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Abstract

In this paper we prove that the extreme partial derivatives of a func-
tion having the Baire property, have the Baire property too.

Let R(RR?) denote the real line (the plane) and let N the family of all pos-
itive integers. All topological notations are given with respect to the natural
topology. We introduce the following notation:

Z(Z?) - the o-ideal of subsets of R(R?) of the first category,
S(S?) - the o -field of subsets of R(R?) having the Baire property.
We start with the definition of Z-density point which was introduced in [3].

Definition 1 [3] We shall say that 0 is a point of I-density of a set A € S
if and only if for each sequence of positive integers {nm,}men, there ezists a
subsequence {nm, }pen such that

{z: Xnmp'An[—l,l](z) A 1}el.

A point zg is a point of I-density of a set A € S if and only if 0 is a point of
Z-density of the set A — zg. A point zg is a point I-dispersion of a set A€ S
if and only if o is a point of IT-density of the set R\ A.

Definition 2 [1] Let F : R — R have the Baire property in a neighborhood
of zo. The upper I-approzimate limit of F at zo (Z-limsup,_,, F(z)) is the
greatest lower bound of the set {y: {z : F(z) > y} has zo as an I-dispersion
point}. The lower I- approzimate limit, the right-hand and left-hand upper and
lower I-approzimate limits are defined similarly. If I-limsup,_,, F(z) =Z-
liminf; ., F(z), their common value is called the I-approzimate limit of F
at zo and denoted by Z-lim;_, ., F(z).
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Let F:R? = R and (zo,yo) € R? Put

Uisosy(@) = FEWIZTC@0U0) o g g,
T — X
Definition 3 [1] Let F : R? — R be any function defined in some neighbor-
hood of (zo,y0) € R? and having the Baire property there in the direction of
the z-axis. We define the upper I-approzimate partial right derivative of F at
(z0,%0) (D} apFe (%0,y0)) in the x direction as a corresponding extreme limit
of U(zo,y0) () as © tends to o from the right. The other extreme I-approzimate
partial derivatives in the z direction are define similarly. If all of these deriva-
tives are equal and finite, we call their common value the I-approrimate partial
derivative of F' at (zo,yo) and denote it by T — F(zo,y0). In a similar way we
can define the extreme I-approzimate derivative in the direction of the y-azis.

Lemma 4 [2] Let G be an open set of the real line; then 0 is an Z-dispersion
point of G if and only if, for every n € N, there exist k € N and a real number
§ > 0 such that, for any h € (0,6) and i € {1,..n}, there exist two numbers
J,J' €{1,.., k} such that

Gn "1_,_1;1 - h, z_1+i Rl =10
n nk n nk
. . . g
an(- (=24 L) op (224220 p) 2o
n nk n nk

Lemma 5 Let H € 8. If 0 is an I-dispersion point of H, then, for every
n €N, there exist k € N and a real number § > 0 such that, for any h € (0, 6)
and i € {1, ..n}, there exist two numbers j, j' € {1,..,k} such that

Ao (242t o (22 ) k) ez
n nk n nk
. . . g
a(-(Z2i L) op o (2L 22 ) e
n nk n nk

ProoF. Let H € §. Then there exist an open set G and two sets of the first
category P;, P, such that H = (G \ P;) U P,. If 0 is an Z-dispersion point of
the set H, then 0 is an Z-dispersion point of the set G. Therefore, by Lemma
4, for every n € N, there exist ¥ € N and a real number § > 0 such that, for
any h € (0,6) and ¢ € {1,..n}, there exist two numbers j, j' € {1, .., k} such

that . l . 1 . 1 .
Gn ‘- +°l.—_ -h, ‘- +L).h =0
n nk n nk

and

and
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. . . g
Gn(—(:+]—)-h,—<z 1+]—1)~h)=@.
n n n nk

We observe that, for each open interval (a, b), if GN(a,b) = @, then HN(a,b) C
P, € IT. Therefore, for every n € N, there exist £k € N and a real number
d > 0 such that, for any h € (0,6) and i € {1,..n} there exist two numbers
j, 7' € {1,..,k} such that

a2t o (2212 ) h) ez
n nk n nk
i—1 7 i—1 j -1
Hn{- +=-h, - +=—— ) -h) €T
n nk n nk

Theorem 6 If a function F : R?2 = R has the Baire property, then the ez-
treme I-approzimate partial derivatives also have the Baire property.

