 of measure zero. Using [4], we find a closed non-empty subset F of [0, 1] with
 every portion of positive measure such that E D F is residual in F . Applying
 Lemma 2, we infer that typical functions have points of differentiability inside
 E , which shows that (i) fails as well.

 Remark. The basic ingredient of the proof of the Theorem is that the sit-
 uation when I f'(x)' = 1 is extremal in the space of functions with Lipschitz
 constant not exceeding one. Interestingly enough, this phenomenon is also
 responsible for the main motivation behind our investigation, namely for the
 existence of a subset of M 2 of Lebesgue measure zero inside which every Lips-
 chitz / : M 2 i->- M has a point of differentiability.
 Another manifestation of the same phenomenon is that typical functions

 in Lipi verify, at every x G [0,1],

 limsup listím =
 y-f: r 2/ ~~ X

 This is easy to see, since the sets Hk of those / G Lipi for which one can find
 S > 0 with the property that for every x G [0, 1] there is y G [0, 1] such that
 S < 'y - x' < £ and |/(y) - /(z)| > U - i + ^)'y - x' are open and contain V.
 Hence fļfcLi Hk is a residual subset of Lipi consisting only of functions having
 the above property.
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