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 FUNCTIONS THAT HAVE NO FIRST

 ORDER DERIVATIVE MIGHT HAVE

 FRACTIONAL DERIVATIVES OF ALL

 ORDERS LESS THAN ONE

 A question of classical mathematical analysis - the existence of a contin-
 uous non-differentiable function - is treated here in a detailed setting. We
 consider this question within the framework of fractional derivatives and show
 that there exist continuous functions f(x) which nowhere have an ordinary
 first order derivative, but have continuous fractional derivatives of any order
 v< 1.

 We begin with notation in Section 1 because there exist different forms
 of fractional integration and differentiation which do not necessarily coincide
 with each other. We use Riemann-Liouville, Liouville, Marchaud and Weyl
 fractional differentiation.

 In the introductory Section 2 we specify the setting of the problem un-
 der consideration and give some comments. Section 3 contains statements of
 some known results we need. In Section 4 we deal with the Weyl, Liouville and
 Marchaud fractional derivatives of the well-known continuous but nowhere dif-

 ferentiable Weierstrass function. Section 5 is devoted to the Riemann-Liouville
 derivatives of this function.

 In Section 6 we consider the Riemann-Liouville derivatives of the Riemann

 function that is almost everywhere nondifferentiable. Section 7 contains some
 generalizations, an Open Question for further research and Summary of re-
 sults.
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 1 Notation

 We shall deal with the following well known (see [11], [9]) forms of fractional
 integration and differentiation:

 a) an integral f*(x - t)v~l f(ť)dt, x > a, with SRi/ > 0, is known as
 the Riemann- Liouville integral of order v. It is applied to functions defined for
 x > a. This integral defines integration to an arbitrary order and is sometimes
 denoted by the symbol aDā v f(x)- The subscripts a and x are included in this
 case to avoid ambiguities in applications. We find it convenient to omit the
 subscript x on the operator (the operator itself cannot depend on x) and write

 D~vf(x) = j^J (x-ť)"-1/(t)<ft, x>a. (1)
 An alternative notation for (1) is I£f(x).

 To define D£ /0*0 with > 0, we write v = m - p, where m is the least
 integer greater than SRia We have then

 íim i rx

 D» /(*) = Dm D"p f{x) = _ _ ļ (x - tf-1 fit) dt, x > a,

 by definition. If we restrict v to be in (0, 1), then m = 1 and

 Da fix) = J ix-t)~vf(t)dt, x>a (2)
 b) Liouville fractional integration of order v > 0:

 r fix) = - J (x- t)v~lf{t) dt, -00 < X < OO, (3)

 for functions defined on the whole line;
 b ) the corresponding Liouville fractional differentiation of order 0 < v < 1 :

 nX) t!x' =
 D nX) t!x' =

 We emphasize that the operators (3) and (4) can be applied to 27r-periodic

 functions <p (non- vanishing at infinity) if /Q27r <p(x) dx = 0 and the integrals in
 (3) and (4) are interpreted as conventionally convergent in the following sense:

 J- /* = um Jx- r (s, J- oo ix - í) = Jx- 2nx ix - ť)1-"
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 under the obligatory assumption /02?r ip(t) dt = 0. See details and justification
 in [11], Section 19, Subsections 2 and 4.
 c) Weyl fractional integration of order v> 0 for periodic functions:

 &)f{x) = h jf* *"(ť)/(x ~t)dt (6)
 where

 n=- oo v n- 1

 so that for Fourier series

 /W~ E /«eint (8)
 n=- oo

 we have

 oo

 /M/(í) ~ E' (inJ-Vne*"4 (9)
 n=- oo

 The strokes in (7) and (9) indicate that the term with n = 0 is omitted. This
 is the original definition due to H. Weyl [12]; see details in [16] and [11], section

 19; ,
 c ) Weyl fractional differentiation of order 0 < v < 1 for periodic functions:

 d(")/(x) = Łi(l~u)f{x) = ŁŁC¥1~v){t)f{x-t)dt (io)
 so that for (8) we have

 oo

 D (in)"fneint (11)
 n=- oo

 Remark 1 Sometimes the Liouville fractional integral

 J-/(x) = W)S~{x~ tr~lf{t) dt (3'}
 is called the Weyl fractional integral. This is a historical misunderstanding.
 Liouville was the first who considered fractional integration just in the form
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 (3'), see [8], page 8, whereas Weyl dealt with periodic functions and the conver-
 gence of (3') for periodic functions should be interpreted very specifically, as in
 (5). (See details in [11], Section 19). So, though paying homage to WeyPs pro-
 found ideas, we consider it more correct to name both (3) and (3') as Liouville
 fractional integrals (See also [10], pages xxvii-xxviii in this connection).

 d) Marchand fractional differentiation of order 0 < v < 1:

 T D /(x) f(rs - _ " f°°
 T D /(x) f(rs - _ Jo f°°

 which coincides with (4) for sufficiently good functions (see Lemma 3 below).
 Observe the use of D instead of D.

 2 Introduction

 The problem raised in the title may be generalized in the following way:

 Problem To find a continuous function f(x) which has fractional derivatives
 of all orders 0 < v < vo, but has no derivative of order vq (vq may be either
 an integer or a non-integer).

