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 HAUSDORFF AND PACKING MEASURES

 OF SOME SELF-AFFINE SETS

 If {fj}j= i are contracting affine maps in Euclidean space, then the unique
 l

 compact set K satisfying K = ļ^J fj(K ) is called a self-affine set. McMullen
 j= i

 (1984) and Bedford (1984) determined the dimension of some specific self-affine
 sets in the plane. Fix integers m < n and a "digit set" Dc{0,l,...,n-l}x
 {0,1 , . . . , m - 1}. The compact set

 *(T.D) = {Ž ( "o' m°-'
 is self-affine since

 K(T,D) = (J ( ^ V m"1 ) ( d+K(T<D ))• d£D ^ '

 McMullen and Bedford showed that the Hausdorff dimension

 m- 1

 dimH(K(T,D))=logm1£z(j)a
 j= 0

 where a = 1°% log ™ n and log n

 -^(i) = £1i^(¿,i) =
 »=0

 On the other hand, the Minkowski (= "Box") dimension is

 dim m[K(T, D )] = logm 'n(D)' + '0gn

 where n denotes projection to the second coordinate. An easy calculation
 shows that the Hausdorff and Minkowski dimensions of K (T, D) coincide if
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 and only if D has uniform horizontal fibres , i.e., all the positive values among
 izU)}T=ol are eclual- McMullen (1984) asked what is the Hausdorff mea-
 sure of K(T , D) in its dimension 7 when D has nonuniform horizontal fibres.
 Gatzouras and Lalley (1992) showed that [K (T, D)] must be either zero
 or infinity and Peres (1994a) later showed it is infinity. The zero-infinity di-
 chotomy holds with respect to any gauge function and leads to the question
 of deciding for which measure functions <p is H(p[K(Ti D )] = 00 and for which
 <pis Hy[K{TiD)' = 0.

 In Peres (1994a) we showed that in the nonuniform case the measure func-
 tion

 yields 00 (non cr-finite) Hausdorff measure for K(T, D) if c > 0 is small enough,
 and

 yields 0 Hausdorff measure provided 6 < 2. This still leaves a gap.
 R.D. Mauldin (private communication) asked whether the dichotomy "zero

 or infinite Hausdorff measure" for K (T, D) could be sharpened to "zero or non
 <7-finite" . This would follow from a positive answer to the next question, which
 is still unsolved.

 Question: Let K be an arbitrary self-affine set and any gauge function
 such that K is <r-finite for H Does it follow that in fact Htp(K) < 00?

 The packing dimension of self-affine sets is always equal to the Minkowski
 dimension - this follows easily from results of Tricot (1982), see also Taylor
 and Tricot (1985). Peres (1994b) shows that the self-affine carpets K(T, D)
 have infinite packing measure in their packing dimension when D has nonuni-
 form horizontal fibres, and obtains a partial classification of gauge functions
 assigning K(T, D) zero or infinite packing measure. The proof is based on
 the observation that most e- disks in a canonical packing centered in K (T, D )
 (with € X rri~k) will have a very nonuniform distribution for the ak most
 significant digits in the base-m expansion of their y-coordinate, while the re-
 maining k - ak digits will typically be approximately uniform. This enables
 combining packings of different sizes after an initial pruning of disks with
 nonty pical expansion.
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