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 THE RANGE OF A SYMMETRIC

 DERIVATIVE

 The range of ordinary derivatives is easy enough to sort out. If / is con-
 tinuous and has a derivative everywhere, even allowing infinite values, then
 /'has the Darboux property. Thus the range of /' must be an interval or a
 single point.

 For symmetric derivatives these questions are rather more delicate. For
 example the continuous function f(x) = |xļ is everywhere symmetrically dif-
 ferent iable and its symmetric derivative assumes just the three values 0, 1 and
 - 1. The Cantor function is also continuous and everywhere symmetrically
 differentiate and its symmetric derivative assumes just the two values 0 and
 +00. Buczolich and Laczkovich [1, Theorem 5.1, p. 359] show that there is no
 possibility of two finite values.

 Our purpose in this short article is to present an entirely elementary proof
 of this theorem. This is largely to bring this theorem to the attention of those
 collectors of symmetric arcana who otherwise might miss this result, buried
 as it is in a paper mainly devoted to the structure of certain Borei measures.

 The proof we give here uses only three of the most immediate properties of
 symmetric derivatives. A continuous function with a nonnegative symmetric
 derivative is nondecreasing; this was first proved by Khintchine [2] but requires
 nothing more than familiar nineteenth century arguments. At any point the
 symmetric derivative is clearly the average of the two one-sided derivatives
 when they exist; in fact if any two of SD/(x ), fĻ(x) and /l(x) exist so does
 the other and SD/(x) = |(/+(z) + /l(x)). Finally any symmetric derivative
 of a continuous function is evidently in the first Baire class. From these facts
 we construct our proof avoiding some of the heavier artillery called to the front
 in [1].

 THEOREM 1 (Buczolich-Laczkovich) There is no symmetrically differ -
 entiable function whose symmetric derivative assumes just two finite values.
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 Proof. Our first observation is that the theorem can be reduced to showing

 that there is no continuous function with this property. This exploits some
 work of Larson [3]; he shows that if a function g exists with a bounded, sym-
 metric derivative everywhere then there is a continuous function / for which
 SD/(x) = SDy(x) everywhere.
 We assume then, contrary to the theorem, that there is a continuous,

 symmetrically differentiable function / whose symmetric derivative assumes
 only the two distinct values a and /?, a < ß. ¿From the fact that a < SD/(x) <
 ß the monotonicity theorem shows that both f(x) - ax and ßx - f(x) are
 nondecreasing.
 Since SD/(x) is Baire 1 there are points of continuity of SD/(x) in every

 interval. But at a point of continuity there must be an interval in which
 SD/(x) assumes only the value a or the value ß. In such an interval the
 monotonicity theorem, applied once again, shows that / is linear with slope
 a or ß. Thus there is a maximal open set G so that in every component of G
 the function / is linear with slope a or ß.
 Let P denote the complement of G. P can have no isolated points. For if

 6 G P and (a, 6), (6,c) C G then / is linear with slope a or ß in each interval
 [a, 6], [6, c]. If the slope is the same in the two intervals then / is linear on
 [a,c] which contradicts the maximality of G. If the slope is different in the
 two intervals then SD/(6) = ^(a -f ß) and this value is not allowed for the
 symmetric derivative.
 If fact P must be empty. If not then P is perfect and, again using the fact

 that SD/(x) is Baire 1, there is a point of continuity of SD/(x) relative to P.
 Thus there must be a nonempty portion PO (a, b) so that either SD/(x) = a
 for all x G P H (a, b) or SD f(x) = ß for all x G P H (a, 6).
 Let us suppose the latter case; the argument for the former is similar.