 We shall discuss this generalization at the end of the paper, while in the
 main body of the paper we deal with the case uq = 1.

 As we shall see, the solution of this problem depends, in a sense, on the
 type of fractional differentiation involved. But, what is much more important,
 it depends on terms under which the "non-existence" of the derivative of order
 uq is treated. The typical situations for this "non-existence" are the following:

 A) The derivative of order i/o does not exist at a finite number of points;

 B) It does not exist on a set of measure zero;

 C) It does not exist almost everywhere;

 D) It does not exist at any point.

 The case A) is the simplest one. The Problem in this case is in fact close
 to the following Open Question formulated by Prof. A. Erdélyi at the 1st
 Conference on Fractional Calculus, 1974, University of New Haven, USA (see
 [10], page 376):

 (i) Let f(t) be continuous for t > a and let S be the set of all those non-
 negative v for which the fractional derivative D£ / exists and is contin-
 uous. Does S have a largest element.
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 (ii) This problem is the same as that above, except the word "continuous"
 in italics above is replaced by " locally integrable" .

 The answer to (i) and (ii) is given in [11], page 456, and is in general
 negative: for f(x) = x^lnx, ß > 0, we have S = [0, /?) and 5 = [0,/? + 1)
 respectively to the cases of continuity or integrability of /. In the latter
 case we have S = [0, /3 + 1) for f(x) = x&, ß > 0, also.

 So, in the case i/o - 1» the solution of the problem I treated in the sense A)
 is immediate: f(x) = x'nx for x > 0, /(0) = 0. This function is continuous
 and even Holderian of any order less than one. It has no derivative at the point
 x = 0 but it has the Riemann-Liouville fractional derivatives Do / of orders
 I/ < 1, all of them being continuous everywhere including the point x = 0.
 This follows from the well-known fact that any function f(x) Holderian of
 order A and vanishing at x = a has continuous fractional derivatives D£ / of
 any order v < A (see [7], page 239, Lemma 13.1). This also follows from the
 direct expression (see [11], page 41, formula (2.50)):

 Dg(xlnx) = - i>(2-v) + inx] (13)

 where tp(x) is the Psi-function.
 Similarly, the function f(x) = Ylk=o(x ~ ak) ln 'x - afc|, x > a = a o where

 a = ao < a' < • • • < an, is an example of a continuous function which has no
 ordinary first order derivative at a finite number of points, but has fractional
 order derivatives D £ / of order less than one (as a Lipschitzian function).

 The series /(as) = E^=i ¿f(x- n) ln+(I - n) where ln+(x-¿) = hfc- £)
 if x > ^ and ln+(x - ¿) = 0 if x < is an example of a function which has
 continuous fractional derivatives Do / of orders v < 1, but has no finite first
 order derivative at a countable set of points x = 1, 1/2, 1/3, . . . (The approach
 B)).

 So, in the sequel, we shall consider the Problem stated above only in the
 senses C) and D). For this purpose it seems to be natural to appeal to the
 classical Riemann and Weierstrass functions:

 oo o

 _ / x COS 71 X / . ,x

 RW _ / x = E COS 71 X (14) / . ,x
 n=l

 wa(x) = fy (is)
 n=0

 where a > 0 and q > 1.
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 We shall also consider the functions

 OO

 v v - > sin nx , _ ...
 = v > <14> , _ ...

 n=l

 and

 OO

 c{x) = ^C^nx ™ (14W) •i ™ n=l •i

 which have better behaviour than (15).
 It is usually ascribed to Riemann that he considered the function R(x) as

 nowhere differentiate. It was G.H. Hardy [6], see also [7], who first gave an
 exact proof of the following assertions:

 1. The function R(x) has no finite derivative at all points x such that x/27t
 is irrational.

 2. It has no finite derivative for all rational x/2i r of the form ^ = -ģj-ļj or

 f = 4^+2 > m an( ^ n bring integers.

 We note that the existence of finite first order derivative of the function

 R(x) at some points was proved by J. Gerver [4], see also [5]. In particular,
 he showed that R'{x) = -1/2 at the points of the form x = 7r 2^+1 • He also
 showed, in addition to Hardy's results, that R(x) has no finite derivative at
 the points x = tt2^1, n > 1. We also mention the papers [12]-[13] by A.
 Smith who considered the remaining cases.

 As regards the Weierstrass function Wa(x)i 0 < a < 1, it is well known
 that it is continuous (and even satisfying the Holder condition, see Lemma 1
 below), but nowhere differentiable if q > 1, see [6] or [7].

 3 Preliminaries

 We say that f(x) satisfies the Holder condition of order A, 0 < A < 1, on
 [a, 6], - 00 <a<6<oo, or/G Hx([a, 6]) if 'f(x + h) - f(x)' < c'h'x with
 c not depending on h and x; x,x + h e [a, 6]. In the case A = 1 the function
 f(x) is also called Lipschitzian.

 We will need the following known facts.

 Lemma 1 The Weierstrass function Wa(x), 0 < a < 1, satisfies the Holder
 condition of order a if a < 1 and of any order A < 1 if a = 1 .
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 The proof of this statement may be found in [6], page 103, for an arbitrary
 q > 1 and in [15], page 47, Theorem (4.9) and page 44, Theorem (3.4), for an
 integer q , where it is given for Wa(x) with cos (qnx) instead of exp (iqnx).

