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BAIRE ONE FUNCTIONS AND PERFECT
SETS

A function is a Baire class one function if it is the pointwise limit of a se-
quence of continuous functions. The following theorem provides two equivalent
and quite useful characterizations of these functions.

Theorem Let f : [a,b] — R. The following are equivalent:
1. The function f is a Baire class one function.

2. For each real number r, the sets {z € [a,b] : f(z) < r} and {z € [a,}] :
f(z) > r} are F, sets.

3. For each perfect set P C [a,b], the function f|p (the restriction of f to
P) has at least one point of continuily in P.

The proof of this theorem can be found in several standard texts. See for
instance Natanson [2]. The focus here will be on the fact that (3) implies
(2). The typical proof of this implication uses transfinite numbers. We offer
here a proof that avoids the use of transfinite numbers. The key result is the
following lemma which is due to Romanovski [3]. A proof of this lemma can
also be found in Gordon [1].

Romanovski’s Lemma Let F be a family of open intervals in (a,b) and
suppose that F has the following properties:

1. If (a,B) and (B,7) belong to F, then (a,v) belongs to F.
2. If (a, B) belongs to F, then every open interval in (a, B) belongs to F.

3. If (a, B) belongs to F for every interval [, 8] C (c,d), then (c,d) belongs
to F.
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4. If all of the intervals contiguous 1o the perfect set E C [a,b] belong to F,
then there ezists an interval I in F such that INE # 0.

Then F contains the interval (a,b).

PROOF OF (3) = (2): The first step is to prove the following: if r and
s are arbitrary real numbers with r < s, then there exist disjoint F, sets
A and B such that [a,b) = AUB, A C {z € [a,}] : f(z) > r}, and B C
{z € [a,}] : f(z) < s}. Let F be the collection of all open intervals in
(a,b) that have such a decomposition. We will verify that F satisfies the four
conditions of Romanovski’s Lemma. It will then follow that (a,b) has the
required decomposition and hence [a, b] as well.

Suppose that (a,3) and (B,7) belong to . Let (a,8) = C, UC, and
(8,7) = D,UD, be the corresponding decompositions. Suppose that f(3) > r;
the case f(B) < s is similar. Then

(e,7) = (G- U D, U{BY)U(C, U D,)

is an appropriate decomposition of (a, 7). Hence (a,¥) € F. If (u,v) C (a, ),
then
(u,v) = (Cr N (u,v))U(C, N (u,v))

is an appropriate decomposition of (u,v). (The intersection of two F, sets is
an F, set.) Hence (u,v) € F. This shows that F satisfies conditions (1) and
(2).

Now suppose that (a, 3) belongs to F for every interval [a, 8] C (¢, d). Let
u be the midpoint of (c,d). We will prove that (u,d) € F. The proof that
(c,u) € F issimilar, then (c,d) € F by condition (1). Let {c,} be an increasing
sequence in (u,d) and let ¢o = u. For each n, let (¢,-1,¢,) = Ap U B, be an
appropriate decomposition of (cp_1,¢n). Define

mr={n€Z*:f(cn)>r} and m,={n€Z* —m : f(cn) < s}.

Since a countable union of F, sets is still an F, set,
[e°] 00
(u,d) = (U AnU{cn :new,})U(U B,,U{c,,:nEw,})
n=1 n=1

is an appropriate decomposition of (u, d). This shows that F satisfies condition
(3).

Finally, suppose that all of the intervals contiguous to the perfect set E C
[a, b] belong to F. By hypothesis, there exists a point z € E such that f|g is
continuous at z. Suppose for the sake of definiteness that f(z) < s. Now there
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exists an interval [¢c, d] such that ¢,d € E, En(c d)#80,z€[c,d),and f(z) < s
for all z € EN[c,d]. Let [¢,d] - E = U(c,,,d ) and let (cp,d,) = A, U B,

be an appropriate decomposition of (c,., d n) for each n. Since EN(c,d) is an
F, set,

@d)= (U 4.) u (U B2 (EN ()

is an appropriate decomposition of (¢,d). Hence F satisfies condition (4) of
Romanovski’s Lemma.

Now let r be an arbitrary real number and let {s,} be a decreasing sequence
of real numbers that converges to r. By the above result, for each n there exist
disjoint F, sets Ap, and B, such that [a,b] = A, U B,,

A, C{z€la,b]): f(z)>r}, and B, C {z€[a,b]: f(z) < sn}.

It is easy to verify that {z € [a,}] : f(z) > r} = U Ap and is therefore an F,

set. Similarly, the set {z € [a,b]: f(z) < r}is an F set. This completes the
proof.
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