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A-VARIATION AND BAIRE CATEGORY

Abstract

Continuous functions of bounded A-variation that are differentiable
at least at one pointform a dense set of first Baire category in CABV,
the Banach space of continuous functions of bounded A-variation . An
example of a nowhere differentiable continuous function of bounded M-
variation is given. Furthermore, CABV, as a subset of C[0, 1]with the
usual sup-norm, is a dense subset of first Baire category.

At the beginning of the 70s, D.Waterman extracted the useful concept of
A-variation from various techniques of the theory of Fourier series [8]. In this
notewe will use the definitions and notations introduced in the fundamental
paper[9)].

Given a A-sequence A, the set of all continuous functions of bounded
A-variationis a closed linear subspace of the Banach space (ABYV,||||s), and
will be denoted by CABV. The set of functions differentiable at least at one
point of [a,b] will bedenoted by D. A A-sequence A = (J;) is said to be proper
if lim); = oo.

Proposition 1 For any proper A-sequence A, D N CABYV is of first Baire
category in (CABV,||||a)-

ProoF. We will follow the elegant idea of S.Banach [1]. Unfortunately, there
is no suitable dense subset of CABYV so that Banach’s Satz 2 cannot be applied
in our case. A slight modification of Banach’s proof is required and careful
construction of a “bad” function is necessary. Without loss of generality we
may assume that the interval [a, b] is [0,1].
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For every positive integer m, we denote by QA the set of functions z €
CABYV such that for some tq € [a,b] and for all ¢ # o

Clearly, DNCABV C |, Q2. We will show that each QA is nowhere dense
which implies that D N CABYV is a set of first Baire category as asubset of
CABV.

First we will show that Q2 is closed in CABV. Suppose z, € QA then
[|zn — z||]o — 0. By definition

2n(t) — 2a(15)

(1) Vo 3ty Vt#ig — m

Passing, if necessary, to a partial sequence, we can assume t§ — to. Since con-
vergence in || ||a-norm implies uniform convergence [9, p.42], we get z,(t3) —
z(to). Passing to the limit in (1) for n — oo yields

for all t # to, that is, z € QA as desired.
Now we shall show that QA is nowhere dense in CABV'. It suffices to show
that given any z € QA | no ball centered at z is contained in QA , that is,

Ve>0 32¢QA |lz—%|la < ¢

Given such an z and an € > 0, take n such that 2237 ;1.- < €. We say that
an interval I; = [:=1, 1] is of type A if

n'n
Joel Ve t#1 f_(%:_:”(tgl -
—to
Now we will define an auxiliary function y : [0,1] = R. Set y(0) = 0.

Suppose that y has been defined for I; withi < k. To define y on Ix4; consider
two cases.
If Iy is of type A, we set

E+1.  JOo  ify(

_ 3
)=

)=0

I3

and then define y to be continous and linear on Ixy;. Otherwise, we set

y(!‘—'};—l-) = y(%) and define y to be linear and continuous on Ix4; ( that is,
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constant). For every interval J with both endpoints of the form i/n either
ly(J)| = 0 or |y(J)| = 3m/n.Since for every family {J1,...,J;} of nonover-
lapping intervals with endpoints of the form i/n it must be j < n, we get

n 3m

J
ly(L, )| a
21: | S Z,\i <€

1

Further, since all points of varying monotonicity of y are of the formi/n,we
conclude that ||y|[» < € [5, Prop.1.1.]

Let # =z +y. Then ||z — Z||o < ¢, and it remains to show % ¢ QA i.e.,
we must show that

Z(t) — 2(s)

t—s

Vi Js#£t

m

Take any t € [0,1]. Then t € I; for some i. If I; is of type A and t # o,
H —y(to)| _|=z(t) — =(to)

t—to t—1o

(t)—:l?to
t—1o

> 3m—m

If I; is of type A and t = ty, take any s € I;, s # tp, and we get in a similar
manner

Z(s) — z(t) ‘ > om
s—t -
If I; is not of type A, then
20 -2()| o
t—s

for some s € I; which completes the proof because Z = z on such an I;. O

Remark What we have proven is in fact that |J,, @2 is of first Baire
category in CABV. Observe that [J, QA is the set of all CABV-functions
that have all Dini derivatives finite at at least one point. However, if necessary,
one can slightly modify the above proof in order to show that a larger set of
CABV-functions that have both right-side Dini derivatives finite at at least
one point is also of first Baire category (cf. Banach’sSatz 1).