 Lemma 2 Let f(x) be a 2tt -periodic function and let f(x) G i/A([0, 27t]), 0 <
 A < 1. Then f(x) has the Weyl fractional derivatives of all orders v < A and

 D(v) f(x) € Hx-"([0, 2*})-

 See the proof in [11], page 365, Corollary of Theorem 19.7.

 Lemma 2' Let f(x) G Hx([a, 6]), 0 < A < 1. Then f(x) has the Riemann-
 Liouville fractional derivatives of all orders v < A and

 D° f = r(i - í)(x - ay + ^

 where ip(x) G ifA_I/([o, b]).

 See [11], page 239, Lemma 13.1, and page 242, Corollary of Lemma 13.2.

 In the case of functions defined on the whole real line the following version
 of Lemma 2' holds.

 Lemma 2" Let |/(x)| < c( 1 + |x|)7, 7 < and ' f(x -f ft) - /(^)| < A hx for
 allx G M1 and ft > 0. Then f(x) has the Marchaud fractional derivative of any

 2A' 1
 order v < A and I D" fix + ft) - /(z)| < B hx~v with B =

 A - v r(l - v)

 Proof. Since 7 < v and A > z/, the integral (12) converges absolutely.
 Therefore, D1' f(x) exists. Now,

 D' /(X + *) - D' /(X), < [ l/(x^)-/(x + ft-0l „

 . !" i/w - /(X - t)i r i/(x + h) - /(»)i
 + . Jo

 +L

 whence the second assertion of the lemma follows.

 Lemma 3 Let f(x) satisfy the assumptions of Lemma 2. Then all the forms
 (4), (10) and (12) of fractional differentiation of /(x), (i.e. that of Liou-
 ville , Weyl and Marchaud) coincide with each other: Dv f(x) = D^f(x) =
 D"f(x), 0<i/<l.
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 See [11], page 358, eq. (19.39).

 Lemma 4 If Yln=-oo l/«l < oo, then the Wey I integration (6) can be applied
 termwise and I^f(x) = S'^l_00(wi)~l//n exp(inx).

 The proof is easily derived from the definition.

 Lemma 5 Let fk(t) G C([a, 6]), k = 1, 2, 3, , - oo < a < b < oo. // the se-
 Efcli /*(*) converges uniformly on [a, 6], then Iva (Y%Li fk ) = I%fk

 and the senes in the right hand side converges uniformly on [a, b] as well.

 Proof. We have

 771 1 n X OO

 * = iî/-EWi) <r?3 1 / (^-«r1 E aw dt ■
 k=l fc=m+l

 Hence, if |££lm+1 /jfe(t)| < £, we have A < which proves the lemma.

 Lemma 6 Let g(x) = f(t)dt. If f(t) e Lp([a, 6]), -oo < a < b < oo, for
 all p > 1, then 'g(x + h) - g(x)| < c|/i|1_e /or all x, x + ft G [a, 6], however
 small e > 0 is, c = c(p) not depending on x and h.

 Proof is obvious.

 We shall also need the following entire function

 00 k

 <16>

 known as the Mittag-Leffler function [2], page 210. It is known that

 d e {z) = £a,g-i(*) + (l -/?)£«,/»(*) (17) dz az

 The function Ei^(z) has the representation

 Ei,ß(M) = Y{ß-') ļ* tß~2e~xt ß>1> (18)
 where x > 0 and À may be complex, which may be verified by the termwise
 integration of the series expansion of eXt. By analytic continuation, we can
 derive the analogous representation for 0 < ß < 1:

 EiA*x) = f(£) + r^yxl 0eXx j0 tß 2(1 ~ e At) di' 0 < ß < l- (19)



 148 B. Ross, S. Samko and E. Love

 It is known that the Riemann-Liouville fractional integral of an exponential
 function can be expressed in terms of the Mittag-Leffler function E'yß ([11],
 page 173, eq.8):

 Ę(eXx) = eXa(x-a)vEul+u('x-Xa), x > a, (20)

 which is, in fact, the reformulation of (18).

 4 The Weierstrass function and its Weyl, Liouville or
 Marchaud fractional derivatives

 We begin with the consideration of the Marchaud derivative of the Weier-
 strass function W'{x) (=Weyl or Liouville derivative in the case of an integer
 q). In the next section we shall deal with the Riemann-Liouville derivative
 Da Wi(x)j x > a, too. However, we would like to emphasize that for a func-
 tion defined and studied on the whole line it is more natural to investigate its
 Liouville, Weyl or Marchaud derivative than that of Riemann-Liouville which
 is "tied" to a fixed point x = a.

 Theorem 1 For any q > 1 the Weierstrass function W' (x) has the Marchaud
 fractional derivative of any order v < 1:

 oo

 D" Wx(x) = ivY^q~n(l~v)eiqnx (21)
 n=0

 which is continuous and even satisfies the Holder condition of any order X <
 l - i/, but W'(x) nowhere has the first order derivative . In the case of integer
 q = 2,3,4, . . . the function W'(x) has also Liouville and Weyl derivatives (Ą)
 and (10) which coincide with (21).

