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Abstract

In this paper we prove that each Baire one function u : R™ — R can
be written as u = f. g + h, where f,g,h : R™ — R are non-degenerate
derivatives (both notions with respect to the ordinary differentiation
basis).

In 1982 D. Preiss proved the following theorem [6].

Theorem 1 Whenever u : R — R is a function of the first class there are
derivatives f,g,h : R — R such that u = f . g + h. Moreover one can find
such a representation that g is bounded and h is Lebesgue and in case u is
bounded such that f and h are also bounded.

The generalization of this theorem for derivatives of interval functions (with
respect to the ordinary differentiation basis) was proved in 1989 by R. Carrese
[2). However, it is well known (and easy to prove) that derivatives needn’t
be non-degenerate everywhere. In this paper I prove that each Baire one
function u : R™ — R can be written as u = f . g+ h, where f,g,h: R™ —
R are non-degenerate derivatives (both notions with respect to the ordinary
differentiation basis). In the proof I use the Preiss’s method.

First we need some notation. The real line (—o0, o) is denoted by R,
the set of integers by Z, the set of positive integers by N and the set of
rationals by Q. To the end of this article m is a fixed positive integer. The
word function means mapping from R™ into R unless otherwise explicitly
stated. The words measure, almost everywhere (a.e.), summable etc. refer to
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the Lebesgue measure and integral in R™. We denote by a Vb (a A b) not
smaller (not greater) of real numbers @ and b. The Euclidean metric in R™
will be denoted by p. For every set A C R™, let diam A be its diameter
(i.e. diam A = sup{e(z,y) : z,y € A}), xa its characteristic function and
| A] its outer Lebesgue measure. Symbol [, f will always mean the Lebesgue
integral. We say that f is a Baire one function, if it is a pointwise limit
of some sequence of continuous functions. By ||f|| we denote the sup norm
of a function f (i.e. ||f]] = sup{|f(t)] : t € R™}). Finally, the oscillation
of a function f on a non-void set A C R™ will be denoted by w(f, A) (i.e.
w(f, A) = sup{|f(z) - f(¥)| : =,y € A}).

The word interval (cube) will always mean non-degenerate compact inter-
val (cube) in R™, i.e. Cartesian product of m non-degenerate compact intervals
(compact intervals of equal length) in R. We denote by I' the family of all
intervals.

Let n € N. We say that I is a basic cube of order n, if

I= [k‘ k1+l] X ... % [k"‘ k"‘+1]

on’ " 9n T 9n

for some ky,...,km € Z. The family of all basic cubes of order n will be
denoted by I'y. Elements of | J;—, I'n will be called simply basic cubes.

Remark. Observe that for any two basic cubes I and J, either I and J do
not overlap (i.e. INJ ¢gT),orICJ,or JCI.

The following lemma is a slightly modified version of Lemma 2.1 of [5].

Lemma 2 Let A C R™ be closed and € > 0. Then there ezists a family J of
non-overlapping basic cubes such that the following condilions are satisfied:

i) each z @ A belongs to the inlerior of the union of some finite subfamily

of J,
ii) diamJ < e A[o(A,J))? for each J € J.

Proof. Let T be a family of basic cubes such that | JZ = R™ \ A and each
z ¢ A belongs to the interior of the union of some finite subfamily of T [5,
Lemma 2.1]. Write each cube I € T as the union

kg
I= U J1,i
i=1

of non-overlapping basic cubes of diameter less than € A [o(4, I)]* and define

J={Jri: T€Z,ie{l,...,k1}}.
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Then the requirements of the lemma are obviously satisfied.
o

By interval function we will mean mapping from I into R.

We say that intervals I, J are contiguous, if they do not overlap and TU J
is an interval. We say that an interval function F is additive, if F(IU J) =
F(I)+ F(J) whenever I and J are contiguous intervals.

We say that a sequence of intervals {I, : n € N} is o-convergent to a point
z € R™, if

oo
l.z€ ﬂ I,
n=1

2. lim diam I, =0,
n—=—00

y m
3. limsup M < oo.
n—oco 17a]
We will write I, 2 z. (Cf e.g. [5).)
Let F be an arbitrary interval function and z € R™. We define

o-limsup F(I) = sup {lim supF(I,): I, > :c} .
Iz n-—00

In similar way we define o-liminf F(I) and o-lim F(I).
Iz Iz

We say that function f is an o-derivative, if there exists an additive interval
function F (called the primitive of f) such that for each z € R™,

Recall that o-derivatives are Baire one functions (cf 1, Lemma 2.1, p. 151]
and [5, Lemma 3.1]).
We say that z € R™ is an o-Lebesgue point of function f, if f is locally

summable at £ and
o-lim ——-f' lf - f=) =0.