 Consider some interval [c, d' contiguous to P in (a, 6). In the interval [c, d] the
 function / is linear with slope a or ß. Since SD /(c) = ß and /+(c) is either a
 or ß it follows that /1(c) exists too. But, since /(x) - ax and ßx - /(x) are
 nondecreasing, a < /1(c) < ß. This shows that

 /1(c) = 2SD/(c) - /1(c) > 2ß - ß = ß

 and so / cannot have slope a in [c, d'. Thus in this case in every interval
 contiguous to P in (a, 6) the function / is linear with slope ß. This means that
 SD/(x) = ß for all x G (a,¿) and hence / is linear in (a, b) which contradicts
 the fact that the portion P fl (a, 6) is nonempty.
 We can conclude that P must be empty and so we see that / can only be

 linear. This contradicts the fact that its symmetric derivative assumes two
 values and the conclusion of the theorem follows.
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 A symmetric derivative may, as already stated, assume three distinct finite
 values. Indeed let a, ß £ R with a ^ ß. Then there is a continuous, symmetri-
 cally differentiate function / such that its symmetric derivative assumes just

 the three finite values a, ß and ^(c*+ ß). (Simply bend the example f(x) = |x|
 into the right shape.) Using the arguments of Theorem 1, we can show that
 no other configuration is possible.

 THEOREM 2 Let a, ß, y € R with a < y < ß and y ^ ±(a + ß). Then
 there is no symmetrically differentiate function whose symmetric derivative
 assumes just the three values a, ß and y .

 Proof. As in the preceding proof we need only show that there is no

 continuous function / with this property. If there is then, as before, both
 f(x) - ax and ßx - f(x) are nondecreasing.

 We show that this cannot happen. Since SD f(x) is Baire 1 there are points
 of continuity of SD/(x) in every interval. But at a point of continuity there
 must be an interval in which SD/(x) assumes only the value or, ß or y' in such
 an interval / is linear with slope a, ß or 7. Thus there is a maximal open set
 G so that in every component of G the function / is linear with slope a, ß or
 7.

 Let P denote the complement of G. Exactly as before P can have no
 isolated points. If P is not empty then P is perfect and, yet again using the
 fact that SD/(x) is Baire 1, there is a point of continuity of SD f(x) relative to
 P. Thus there must be a nonempty portion Pfl(a, b) so that SD/(x) assumes
 just one of the three values a, ß or 7 for all x € P fl (a, 6).

 Let us suppose the value assumed is a. Consider some interval [c, d' con-
 tiguous to P in (a, 6). In the interval [c, d] the function / is linear with slope
 a, ß or 7. But, exactly as argued in the proof of Theorem 1, it cannot have
 slope ß . This means that in the entire interval (a, 6) the symmetric derivative
 assumes only the two values a or 7. But by Theorem 1 itself no function can
 exist with just two values for its symmetric derivative in an interval. Thus
 this case cannot occur.

 In the same way we may suppose that the value assumed is ß and again
 obtain a contradiction.

 Thus we arrive now at the case that SD/(x) assumes just the value 7 for all
 x€Pn(a, 6). We may suppose, without loss of generality that 7 > ^(ar + ß).
 Consider some interval [c, d] contiguous to P in (a, 6). In the interval [c, d] the
 function / is linear with slope a, ß or 7.

 Since SD/(c) = 7 and f+(c) is either or, ß or 7 it follows that /1(c) exists
 too. But, since f(x) - ax and ßx - f(x) are nondecreasing, a < /1(c) < ß.
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 This shows that

 f'+(c) = 2SD/(c) - !'_{c) > 27 - ß > a

 and so / cannot have slope a in [c, cf). Thus in this case in every interval
 contiguous to P in (a, 6) the function / is linear with slope ß or 7. This
 means that in the entire interval (a, 6) the symmetric derivative assumes only
 the two values ß or 7. Again by Theorem 1 no function can exist with just
 two values for its symmetric derivative in an interval. Thus this case cannot
 occur.

 As we have eliminated all possible cases we see that, as before, P must be
 empty so that / can only be linear; this contradicts the fact that its symmetric
 derivative assumes three distinct values.

 Evidently one might continue in this fashion asking for further conditions
 on the possible disposition of a symmetric derivative whose range is finite. I
 doubt, however, many readers could tolerate much more and few surprises are
 left in any case.
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