 Proof. The fact that ^ W'{x ) exists nowhere is well known. As for the
 fractional derivatives we consider first the case of an integer q.

 I. The case of an integer q. In this case the proof is simpler because
 W'(x) proves to be a 27r-periodic function. We consider the Weyl derivative.
 By the definition (10) and Lemma 4 we have W'(x) = -^I^l~v>iW'{x) =

 Yl^Lo q~n(2~^ exp (iqnx). Here the termwise differentiation is possible
 since the series obtained after differentiation converges absolutely and uni-
 formly. Therefore, we arrive at (21). From (21) we see that W'{x) is
 a bounded continuous function as a sum of uniformly convergent series. To
 show that

 D(l/) W'{x) e Hx, '< ' - v, (22)
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 we refer to the 27r-periodocity of W'(x) and to the fact that W'(x) G Hl~e
 with an arbitrary small e > 0, by Lemma 1. Then, by Lemma 2 the assertion
 (22) holds. It remains to refer to Lemma 3.

 II. The case of an arbitrary q > 1. To manage with this case we use
 the Marchaud derivative (12) and consider the following truncated Marchaud

 derivative: / = r(i-v) dt. We have

 = <23>

 (The termwise integration in obtaining (23) is obviously justified). We have
 the estimate:

 P1 -■y""1 *<■*■" P4)
 where c does not depend on £, N and n. Really,

 [" i'-«p<-ļ»°')idt< - r riííôdt Je í1+" - Jo tl+V Jo t1+V
 Hence, the change of the variable qnt = u yields (25) with

 pOO

 c = / [1 - cosi¿ + 1 sinu|]i¿~1_I/du.
 Jo

 Since the series Q~nQnu converges, by (24) we may pass to the limit
 in (23) termwise, which gives

 w=>oo lim d;,„ wdl) = 1 ^ ^ ¿ ,-««-• jT •'O 1 ~ 1 a. w=>oo 1 ^ ^ „=0 •'O 1 (25)
 We use the formula

 jf <# = 0 < * < 1, (26)
 which is easily obtained by integration by parts and using the known relation
 /o°° tu~le~lxt dt = T(y)K-ix)v, see e.g. [11], page 138, eq.(7.6). By (26)
 and(25) we have D" W'(x) = 0~n{i(¡nY exp(iqnx) which coincides with
 (21). The Holder property for D" W' follows from Lemma 1 and Lemma 2" .
 The theorem is proved.

 Remark 2 We remind that in Theorem 1 the Liouville derivative (Ą ) should
 be interpreted in accordance with (5).
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 5 Riemann- Liouville derivatives of the Weierstrass func-
 tion

 The Riemann-Liouville derivative (2) even of a very good function f(x) is
 infinite at the point x = a, if f(a) ^ 0. By this reason, considering the
 Riemann-Liouville derivative on [o, oo), we shall deal with the function

 OO

 W{x) = Wi(x) - Wi(o) = q-n{e**"x - e*"®) (27)
 n=0

 In the theorem below E'y'-U(x) is the Mittag-Leffler function, see (16).

 Theorem 2 The Weierstrass function W(x), x > a, has continuous and
 bounded fractional Riemann-Liouville derivatives of all orders v < 1, which
 can be calculated by the formula D£ W(x) = q~nAn(x), where

 An(x) = (x- a)-u exp (iaqn) Elti-V(iqn(x - a)) - 1
 L (28)

 or

 exp (iqnx) [l - exp(-ign(x
 *•<'> - exp (iqnx) - exp(-ign(x

 so that

 'An(x)'<cq™ (30)

 with c not depending on x and n.

 Proof. Since the series in (27) converges uniformly on [a, oo), by Lemma 5
 we have I^~lfW(x) = Yl^Lo Q~nll~u(e'lqnx - eiqTla). Hence, by (20) we obtain

 ll-"W{x) = (x - a)1"" £ q~neiaq" k,2_„(ťg»(s L - a)) - pT^ļ ' ) J • n=0 L ' ) J (31)

 The formal termwise differentiation of (31) yields

 1 oo

 ±I1a-"W(x) = J2<l-nMx) (32)
 71=0

 with

 *■<*> = ¿ - «» - rpb)] } • (33)
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 To justify the differentiation we shall prove that the series in the right hand side
 of (32) converges uniformly. Differentiating in (33) and applying the formula
 (17), we arrive at (28) after easy calculations. Applying the representation
 (19) in the right hand side of (28), we obtain (29).

 Since the integral - exp(-it)'dt converges, the estimate (30)
 follows from (29). By (30) the series (32) converges uniformly and then
 D aW(x) is continuous and bounded. The theorem is proved.

