Salim Salem, École Polytechnique Montréal, C.P. 6079, Succ. Centre Ville, Montréal, Québec H3C 3A7

ON SOME PROBLEMS OF FRACTIONAL DERIVATIVES

1 Basic Definitions

Definition 1 Let $f : [a,b] \longrightarrow \mathbb{R}$ be a continuous function. Let $x \in]a,b], \alpha \in]0,1[$ and $n \in \mathcal{N}$ $(n > \alpha)$. Following Riemann and Liouville, we define:

1.
$$_{a}D_{x}^{-\alpha}f(x) = \frac{1}{\Gamma(\alpha)}\int_{a}^{x}f(t)(x-t)^{\alpha-1}dt$$
, to be the α -integral of f . And

2.
$$_{a}D_{x}^{\alpha}f(x) = \frac{1}{\Gamma(n-\alpha)}\frac{d^{n}}{dx^{n}}\int_{a}^{x}f(t)(x-t)^{n-\alpha-1}dt$$
, as its α -derivative.

We note the following properties:

- ${}_{a}D_{x}^{\alpha}$ is a linear operator whose definition is independent of the choice of n.
- If n is a positive integer then $_aD_x^nf(x) = \frac{d^nf(x)}{dx^n}$.
- For all positive reals α and β : ${}_{a}D_{x}^{-\beta}\left({}_{a}D_{x}^{-\alpha}f(x)\right) = {}_{a}D_{x}^{-(\alpha+\beta)}f(x).$

Definition 2 We note by:

1. $\delta(f, x) = \sup\{\alpha \text{ such that } _a D_x^{\alpha} f(x) \text{ exists}\}.$

$$\mathcal{Q}. \ \delta(f) = \sup_{x \in]a,b]} \{\delta(f,x)\}.$$

We recall that the function f is said to be *hölderian* of exponent H, if $|f(x) - f(y)| \le C |x - y|^{H}$, for some positive constant C.

It is anti-hölderian of exponent H, if $|f(x) - f(y)| \ge C_1 |x - y|^H$, for some positive constant C_1 .

Tricot [2] asks, among other questions, the following two: If α is a non-integer, and ${}_{a}D_{x}^{\alpha}f(x)$ exists, then

- 1. Does $_{a}D_{x}^{\beta}f(x)$ exist for all $\beta \leq \alpha$?
- 2. Does ${}_{b}D_{x}^{\alpha}f(x)$ exist for all b < x, and $b \in \mathbb{R} \cup \{-\infty\}$?

2 Main Results

Problem 1 In 1927, Hardy and Littlewood [1] showed that a positive answer can be obtained when f is hölderian:

Theorem 1 If f is hölderian of exponent H then ${}_{a}D_{x}^{\alpha}f(x)$ exists for every $\alpha < H$.

Using Abel's criteria Tricot [2] proved:

Theorem 2 Let $f(x) = \sum_{0}^{\infty} c_n e^{inx}$ where $x \in \mathbb{R}$, and $c_n \in \mathbb{C}$, assume that ${}_{a}D_{x}^{\alpha}f(x)$ exists, then for every $\beta \leq \alpha {}_{a}D_{x}^{\beta}f(x)$ exists.

One can prove the following:

Theorem 3 Assume that $f(x) \ge 0$ and that for all $x \in [a, b]$ the integral $\int_{a}^{x} f(t)(x-t)^{-\alpha-1} dt$ converges. If ${}_{a}D_{x}^{\alpha}f(x)$ exists then so does ${}_{a}D_{x}^{\beta}f(x)$ for every $\beta \le \alpha$.

Theorem 4 Assume that ${}_{a}D_{x}^{\alpha}f(x)$ exists and is bounded on every subinterval [c,d] of [a,b] with $c \neq a$, then for every $\beta \leq \alpha$ and $c \in]a,b]$, ${}_{c}D_{x}^{\beta}f(x)$ exists.

Problem 2 A positive answer can, almost trivially, be obtained for the case where $b > -\infty$. As for $b = -\infty$, Tricot [2] showed:

Theorem 5 If $\int_c^d f(t)dt$ is bounded for any $c, d \in \mathbb{R}$ and if ${}_aD_x^{\alpha}f(x)$ exists then so does ${}_{-\infty}D_x^{\alpha}f(x)$.

These results may be used to show that: the Weierstrass function $W(x) = \sum_{n=0}^{\infty} b^{-nH} \cos(b^n x)$ (where b > 1 and 0 < H < 1), verifies: $\delta(W) = H$; while

the Riemann function $R(x) = \sum_{n=1}^{\infty} n^{-2} \sin(n^2 x)$, verifies: $\delta(R) = \frac{1}{2}$.

References

- G. H. Hardy and J. E. Littlewood, Some properties of fractional integrals I, Math. Z. 27(1928), 565-606.
- [2] C. Tricot, Derivation fractionnaire et dimension fractal, Tech. Report 1532, CRM-Université de Montréal, 1988.