Iz Ill

We say that f is an o-Lebesgue function, if each £ € R™ is an o-Lebesgue point
of f.
We say that z € R™ is an o-dispersion point of a set A C R™ iff

. |ANT] _
ohm = =0
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We say that A is d,-open, if each z € A4 is an o-dispersion point of R™ \ A.
The family of all d,-open sets forms a topology on R™, so called o-density
topology (cf [4]). The terms “d,-closed”, “d,-interior” (d,-int) etc. will refer
to this topology. We say that function f is o-approrimately continuous if
and only if it is continuous with respect to this topology. The family of all
o-approximately continuous functions will be denoted by Co.ap. Recall that:

o for every measurable set A C R™, |A\ d,-int A| =0,
e each element of C,..p is a Baire one function,
e each bounded element of C,.ap is an o-derivative.

The following lemma can be found both in [3] and in [2].

Lemma 3 Let B C R™ be measurable, let Fy,...,F,, C d,-int B be closed
and let ¢y,...,c, € R. Then there exists an o-Lebesque function ¢ such that

e p(z)=c, ifz€F,i€{l,...,n},
o p(z)=0, ifc ¢ B,
o |lol] < max{|ei|: i €{1,...,n}}.

We say that function f is o-non-degenerate at a point z € R™ if and only
if z is not an o-dispersion point of the pre-image of the set (f(z) —¢, f(z)+¢€)
by f for any € > 0. We say that f is o-non-degenerate, if it is o-non-degenerate
at each point z € R™.

Lemma 4 Assume that a sequence of pairwise disjoint sets {H, : n € N}, a
sequence of o-approrimalely continuous functions {h, : n € N} and c € (0,1]
satisfy the following conditions:

i) ha(z) =0, ifz ¢ Hy, n €N,
ii)) |{z € Hy: ho(z) =0} > c-|Ha|, n €N,

ii1) for every z & | Jnw, Hn and every > 0, there erists a cube I 3 z such
that diam I < 7 and for each n € N, either |H,NI|=0 or H, C I,

iv) for each j € N and each z € Hj, there is a p > j such that for each
n > p, diam H, < [o(z, H,))%.

Set h =37 | hn. Then h is o-non-degenerate.



NON-DEGENERATE DERIVATIVES 603

Proof. Take an £ € R™ and an € > 0. Denote by A the pre-image of the set
(h(z) — €,h(z) +¢€) by h.

First assume that z & |, Hn. For each n € N, let I,, be a cube chosen
according to iii) with 7 = 1/n. Then clearly I, 2 z and by conditions i) and
ii), we get

oo
ANL > {t €Ly : h(t) =0} 2> |\ |J He|+ D, c-|Hel 2c |l
k=1 HyCl,
Hence AnT]
o-limsup I >c>0.
Iz |I|

Now let z € H; for some j € N. Let p be a number chosen according to iv)
and let 7 > 0. Since the function g = Y"%_, h; is o-approximately continuous
and g(z) = h(z), there exists an 7 > 0 such that for each cube I 3 z, if
diam I < 5, then

Htel: |g@t) - h(z)| <e}|>(1-7)-|I].

Let I be a cube such that £ € I and diamI < 7. Denote by B the union
of those H,, with n > p which intersection with the frame of I is non-void.
Observe that

IBNI| < 2m-max{diam H, : n > p} - (diam )™~ < 2m . (diam I)™+!,
so

[AnI] > |{tel: |g(t)=h(z)|<e}n{tel: h(t)=g)}|

2 (1=7)- 1T+ 3 {t€INHn: ha(t) =0} +|I\ | Ha| = 1]
n>p n>p
> —7-|I|4c-|I\B|>(c—1—-2m*™2 diam]) - |I|.
Hence, since T was arbitrary, we get
. |[AN1I|
o-limsup >ec.
Iz IIl
O

Lemma 5 The sum of an o-approzrimately continuous function with an o-non-
degenerale function is o-non-degenerate.
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The proof is left to the reader.
O

Lemma 6 Given a function v and a non-empty set A CR™, ifw(v, A) < M?
for some M € R, then

o) w (VI 4) < M),
b) w (|v| v /M, A) < M2V M|,
) w (1A\/|T|,A) < M|,

Proof. Set wy = |v]V y/]v| and w2 = 1 A \/|v|. Let z,y € A.
a) If /|v(z)| < |M| and /]v(y)| < | M|, then obviously

|VRGE) - VW < 1211,

In the opposite case we have

< M2/|M| = M|

L o) = o)
|\/Iv(r)l -Vl = VIv(@) + V1)l

b) If |v(z)| < 1 and |v(y)| < 1, then

fwi(2) = w(®)| = |V - VG| < 1M1

In the opposite case we have
lwi(z) — wr(y)] < ||o(2)] = lo(w)] | < M2
¢) If ju(z)| > 1 and |v(y)| > 1, then
lwa(z) — wa(y)| = 0.