 6 Fractional derivatives of the functions (14') and (14")
 and of the Riemann function

 I. Functions (14') and (14"). We consider the functions S(x) and C(x)
 first. The function (14") is known ([3], page 433) as an elementary function:

 OO 9 9

 Ecos rix = - X* 9 - -|*| ir. . + - ttz 9 = - - -|*| . + - , - 27T < X < 27T, (34)
 n= 1

 which may be obtained either by direct expansion of the right-hand side into
 Fourier series or by the integration of the well known relation J2™=i smnnx =
 1Li5Ł, for 0 < X < 2n (see [15], page 5), with the formula n~ 2 = 7t2/6
 taken into account. We also remark that (34) may be rewritten as

 OO

 Ecos ~ñF~ nx = w o _ 2^' / X . „ - x - ~ñF~ = w _ 2^' / . „ - x -
 n=l

 where Ē2(x ) is the Bernoulli polynomial of second degree. We remark that
 the relations (34)-(35) are particular cases of Fourier series expansions for the
 Bernoulli polynomials:

 71=1

 and

 V"1 SÍnnX - - (-1) ( i'-l+lm/2l i2*-)"1 o , X , V"1 2^ ~^r - - (-1) ( i'-l+lm/2l o , , lf m 18 odd'
 n=l

 see e.g. [11], page 348, eq.(19.8) and (19.10).
 As regards the function (14'), it has the following integral representation:

 OO • />l -ļ

 E sin • nx = i />l l0g2ūīiī , 1 -ļ 72ī<". W , v = l0g2ūīiī , 72ī<". W , v
 which follows from the known relation = ~~ log2| sint/2|, 0 < t <
 27 r, see [15], page 5.
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 Theorem 3 Functions C(x) and S(x) have the Riemann- Liouville fractional
 derivatives Do C(x) and Do S(x) of any order 0 < v < 1, which are continuous
 for all X > 0 and x > 0, respectively. For 0 < x < 2tt they may be calculated
 as

 „i ,{fr* cosnx' 1 P2(x)
 'èí n2 / 6r(3 ~ ") x"

 with Pļ(x) = 3x2 - 37t(2 - v)x + 7t2(2 - i/)(l - v ), and

 /^sinnx' " 1 fx log |2sint/2| 0 " "r ~)J° fx (»-«)" ( 1
 The first order derivatives of C(x) and S(x) exist and are continuous for all
 x > 0 except the points x = 2m7r, m = 1, 2, 3, . . .

 Proof. The existence of the first order derivatives is seen directly from (34)
 and (36); in particular, we see from (36) that £S(x) = - log 2| sinx/2| does
 not exist at the points x = 2ra7i'

 To consider the fractional derivatives we begin with the values 0 < x < 2ir.

 Prom (34) we have DoC(^) = 'Do{x2) - §Do(x) + ^Do(l) which yields
 (37) and proves the continuity of Do C(x) for 0 < x < 2n. As for Do S(x)i we
 have from (36)

 Do S(x) = Do Iof(x) (39)

 where f(x) = - log 2| sin£/2| and /¿/(x) = Jo index law we
 have from (39): Do S(x) = /¿_I//(x) which coincides with (38).

 It remains to make sure that Do S(x) and Do C(x) are continuous for all
 x. We remark that C(x) is a continuous periodic function. So, by (34) it
 is a continuous piece-wise differentiable function and, therefore, Lipschitzian.
 Then, by Lemma 2' its fractional derivative Do S(x) is continuous (and even
 Holderian or order 1 - v) beyond the point x = 0.

 Now, by (36) and Lemma 6 the function S(x) is Holderian of order 1 -
 £, € > 0. Since 5(0) = 0, by Lemma 2' we have Do / € H1~e~ui 0 < e < 1 - v.
 The theorem is proved.

 Remark 3 As follows from the proof of Theorem 3, the fractional derivatives
 of the functions C(x) - 7t2/6 and S(x) are not only continuous , but even

 Holderian: Yf0C{x) - 6T(?lv)x„ € íř1- ([0,6]), S{x) e Jí1- e([0, 6]),
 whatever small € is, 0 < e < 1 - v' b > 0.
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 II. Riemann's function. The case of the function (15) is more difficult
 and we can manage here only with orders 0<i/<l/2of fractional differenti-
 ation. The following theorem is valid.

 Theorem 4 Let 0 < v < 1/2. The fractional derivative D" R(x) of Liouville,
 that of Weyl R{x) and that of Marchand D" R(x) do exist , are continuous
 and coincide with each other . They may be calculated by the formula

 («i
 71=1 i i

 However j if v > 3/4, the Weyl derivative R{x) does not exist at least for
 all irrational values ofxf'pl.

 Proof. We shall show that

 R(x) G íř1/2([0,27r]). (41)

 Following [15], page 47, proof of Theorem (4.9), we have

 |fi(l + *)-B(x)| = 2 y sin("łl + n*h/2 Y"/2)S'°("ļ'>/2>
 1 ^ 71=1 1

 N oo

 = 2E+ E =2|P + QI (42)
 71=1 n=N+ 1

 where N = [(2/Zi)1/2] is the largest integer such that N2h/ 2 <1, h > 0. So,

 ipi ^ E = Nh/2 z w)1'2 (43)
 71=1

 and
 °° 1 1 1

 M"n=Ç+l =
 Taking h < 1/6, we have [(2/Zi)1/2] > (2/Zi)1/2 - 1 > (I//1)1/2, so that

 IQI < h1/2. (44)

 Therefore, (43) and (44) prove (41) via (42).
 In view of (41) and Lemmas 2 and 3 we see that the three fractional

 derivatives exist for v < 1/2 and are equal. To prove (40) we remark that for
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 the real form of Fourier series f(x) ~ Y^=i(an cosnx + 6nsinnx) the Weyl
 definition (11) of a fractional derivative is the following:

 oo

 f(x) ~ ^ nu[an cos (nx + un /2) + bn sin (nx + i^7t/2)] (45)
 n= 1

 which is easily derived from (11). So

 D,,,(¿oognM ¿ ^ W2) (46)
 'n=l / n=l

 Since the series in (46) converges absolutely and uniformly (for 0 < v < 1/2),
 the sign ~ in (46) may be replaced by = and we arrive at (40).
 To show that R(x) does not exist almost everywhere if v > 3/4, we

 refer to the following result due to G.H. Hardy ([6], page 323):
 . r i r V-^OO COS n2X v- vOO SUI V? X . _ _ . .

