Real Analysis Exchange Vol. 18(2), 1992/93, pp. 612-614

 Russell A. Gordon, Department of Mathematics, Whitman College, Walla Walla, WA 99362, email: gordon@whitman.edu

BAIRE ONE FUNCTIONS AND PERFECT **SETS**

 A function is a Baire class one function if it is the pointwise limit of a se quence of continuous functions. The following theorem provides two equivalent and quite useful characterizations of these functions.

Theorem Let $f : [a, b] \rightarrow R$. The following are equivalent:

- 1. The function f is a Baire class one function.
- 2. For each real number r, the sets $\{x \in [a, b] : f(x) < r\}$ and $\{x \in [a, b] : f(x) \le r\}$ $f(x) > r$ are F_a sets.
- S. For each perfect set $P \subset [a, b]$, the function $f|_P$ (the restriction of f to P) has at least one point of continuity in P.

 The proof of this theorem can be found in several standard texts. See for instance Natanson [2]. The focus here will be on the fact that (3) implies (2). The typical proof of this implication uses transfinite numbers. We offer here a proof that avoids the use of transfinite numbers. The key result is the following lemma which is due to Romanovski [3]. A proof of this lemma can also be found in Gordon [1].

Romanovski's Lemma Let $\mathcal F$ be a family of open intervals in (a, b) and suppose that F has the following properties:

- 1. If (α, β) and (β, γ) belong to F, then (α, γ) belongs to F.
- 2. If (α,β) belongs to F, then every open interval in (α,β) belongs to F.
- 3. If (α, β) belongs to F for every interval $[\alpha, \beta] \subset (c, d)$, then (c, d) belongs to T.

Key Words: Baire one functions

 Mathematical Reviews subject classification: Primary: 26A21 Received by the editors January 12, 1993

- 4. If all of the intervals contiguous to the perfect set $E \subset [a, b]$ belong to \mathcal{F} , then there exists an interval I in F such that $I \cap E \neq \emptyset$.
- Then F contains the interval (a, b) .

PROOF OF (3) \Rightarrow **(2):** The first step is to prove the following: if r and s are arbitrary real numbers with $r < s$, then there exist disjoint F_{σ} sets A and B such that $[a, b] = A \cup B$, $A \subset \{x \in [a, b] : f(x) > r\}$, and $B \subset$ ${x \in [a, b] : f(x) < s}$. Let F be the collection of all open intervals in (a, b) that have such a decomposition. We will verify that F satisfies the four conditions of Romanovski's Lemma. It will then follow that (a, b) has the required decomposition and hence $[a, b]$ as well.

Suppose that (α, β) and (β, γ) belong to F. Let $(\alpha, \beta) = C_r \cup C_s$ and $(\beta, \gamma) = D_r \cup D_s$ be the corresponding decompositions. Suppose that $f(\beta) > r$; the case $f(\beta) < s$ is similar. Then

$$
(\alpha, \gamma) = (C_r \cup D_r \cup \{\beta\}) \cup (C_s \cup D_s)
$$

is an appropriate decomposition of (α, γ) . Hence $(\alpha, \gamma) \in \mathcal{F}$. If $(u, v) \subset (\alpha, \beta)$, then

$$
(u,v) = (C_r \cap (u,v)) \cup (C_s \cap (u,v))
$$

is an appropriate decomposition of (u, v) . (The intersection of two F_{σ} sets is an F_{σ} set.) Hence $(u, v) \in \mathcal{F}$. This shows that $\mathcal F$ satisfies conditions (1) and (2).

Now suppose that (α, β) belongs to F for every interval $[\alpha, \beta] \subset (c, d)$. Let u be the midpoint of (c, d) . We will prove that $(u, d) \in \mathcal{F}$. The proof that $(c, u) \in \mathcal{F}$ is similar, then $(c, d) \in \mathcal{F}$ by condition (1). Let $\{c_n\}$ be an increasing sequence in (u, d) and let $c_0 = u$. For each n, let $(c_{n-1}, c_n) = A_n \cup B_n$ be an appropriate decomposition of (c_{n-1},c_n) . Define

$$
\pi_r = \{n \in Z^+ : f(c_n) > r\}
$$
 and $\pi_s = \{n \in Z^+ - \pi_r : f(c_n) < s\}.$

Since a countable union of F_{σ} sets is still an F_{σ} set,

$$
(u,d) = \left(\bigcup_{n=1}^{\infty} A_n \cup \{c_n : n \in \pi_r\}\right) \cup \left(\bigcup_{n=1}^{\infty} B_n \cup \{c_n : n \in \pi_s\}\right)
$$

is an appropriate decomposition of (u, d) . This shows that ${\mathcal F}$ satisfies condition
(3) (3).

Finally, suppose that all of the intervals contiguous to the perfect set $E \subset$ [a, b] belong to F. By hypothesis, there exists a point $z \in E$ such that $f|_E$ is continuous at z. Suppose for the sake of definiteness that $f(z) < s$. Now there

exists an interval $[c, d]$ such that $c, d \in E$, $E \cap (c, d) \neq \emptyset$, $z \in [c, d]$, and $f(x) < s$ for all $x \in E \cap [c, d]$. Let $[c, d] - E = \bigcup_{n=1}^{\infty} (c_n, d_n)$ and let $(c_n, d_n) = A_n \cup B_n$ be an appropriate decomposition of (c_n, d_n) for each n. Since $E \cap (c, d)$ is an F_{σ} set,

$$
(c,d) = \left(\bigcup_{n=1}^{\infty} A_n\right) \cup \left(\bigcup_{n=1}^{\infty} B_n \cup (E \cap (c,d))\right)
$$

is an appropriate decomposition of (c, d) . Hence F satisfies condition (4) of Romanovski's Lemma.

Now let r be an arbitrary real number and let $\{s_n\}$ be a decreasing sequence of real numbers that converges to r . By the above result, for each n there exist disjoint F_{σ} sets A_{n} and B_{n} such that $[a, b] = A_{n} \cup B_{n}$,

$$
A_n \subset \{x \in [a, b]: f(x) > r\}, \text{ and } B_n \subset \{x \in [a, b]: f(x) < s_n\}.
$$

It is easy to verify that $\{x \in [a, b] : f(x) > r\} = \bigcup_{n=1}^{\infty} A_n$ and is therefore an F_{σ} set. Similarly, the set $\{x \in [a, b] : f(x) < r\}$ is an F_{σ} set. This completes the proof.

References

- [1] R. Gordon, The inversion of approximate and dyadic derivatives using an extension of the Henstock integral, Real Analysis Exchange 16 (1990-91) 154-168.
- [2] I. P. Natanson, Theory of functions of a real variable, Vol. 2, Frederick Ungar Publishing Co., 1967.
- [3] P. Romanovski, Essai d'une exposition de l'integrale de Denjoy sans nom $bres$ transfini, Fund. Math. 19 (1932) 38-44.