In the opposite case we have

[wa(z) = wa(y)| < |VRE)] - VW] < 1M1

The following two lemmas are due to R. Carrese.
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Lemma 7 [2, Proposition 3] Let Hy, H, ... be a sequence of pairwise disjoint
compact subsets of R™ and let (Kp)nen be a sequence of non-negative numbers
such that the function Y 0" | Kn - XH, is a Baire one function. Then there is
a sequence (€,)nen of positive numbers satisfying the following conditions:

a) for every sequence of functions fy, fa,..., if for each n € N,

i) fn is an o-derivative,
ii) fu(z) =0, ifz ¢ H,,
i) ||fall < Ko,

i) | [ £

then function f = 5.0 | fa is an o-derivative,

< &n for every interval I,

b) for every sequence of functions wy,ws,..., if forn € N,

i) wy, is an o-Lebesgue function,
ii) w,(z) =0, ifc ¢ H,,
tit) ||wn|| < Ka,

iv) / fwal < €n)
Kn

then function w = Y o>, wp is an o-Lebesgue function.

Lemma 8 [2, Proposition 2] Let u be a Baire one function. There are a Baire
one function v, a sequence {H, : n € N} of pairwise disjoint compact subsets
of R™ and a sequence (cn)neN of posilive numbers such that the

i) u—v is an o-Lebesgue function,
i1) v is o-approzimately continuous at all points of J,en Hn,

iii) v(z) = 0 whenever z € H,, for somen € N and z ¢ d,-intH,,
[=.°)
iv) lv] < Ecn *XHn)
n=1

v) E Cn - XH. 1S a Baire one function,
n€N

vi) v is bounded provided that u is bounded.

The next lemma is a modified version of Proposition 4 of [2].
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Lemma 9 Assume that a set A C R™ is non-void, bounded and measurable,
function v is o-approzimately continuous, v(z) =0 forz ¢ A, ||v]| <ec < 0
and € > 0. Then there ezist o-approrimately conlinuous funclions f and g
such that the following conditions are satisfied:

i) f(z)=9(z) =0 forz ¢ 4,
i) |fll £ 2eV V2, llgll S 1A Ve,

iii) '/If| <k,

iv)

/g' < € for every interval I,
I

/(v - f-g)l < € for every interval I,
I

v) {z € A: f(z) =0}| > |Al/4, {z € A: g(z) = 0}| > |Al/4,
vi) {z € A: v(z) = f(=) - 9(2)}]| > |Al/4.

Proof. Write A as the union A = Ufl:l Ap of measurable, pairwise disjoint,
non-void sets of diameter less than

€
16m-(1Ve)-(1Vdiam A)ym-1°

Forn € {1,...,k}, do the following.

If |[An| = 0, thenset p, =1, B, =Cr =Dy, = Aq1 = Pat = Qn1 =0,
fn1 = ¢n,1 = 0 and v, = v. Otherwise find disjoint measurable sets B,,,C,, C
A, and a closed set D,, C d,-intC, such that

7|An]/24 > |Ca| 2 |Dn| 2 |Ba| > |4n|/4.
Let ¢, be a non-negative o-approximately continuous function such that:
e po(z)=1if z € D,,
e ou(z)=0if 2 ¢ C,y,
e o, <lonR™

(cf Lemma 3). Put

Js,?

Up =0+ @q - .
n n fcﬁ¢n
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Express the set A, \ B, as the union A, \ B, = U;’;l An j of measurable,
pairwise disjoint, non-void sets such that for j € {1,...,pn}, vn does not

change its sign on A, ; and

2
€ £
) < )
w(vn, An j) £ 1V 2|4] A (1 v2|Al)

For j € {1,...,pa}, find closed, disjoint sets Py j,Qn ; C do-int Ay j such that
|P%J|=|QnJ|and

eN AL
8kpn - (1Ve)'

140, \ (Pn,j UQn ;)| <
use Lemma 3 to find an o-approximately continuous function ¢y, j such that
o pnj(z)=1ifz € P,;,
¢ ¢ni(@)=0if 2 & Anj,
o onj(z)=-1ifz€Qnj,
* |pnjl < 1onR™

and set
f Pnj (v,, \% Iv,,l) if v, > 0 on Ay ;,
nj = .
—Pnj - (lvnl vV Ivnl) if v, <0on Ay ;.
Define
k  pa
F=322 fni
n=1j=1
and

g:z((mm).:gw).