 Neither of r the i functions r V-^OO >,„1
 ri*3 nP

 differentiable for any irrational multiple of tt.

 By (46) I^R(x) = ¿ sm("'*_+W2) " SO) dm ñ(x) = ¿/d-")ß(x) i " n=l i

 does not exist at irrational multiples of 7 r by the above Hardy's result since
 4 - 2i/ < 5/2 if 1/ > 3/4. The theorem is proved.

 7 On Problem stated in Section 2.

 Here we discuss shortly the Problem formulated in Section 2 for arbitrary i/o,
 not necessarily i/0 = 1. This is just the Weierstrass function WVo(x) defined
 in (15) which is a solution of this problem. The theorem below generalizes
 Theorem 1. We use here the standard extension of fractional derivatives (4),
 (10) and (12) to the case of orders v > 1, see [11], page 95, 348 and 118,
 respectively. When v is an integer, either of these derivatives is an ordinary
 derivative of order v.

 Theorem 5 For any q > 1 the Weierstrass function WVo(x ), v 0 > 0, has the
 Marchaud and Liouville (and Weyl, if q is an integre) fractional derivative of
 any order v < i/q. They coincide with each other and are equal to

 00

 D" Wu „(a) = iv ^2 exp(î<7nx). (47)
 n=0

 Besides , D" Wt/Q(x) is Holdeńan o f order A <1/0-1/. However , WUo(x) nowhere
 has the Liouville fractional derivative of order v$.
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 PROOF. The assertion on the existence of the derivative of order v < vq and
 the relation (47) are obtained following the same lines as those of Theorem 1.
 We remark that (47) means that

 tfWUQ(x)=ťWU0-l,(x) (48)

 for all -oo < i/ < i/o î 0 < vq < oo, the series in the right-hand side being
 absolutely convergent. To demonstrate that W1/Q(x) nowhere has fractional
 Liouville derivative of order i/q, we remark that D"° = ^ D"0-1 (independently
 of the sign of i/o - 1). Then, D"0 Wv 0(x) = ¿ d^o-i vt^0(x), if exists, should
 coincide, by (48), with il/°~1^Wi(x), which is impossible.

 Remark 4 The results similar to those stated in this paper for the Weier strass
 function (15) are valid for its real valued version Wa(x) = Q~an cos(qnx)

 Remark 5 The following generalization
 oo

 ^2ekakexp(ibkx), ek = ±1, (49)
 n=0

 of the Weierstrass function , with some restńctions on a and b, can be similarly
 studied. (See [1], page 361, concerning the nowhere differentiability of the
 function (49)).

 Finally, we put as open the following question inspired by Theorem 4.

 Open question. Does the Riemann function coarļfx have continuous
 fractional derivatives of order 1/2 < v < 3/4?

 For reader's convenience we give the following

 Summary of results

 1. The Weierstrass function W'(x) has continuous Liouville fractional
 derivatives DVW' of any order v < 1, but nowhere has the first order deriva-
 tive.

 2. The Weierstrass function W'(x) - W'(a) for all x > a has continuous
 Riemann- Liouville fractional derivatives D£[Wi(x) - W'{a)] of any order v <
 1, but nowhere has the first order derivative.

 3. The functions C(x) and S(x) have continuous Riemann-Liouville frac-
 tional derivatives DqC(x) and DqS(x ), x > 0, while the first order derivatives
 do not exist at points x = 2miT.

 4. Riemann's function R(x) has continuous Liouville fractional derivatives
 of any order v < 1/2, but fractional derivatives of order v > 3^ /4 do not exist
 almost everywhere.
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 5. The Weierstrass function Wt/Q(x)ì v > 0, has continuous Liouville
 fractional derivatives of any order v < vo, but nowhere has the derivative of
 order vq .

 The above results are given in Theorems 1-5, respectively, where more
 detailed statements can also be found.

 References

 [1] N. K. Bari, A Treatise on trigonometric seńes , Pergamon Press, The
 Macmillan Company, v. 1, 1964.

 [2] A. Erdélyi, W. Magnus, F. Oberhettinger and F.G. Tricomi, Higher
 transcendental junctions , New York-Toronto-London, McGraw-Hill Book
 Company, Inc., v. 3, 1953,

 [3] G. M. Fikhtengoltz, The Fundamentals of Mathematical Analysis , Perg-
 amon Press, v. 2, 1965.

 [4] J. Gerver, The differentiability of the Riemann function at certain rational
 multiples of 7T, Amer. Journ. of Math., 92 (1970), 33-55.