Example A nowhere differentiable continuous function that is of bounded
A-variation.

To construct such example, it suffices to slightly alter the well-known van der
Waerden function [7]. Of course, we have to assume that A = (};) is a proper
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A-sequence. Let wug(z) be the distance from z to the nearest integer. Set
uk(z) = 4 %up(4*z) for k=1,2,.... Clearly,

240
Z)\_ as k — o0
1

Next, select a subsequence (ux,) such that E ||uk,|| A < 1. Then
f =3, uk, is nowhere differentiable, as can be proven in the standard way [2,
p.496). Finally, f € CABV by the virtue of [6, Prop.VIL.5], since (CABV,||||A)
is a complete space [9, pp.41-42].

S.Perlman has shown that C[0,1]=J, CABV where the union is taken
over all A-sequences [3, Thm.9].We endow C[0, 1] with the usual sup-norm.

Va (uk, [0, l])

Proposition 2 For any A-sequence A, CABV is of first Baire category in

(CLo, 1, (11D

PRrOOF. We start with the obvious equality

CABV = | Boasv(0,n)

n=1

where Bcapv (0,n) denotes the closed ball in (CABV,||||s) of radius n,
centered at 0 (the constant function 0). Thus, it suffices to show Bcapv (0,7)
is nowhere dense in (C[0,1],||||). Since Becapv(0,n) is a closed subset of
(C[0,1],111]), the proof will be completed as soon as we show that C[0,1]\
CABYV isdensein (C[0,1],]]]]). Thus, it suffices to show that 0 is a || ||-limit
of C[0,1]\ CABV-functions. Indeed, given € > 0, it is rather elamentary to
construct a function Z € C[0, 1] such that ||Z|| <e and Vj(Z) = +00.0

We complete this note with the observation that both first Baire category
sets discussed above are nevertheless relatively large.

Proposition 3 For any \-sequence A:
1. DNCABYV is dense in (CABV,||||a)
2. CABV is dense in (C[0,1],]]]])

PROOF. (1) It is clear that, for z € CABV, ||z, — z||A = 0 where

enlt) = {z(t) t<1-1

z(1-2%) t>1-1

n

[9, Theorem 4]. Obviously, z, € CABV for all n.



138

(2) This follows immediately from the inclusion Polynomials C CABV. O

S. Perlman and D. Waterman gave a complete characterization of the in-
clusion ABV C I'BV for two distinct A-sequences A and T' [4, Theorem 3].
In the next proposition, we examine the proper case ABV G I'BV from the
point of view of Baire category.

Proposition 4 If ABV G T'BV, then CABV is of first Baire category in
(CTBV,||Ir)-

ProoFr. This can be proven in a manner fully analogous to the proof of
Proposition 2. The only non-trivial ajustment is required in the construction
of the function Z.

It is elementary that ABV ¢ T'BV implies the existence of a sequence
an \¢ 0 such that > a,/yn = o0 and ) an/As < oo0. For a number
§ > 0,set a4 = min{é,a,}, and then

l — ZZ=1(—1)"“GZ - Z?ﬂ(—l)"“ai fort = 'l‘
1’6(n) B 0 fort=0

We extend zs continuously onto the whole interval [0,1] by requiring that

25 be linear on each interval 15, &]. Then

)
an

Vl"(zé) = z_ = 400 and VA(:L'J) = Z——) 0
1 1

n

as d — 0. Hence, by picking a suitable §, we can take Z to be zs. O
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