and

and

ProoF. We shall only show that the function D}"_ ap F; has the Baire property.
By our assumption, there exists a residual subset @ of R? such that Fgisa
continuous function. It is sufficient to show that, for each a € R, a set

A={(z,y) €Q: D}'_apF,(:c,y) <a}es

We assume that a € R and A & Z2. Let {t; }men be a increasing sequence of
real numbers such that limy, o0 tm = a.
Let (zo,y0) € R2 We put Qy, = {z : (z, %) € @} and

Gm(IO)yO) = {:L‘ > To: U(-’co,yo)(z) >tmand z € Qyo}'

By the continuity of the function Fjg we have that, for each (zo,%0) € @Q,
the function U(z,,y,)|Q,, (%) is a continuous one at each point z # zo and
therefore the set G, (2o, o) is an open set relative to Qy,. Additionally, by
Kuratowski-Ulam theorem we have that

V = {y: Qy is not a residual subset of R} € Z.

Therefore a set C = {(z,y) € Q : y € V} C Rx V € I? and, for each
(z,y) € Q\C, Gn(z,y) € S. For each m € N, let

Am ={(z,y) € A\ C : z is a I-dispersion point of the set Gr,(z,y)}.

Then A\ C =U,,enAm.-



92 INGA LIBICKA AND BOZENA SZKOPINSKA

Let m € N. By Lemma 5 and since G (z,y) € S, for any (z,y) € A and
n € N, there exist p, k¥ € N such that, for any 0 < § < % and 7 € {1,..,n},

there exists j € {1, .., k} such that G (z,y) N Lijnks(z,y) € Z where

1 1 i1 ,
I,'jnkg(:c,y)z ((z - +]n_k> -d+z, (z - -I-n]—k) ~J+:c> .

For any n,k,p € N let

Dmnkp = n n U {(:c,y) €EAm: Gm(z)y)nlz’jnkd(z)y) EI}-
6€(0,1)1€{1,..,n} jE{1,. Kk}

Then, by the above, Am = [\,enUken UpeN Dmnkp. Let n,m,k,pe N, d €
Wp,i€{1,..,n}and j € {1,..,k}. We put

Z=A{(z,y) € Am : Gm(z,y) N Lijnrs(z,y) €I}.

We shall show that Z is a closed set relative to Q \ C. Let (zo,y0) € ((Q \
C) \ Z). Then Gm(zo,y0) N Lijnké(2o,y0) & Z. Therefore there exists z, €
Gm(z0,Y0) N Lijnks(2o, Yo) N Qy,. Since the point 1 € Gm(zo, o), we have
that F(z1,y0) — F(2o0,%) > tm - t* where t* = z; — zo. Let € > 0 be such
that F(z1,y0) — F(zo,¥%) — 2 - € > tm - t*. By the continuity of the function
Fiq at (z1,y0) and since (z1,y0) € @, we have that there exists 7, > 0 such
that if (Z,y) € (K((zl’yO))nl) n Q)) then | F(:c,y) - F(zl)yO) |< €. By
the continuity of the function F|q in (o, yo), there exists 7o > 0 such that if
(zyy) € K((-’Bo,yO),WO)nQ, then | F(z:y)_F(anyO) |< €. Letn= min{ﬂly 7’0}
such that

zle((i—l)k+j—

1 i — 1)k +j

— 5»+xo+n)

and

nk nk

We observe that if (z,y) € K((2o, %), m) N (Q\C), then there exists an open
interval (a,b) such that

((a)b) N Qy) X {y} C K((zl)yO):n) N (Iijnkd(x) y) X {y})
Let z’ € (a,b) N Qy such that 2’ — z < t*. Then

s ._1 ._lk .

F(:L",y)—F(z:,y)>tm -t* >tm‘(l',—:l:),

Therefore there exists ' € G (, y) N Lijnks(T, y) NQy. Since the set G (z,y)
is an open set in @y, we have that G (z,y) N Lijnks(z,y) € Z, 50 (2,y) € Z.
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We showed that (@ \ C) \ Z is an open set in @ \ C, so Z is a closed set in
Q\ C. Hence Dy is also a closed set in Q@ \ C. Since C € 72 we have that
Dmnkp € S2. Therefore, for each m € N, A, € §2 and A € S§2. Thus the
proof of the theorem is completed.
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