 [5] J. Gerver, More on the differentiability of the Riemann function , Amer.
 J. Math., 93 (1971), 33-41.

 [6] G .H. Hardy, Weierstrass ' non-differentiable function , Trans. Amer.
 Math. Soc., 17 (1916), 301-325.

 [7] G .H. Hardy, Collected papers , Oxford: Clarendon Press, 1966.

 [8] J. Liouville, Mémoire sur quelques questions de géométrie et de
 mécanique y et sur un noveau genre de calcul pour résoudre ces questions ,
 J. L'Ecole Roy. Polytechn., 13 (1832), sect. 21, 1-69.

 [9] K. S. Miller and B. Ross, An introduction to the fractional calculus and
 fractional differential equations , A Wiley-Interscience Publication, John
 Wiley & Sons, Inc., New York, 1993.

 [10] B. Ross, (Ed.) Fractional Calculus and its Applications , Lect. Notes in
 Math. (Springer Verlag), v. 457, 1975.

 [11] S. Samko, A. Kilbas and O. Marichev, Fractional Integrals and Deriva-
 tives. Theory and Applications , Gordon & Breach Sci. Publishers,
 London- New York, 1993.



 Functions that have no First Order Derivative 157

 [12] A. Smith, The differentiability of Riemann's function, Proc. Amer. Math.
 Soc., 34 (1972), 463-468.

 [13] A. Smith, Correction to "The differentiability of Riemann function ", Proc.
 Amer. Math. Soc., 89 (1983), 567-568.

 [14] H. Weyl, Bemerkungen zum begriff des Differentialquotienten gebroch-
 ener Ordnung , Vierteljahresschrift der Naturforschenden Gesellschaft in
 Zürich, 62 (1917), no 1-2, 296-302.

 [15] A. Zygmund, Trigonometrie series , Cambridge University Press, Cam-
 bridge, v. 1, 1959.

 [16] A. Zygmund, Trigonometrie senes , Cambridge University Press, Cam-
 bridge, Vol. 2, 1959.


	Contents
	p. 140
	p. 141
	p. 142
	p. 143
	p. 144
	p. 145
	p. 146
	p. 147
	p. 148
	p. 149
	p. 150
	p. 151
	p. 152
	p. 153
	p. 154
	p. 155
	p. 156
	p. 157

	Issue Table of Contents
	Real Analysis Exchange, Vol. 20, No. 1 (1994-95) pp. 1-371
	Front Matter
	EDITORIAL MESSAGES [pp. 1-1]
	Tadeusz Świa̹tkowski - OBITUARY [pp. 2-5]
	CONFERENCE ANNOUNCEMENTS [pp. 6-9]
	CONFERENCE REPORTS
	REPORT ON THE SUMMER SYMPOSIUM IN REAL ANALYSIS XVIII, UNIVERSITY OF VIRGINIA CHARLOTTESVILLE, VIRGINIA JUNE 22-25, 1994 [pp. 10-13]
	Carathéodory's outer measures: 80 years [pp. 14-17]
	DISTORTION THEORY FOR FUNCTIONS IN A ZYGMUND SPACE Λ [pp. 18-19]
	PACKING CONICS IN THE PLANE [pp. 20-21]
	ORDINARY AND STRONG DENSITY CONTINUOUS FUNCTIONS ON THE PLANE [pp. 22-24]
	MEASURE PRESERVING CONTINUOUS SMOOTHING OF FRACTIONAL DIMENSIONAL SETS [pp. 25-25]
	SMOOTHING Λ-SEQUENCES [pp. 26-27]
	ω-LIMIT SETS FOR CERTAIN CLASSES OF FUNCTIONS [pp. 28-30]
	ω-LIMIT SETS AND CONTINUOUS FUNCTIONS WITH CONTROLLED GROWTH [pp. 31-32]
	Ap-WEIGHTS AND RELATED TOPICS [pp. 33-35]
	LIMITS AND SERIES OF EXTENDABLE CONNECTIVITY FUNCTIONS [pp. 36-36]
	BOUNDED HARMONIC VARIATION AND THE GARSIA-SAWYER CLASS [pp. 37-38]
	ON SOME PROBLEMS OF FRACTIONAL DERIVATIVES [pp. 39-40]
	INFINITE CONFORMAL ITERATED FUNCTIONS SYSTEMS AND MEASURABILITY OF MEASURE AND DIMENSION FUNCTIONS [pp. 41-42]
	THE MULTIFRACTAL SPECTRUM OF RIEMANN'S FUNCTION [pp. 43-44]
	RANDOM WALKS AND GENERALIZED RIESZ PRODUCTS [pp. 45-46]
	LIMITS UNDER THE INTEGRAL SIGN [pp. 47-47]
	LIMITING CASES OF THE SOBOLEV IMBEDDING THEOREM [pp. 48-49]
	ON VECTOR-VALUED HENSTOCK AND DENJOY INTEGRALS [pp. 50-50]
	NEW INTEGRALS AND THE GAUSS–GREEN THEOREM WITH SINGULARITIES [pp. 51-54]
	HAUSDORFF AND PACKING MEASURES OF SOME SELF-AFFINE SETS [pp. 55-57]
	COMPLETENESS IN TOTALLY ORDERED ABELIAN GROUPS [pp. 58-58]
	ON CONVERGENCE OF FOURIER SERIES IN THE HAUSDORFF METRIC [pp. 59-60]
	POSITIVITY OF THE HAUSDORFF MEASURE FOR RANDOM SELF–SIMILAR FRACTALS [pp. 61-61]
	MULTIFRACTAL MEASURES [pp. 62-62]
	ON VARIOUS POROSITY NOTIONS IN THE LITERATURE [pp. 63-65]
	A SET IN THE PLANE WITH PECULIAR MEASURE-THEORETIC PROPERTIES CONSTRUCTED BY VITUŠKIN, IVANOV AND MELNIKOV [pp. 66-66]

