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 DIMENSION OF SETS OF NUMBERS WITH

 MULTIPLE REPRESENTATIONS

 Given a natural number n, let S(n) = {0, 1, ..., n - 1}. For each real number
 6 > 1 let S(n,6) be the set of all expressions of the form YlîLi ni ' b~% with
 each rii in S(n) and with infinitely many of the nt- non-zero. The fact that each
 X in (0, 1] has a unique representation, among those numbers not terminating
 in O's, in the base n number system can be stated as: 'each x in (0, 1] has a
 unique representation in S(n,n)'

 We wish to consider writing x G (0,1] with expressions in 5(n, 6) where
 6 > 1 is a real number with n > b. Let U(n , 6) be the set of x in (0, 1] which
 have unique representations in £(71,6); let L(n,6) be the set of x G (0,1]
 which can be represented in fewer than c ways (where c is the cardinality
 of the continuum). Unlike the situation in 5(n,n) where representations are
 unique, it turns out that for n > 6 > 1 the set U(ni b) is of Lebesgue measure
 0. The Hausdorff dimension of t/(n,6)and L(n,6) will be determined when 6
 is an integer and estimates for the dimension of t/(n, 6) will be obtained when
 b is not an integer. From the integral case one obtains a natural conjecture
 for dim([/(n,6)) and dim(L(n, 6)).

 We will need the following facts: If A C S(n)i then the Hausdorff dimension
 of {x : x = Ē n~'ni £ A} has long been known to be log(fc)/ log(ra)
 where k = card (A), the number of elements in A. (Cf.[l]; other results on
 expansions are obtained in [3].) Also, given a natural number N, {x : x =

 • n~*, n,+jv G A} has dimension log(Ar) / log(n) with k = card(A). This
 follows from the similarity of these sets to the ones above.

 Theorem 1 Given natural numbers b > 1 and n > b, ¿/26-1 > n, the
 dimension o/C/(n,6) and that of L(n,6) equal log(26- 1)/ log(6); ifn > 2b- I,
 L(n,6) is empty and hence i/(n,6) is also empty.

 Proof. First, let n and b be natural numbers with 1<6<71<26- 1.
 Consider the unique representation in 5(6,6) for a number x G (0,1) as a
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 sequence {n,} with each nt- < 6. Suppose there is an i with n, < n - 6
 and n,_i ^ 0. Then the number x represented in 5(6,6) and in 5(n,6) as
 no, n¿_ 1, n,-, ... has in 5(n, 6) a second representation; namely, no, ..., n,-_i -
 1, rii + 6, .... Clearly, each x G (0, 1] does not belong to L(n, 6) (resp., U (n, 6) )
 if its representation in 5(6,6) has infinitely many i (resp., at least one i) with
 n,_i = 0 and n¿ < n - 6; for then x has c (resp., at least two) representations in
 5(n, 6). To see that this is essentially the only way in which two representations
 can occur, fix a representation of x = n% ' with 0 < n, < n with
 infinitely many nt- ^ 0. Suppose X^n(- * b~% ls another representation for x.
 Let j be the least natural number with rij / n^. Without loss of generality,
 suppose rij < n'y Since each n¿, i > j satisfies nj- <26 - 2, J2i>j ni ' ^
 (26 - 2) = 2b~j - Since Ei>i ni ' 6-1 > °i < 2b~j-
 Thus rij can differ from n'j by at most 1 and rij = nf- - 1. Thus if x has
 two representations x = n0, ..., n¿_i, n¿, n,-+i, nf-+2, ... and x = n0,...,n,*_i -
 1 > H- 6, n,-+i , nt_ļ_2 j • • • or x - n0 , . . . , n¿_ ' 1 , n¿ ~|~ 6 1 , n¿_^i -ļ- 6, nj_^2 > • • • or