	RESEARCH ARTICLES
	ON CONVERGENCE THEOREMS FOR AP INTEGRALS [pp. 67-76]
	ON A GENERALIZED DOMINATED CONVERGENCE THEOREM FOR THE AP INTEGRAL [pp. 77-88]
	ON THE MEASURABILITY OF EXTREME PARTIAL I-APPROXIMATE DERIVATIVES [pp. 89-93]
	EXTREME PROBABILITY SUBMEASURES ON 3 POINTS [pp. 94-101]
	Density continuous transformations on ℝ² [pp. 102-118]
	A CONVERGENCE THEOREM FOR GENERALIZED RIEMANN INTEGRALS [pp. 119-124]
	THE STRUCTURE OF MINIMAL ATTRACTION CENTERS OF TRAJECTORIES OF CONTINUOUS MAPS OF THE INTERVAL [pp. 125-133]
	Λ-VARIATION AND BAIRE CATEGORY [pp. 134-139]
	FUNCTIONS THAT HAVE NO FIRST ORDER DERIVATIVE MIGHT HAVE FRACTIONAL DERIVATIVES OF ALL ORDERS LESS THAN ONE [pp. 140-157]
	DIMENSION OF SETS OF NUMBERS WITH MULTIPLE REPRESENTATIONS [pp. 158-162]
	DENSITY TOPOLOGIES FOR PRODUCTS OF σ-IDEALS [pp. 163-177]
	ON THE TRANSFORMATIONS OF MEASURABLE SETS AND SETS WITH THE BAIRE PROPERTY [pp. 178-182]
	LIMITS AND SUMS OF EXTENDABLE CONNECTIVITY FUNCTIONS [pp. 183-191]
	APPROXIMATE CORE TOPOLOGIES [pp. 192-203]
	MAXIMAL ADDITIVE AND MAXIMAL MULTIPLICATIVE FAMILY FOR THE CLASS OF SIMPLY CONTINUOUS FUNCTIONS [pp. 204-211]
	MULTIPLIERS FOR SOME GENERALIZED RIEMANN INTEGRALS IN THE REAL LINE [pp. 212-218]
	POINTS OF NON-DIFFERENTIABILITY OF TYPICAL LIPSCHITZ FUNCTIONS [pp. 219-226]
	THE EXTENDING OF DARBOUX FUNCTIONS WITH FINITE VARIATION [pp. 227-243]
	ON THE SUMS OF DARBOUX UPPER SEMICONTINUOUS QUASI-CONTINUOUS FUNCTIONS [pp. 244-249]
	INEQUALITIES OF MINKOWSKI'S TYPE [pp. 250-255]
	FINE VARIATION AND FRACTAL MEASURES [pp. 256-280]
	CARDINAL INVARIANTS CONCERNING FUNCTIONS WHOSE PRODUCT IS ALMOST CONTINUOUS [pp. 281-285]

	INROADS
	ON SCORZA DRAGONI'S PROPERTY FOR THE DENSITY TOPOLOGY [pp. 286-290]
	A PECULIAR SET IN THE PLANE CONSTRUCTED BY VITUŠKIN, IVANOV AND MELNIKOV [pp. 291-312]
	THE SHORTEST ENCLOSURE OF THREE CONNECTED AREAS IN ℝ² [pp. 313-335]
	A NOTE ON MAJOR AND MINOR FUNCTION FOR THE PERRON INTEGRAL [pp. 336-339]
	PATH INTEGRAL: AN INVERSION OF PATH DERIVATIVES [pp. 340-346]
	AN ELEMENTARY PROOF OF THE BOREL ISOMORPHISM THEOREM [pp. 347-349]
	ON ITERATIONS OF DARBOUX FUNCTIONS [pp. 350-355]
	ON DARBOUX BAIRE ONE FUNCTIONS [pp. 356-358]
	DESCRIPTIVE MAPPING PROPERTIES OF TYPICAL CONTINUOUS FUNCTIONS [pp. 359-362]
	KURZWEIL-HENSTOCK ABSOLUTE INTEGRABLE MEANS McSHANE INTEGRABLE [pp. 363-366]
	EVERY BOUNDED FUNCTION IS THE SUM OF THREE ALMOST CONTINUOUS BOUNDED FUNCTIONS [pp. 367-369]

	QUERIES
	A QUERY CONCERNING SARD'S THEOREM FOR POINTS OF NON-DIFFERENTIABILITY [pp. 370-371]

	Back Matter