 x - •••) - i lj ~ł~ 6 1, n,-+i ~f" 6 - 1, n,-+2 ~ł" 6, n¿^_3) ••• or, in general,
 x = n0, ..., n,_i- 1, n,+6- 1, ..., nt-+/j-|-6, rii+k+h •••• There is also the possibility
 that x has a representation which terminates in n - 6 - l's, but the x's which
 have only this for a second representation form a countable subset of (0, 1].
 Thus except for the countable set of points which terminate in n,- = n -
 6 - 1, a number x has more than one representation iff it has a non-zero
 n¿_ i followed by some later rii+k < n - 6. Each n»_ i can be chosen to be
 the term preceding the term which is increased by 6. Also except for the
 countable set which terminate in n - 6's, a number x has c representations
 iff it has an infinite sequence of terms which are alternately non-zero and
 less than n - 6. That is, £/(n,6) consists of those x in 5(6,6) which have no
 ni <n - b when n,_i ^ 0. For each natural number TV, let An = {x G (0, 1] :
 x = nw+i&~(JV+,), nN+i ± 0, nN+i G 5(6)} and let A'N = {x € AN :
 each riN+i+i i1 0,1,..., n- 6- 1}. Then dim(A^) = log(Ar)/ log(6) where
 k = 6 - (n - 6) = 26 - n. Since i/(n,6) differs from U nA'n by an at most
 countable set, dim(í7(n,6)) = log(26 - n)/log(6). In order for x to belong to
 L(n, 6), when x is in An ^ there can be only finitely many n¿, i > N for which
 ni = 0, 1, ...n- 6-1. Thus if for each natural number M, An,m = {% G An '•
 for i > M, rii ^ 0, 1, ..., n - 6 - 1}, then L(n, 6) differs from U An,m by an at
 most countable set and since each An. m has dimension log(26 - n)/ log(6), this
 is also the dimension of L(n, 6). Now consider n > 26-1. If n0) ..., n,_i, n¿, ... is
 the representation for x in 5(6, 6) and if n0 = ... = un = 0 and n,_i ^ 0, then
 n0, ...,n¿_ i - l,n¿ + 6, ... is a second representation for x in 5(n,6) because
 rii < 6 implies n,- + 6 < n. By varying the representations of x through a
 sequence of such n,-, it is clear that each x in (0, 1] has c representations in
 5(n, 6) when n > 26 - 1 and hence U (n, 6) = L(n, 6) = <f>.D
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 A natural conjecture is that the statement of this theorem holds true for
 all n and 6 where n > 6 > 1 when 6 is a non-integral real number and n is
 a natural number. We will now obtain some estimates for the dimension of

 t/(n,6) consistent with this conjecture. These suggest more precise estimates
 and how to deal with L(n, 6). They involve geometrical means for dealing with
 these sets rather than the numerical ones in the theorem above.

 Given n and 6, let c = 6-1 and m be the greatest integer less than or equal
 to 6. Let w - (n - 1)6~* and note that w - [n - l)c/(l - c). It is
 worthwhile to draw a partition of the form {0, c, ..., kci ..., mc, ...(n - 1 )c, nc}
 for the interval [0,nc]. Clearly, each positive number can be written with an
 expression of the form N = J2 • 6~* where TV is a non-negative integer and
 each Tii < n. Moreover, each number in [1, w ] can be written either with N = 0
 or with N = 1.

 First consider n > 26 - 1. Then w = (n - l)c/ (1 - c) > 2. From this it
 follows that each x G (1,2] C (1, w] can be written in two ways as N+Y! rc»*6~"ł.
 Likewise each x G (c, 2c] has two representations in £(n,6), one with n' = 0,
 the other with n' = 1. Moreover, if 1 < k < n, each x G (Arc, ( k + l)c] can
 be written with n' = k - 1 or n' = k. Similarly, each x G (Aro7, (Ar + 1 )ó>)
 can be written in two ways with = 0 if i < j and rij = k - 1 or rij = Ar.
 That is, each x in (0, 1] can be written in more than one way when n > 26 - 1
 and Í7(n, 6) = <¡>. (This argument shows that each x in (0, 1] can be written in
 infinitely many ways and suggests that L(n,6) is empty.)

 Now consider n < 26 - 1. Since w = (n - l)c/(l - c), one has nc < w < 2.
 Note that the sets U (n, 6)fl(6~J , 6"-7""1] for j = 1, 2, ... are similar geometrically
 and hence, in order to determine the dimension of U (n, 6) it suffices to consider
 {/(n,6) fi (c, 1].

 Since each x G (1, w] can be written in two ways as N + • 6~* (one
 with N = 0, the other with N = 1) each x G (c, cw] can be written in two
 ways (one with n' = 0, the other with n' = 1) and each x G (Arc, (Ar - l)c + cs]
 can be written in two ways (one with n' = Ar - 1, the other with n' = Ar)
 Ar = 1 , ..., n - 1.

 In order to examine this case, it is worthwhile to draw a partition P of the
 form {0, c, ..., Arc, ...,mc, ..., nc, (n+l)c, ..., 2(m+l)c} which contains the interval
 [0, 2]. Since 6 is not an integer, mc < 1 < (m + l)c. Also, since n < 26 - 1 it
 follows that (n + l)c > w, and nc < w so that nc < w < (n + l)c. Since each
 x G (1, w] can be written in two ways as N + • b~l with 0 < n,- < n, each
 x in each interval (c, cw' , (2c, c-f cw],...,(mc, (m- l)c + cw] can be written in
 two ways with expressions from S(n, 6). That is, U (n, 6) n (0, 1] can be covered
 by m intervals of size (2 - w)c. (All of the last interval may not be needed.)
 Now, in each interval (fcc, (A: -f l)c] the interval (Arc, (Ar - l)c + cs] has been
 excluded from U{ni 6). Thus the remaining interval ((Ar - l)c + es, (Ar + l)c]
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 can be covered with 2(ra+ 1) - n intervals (the number of intervals of P which
 meet the interval (tu, 2]). Each of these 2 m - n + 2 intervals in the cover has
 length (2 - w)c2. (All of the first and last intervals may not be needed.) That
 is, 2 m - n + 2 intervals each of length (2 - w)c2 cover U (n, 6) fi (fcc, ( k + l)c].
 Thus m(2m - n + 2) intervals of size (2 - w)c 2 cover U(n,b). Since this
 process continues, m(2m - n + 2)2 intervals of size (2 - w)c 3 cover Č7(n,6)
 and in general m(2m - n + 2 intervals of size (2 - w)c?+1 cover f/(n,6).
 Let s = log(2m - n + 2)/log(6). Since m • (2m - n + 2)J'((2 - iu)cJ+1)5 =
 raca(2 - w)5 (2ra - n + 2)cJi = mc*(2 - tu)5, the s measure of ř/(n,6) is less
 than or equal to mc5( 2 - it;)5 and log(2m - n + 2)/log(6) is an upper bound
 for dim(ř7(n,6)).
 For a lower bound, note that if Eq consists of the m - 1 intervals of size

 (2 - w)c (excluding the last interval in the cover of ř7(n,6) with m intervals)
 and E' consists of the (m - l)(2m - n) intervals of size (2 - w)c 2 (excluding
 the first and last intervals from the second cover of Í7(n,ò)) and in general
 Ej consists of (ra - l)(2ra - n)-7 intervals of size (2 - w)c^+1 (excluded are
 the first and last intervals in each cover of i/(n, b) intersected with an interval
 of Ej- 1) then C'Ej is contained in i/(n,6). A lower bound for dim(t/(n,6)) is
 log(2ra - n)/ log(6). (Note that this makes sense only when 2m - n >1.) That
 the dimension of the set fl Ej is log(26 - ra)/log(6) is somewhat intuitive. It
 does not seem to follow exactly from the arguments for standard Cantor sets
 (see e.g. [2] pages 14-17). The following proposition shows that this estimate
 holds.

 Proposition 1 Suppose E = C'Ej where for a non-negative number and nat-
 ural number k

 i) Ei consists of a single interval ,

 ii) ' each Ej+i contains k intervals of equal length in each interval
 ' 1 each of e';, Ej+i o, contains Ha, k =

 iii) there is M < 00 so that if dj is the minimum distance from an interval
 I of Ej to another interval I' of Ej, then dj > 'I'/M.

 Then dim (E) = s.

 Proof. Clearly, for each natural number n, E is contained in kn intervals
 of equal length / and by induction knls = (diam(£'i))5. Thus dim (E) < s
 and s - m(E) < (diam {E))s . To see that dim(i£) > s, let s' < s. Choose
 S ^ 0 so that when d < S, ds > Ms • k • ds . Let {J,} be a cover of E so
 that for each i', |J, | < S. Let J be one of the and let I C Ej be the
 smallest interval in the construction of E which contains J. Let I' C I be an
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 interval of Ej+'. Then J contains points of two distinct intervals of Ej+' and

 hence 'J' > dj+l. Thus 'J'9' > dj'+1 > (|/'|/M)5' > k'I''s = |/|5. Therefore
 S Wi'* > 'k'¡ ^ diam(i?i)5. Since for each s' < s one has s' - m(E) > 0,
 it follows that dim (E) > s. Hence dim(E') = s.D
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