n=1

Then clearly f and g are o-approximately continuous and 1) is fulfilled. Since
forn € {1,...,k},if |[A,] > 0, then

jb.lﬂ
fc.. #n

1B.|
1Dl

llonll < llvll + Sc+e <2,

so condition ii) holds.
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Let I be an arbitrary interval. Denote by B the union of those A, ; which
intersection with the frame of I is non-void. Let & denote the diam A. Observe
that

IBNI| < 2m-max{diamAn;: n€{l,...,k},j€{1,...,pa}}-6™!
£ £
< . ‘6'"_1=———.
S I e TAV e (VeI 8- (Vo)

Since for every n € {1,...,k} and every j € {1,...,pn},

[ s |f A+l
Anj An i\(Pa,jUQn,;5) Py ;UQn,;
< (2cV\/2_c)’—€————+w(|v|V\/|le )IP il
ey 8kpn'(1VC) n nping nyy
€ € |An |

<
S Tk T IV

(cf Lemma 6), so

k n
= <22l A 2

k

pn
£ €'|Anj| /
RS WLy <e.
E(”" Tipn * 2 TVaT )+ oo ]

n=1

IN

Similarly we can prove that |f1y| <e.
For n € {1,...,k}, we have

[ w=1-9)

< / (v—f'y)+/ (v—vn)+/ (va = f-9)
B,. An\Bn AR\B'\
pn
< Z(/ Ivn—f-gl+/ lvn-f-yl)
j=1 \/4n;\(Pn,;UQn,;) Pa,;UQn,;
Pn
< E”vn = fgll - 1An; \ (Pn,; UQn ;)|
ij=1
€ €
S Pl g ive S %
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|/ ©=19)
/(v—f 9|+ /A‘M(v—ﬂg)l

< k--:+/ o-fol<S+lv=f-gll-IBAI|<e.
2L Bn

SO
fw-1-9)

IN

2

An \l#l

Note that {z € A: f(z) =0}n{z € A: g(z) = 0} D Ui_, B and
|Bn| > |An|/4 for n € {1,..., k}, so v) holds. Finally observe that

k
{z € A: v(z) = f(z) -9(z)}| = E Hz € 4n : v(z) = f(z) - 9(=)}|

n=1

{z € An : v(z) = va(2)} N {z € An : va(z) = f(2) - 9(2)}

M..-

3
1
-

Mn-

U(Pn,, UQnj)\Cn|2

1]j=

/4.

k
|4n|
2=: (lAn\Bnl — Pn 8kpn - lCnl

n
214

We will need a modified version of Lemma 8.

Lemma 10 Whenever u is a Baire one funclion there exist a Baire one func-
fion v, a sequence of pairwise disjoint, compact sels {H, : n € N} and a
sequence (cp)neN of non-negative real numbers such that the following condi-
tions are satisfied:

i) u — v is an o-Lebesgue function,
ii) v is o-approzimately continuous at all points of | Jo, Hn,

iti) v(z) =0, ifz € H, for somen €N and = ¢ d,-intH,,

oo
iv) ol < S en - X,
n=1

v) E ¢n - XH. 15 a Baire one function,
n=1
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vi) v is bounded provided that u 1s bounded,

vii) for every x € |Jo, Hn and every T > 0, there ezists a cube I 3 z such
that diamI < 7 and for each n €N, either H,NI =0 or H, C I,

viii) for each j € N and each z € Hj, there erists a p > j such that for each
n > p, diam H, < [o(z, H,))*.

Proof. First use Lemma 8 to find a Baire one function v, a sequence of pairwise
disjoint, compact sets {H, : n € N} and a sequence (,)nen of non-negative
real numbers satisfying conditions i)-vi). Analysing the proof of this lemma
it is easy to observe that we may also require that [J°°, . C (R\ Q)™. Set
Jo =T, and ng = 0. For each k € N, set A; = Uf;ll H; and apply Lemma 2
to find a family of non-overlapping basic cubes Ji = {J,n : n € N} such that
UJe = R™\ Ag, every z € R™ \ A; belongs to the interior of the union of
some finite subfamily of J; and

diam Ji p < i— A [Q(AkaJk,n)]2

for each n € N. We may also assume that J; is a refinement of J;_i, l.e.
each element of J; is contained in one of elements of Jir_; (cf Remark on
p. 600). By the compactness of Hi, only finitely many sets of the family
{Jea NHi : n € N} are non-void. Denote those sets by Hp,,_,+1,---, Hn,
and set ¢; = fori € {ng_1+1,...,nx}.

It is easy to see that conditions i)-vi) are still fulfilled. To prove vii) take
an z ¢ Un=y Hn and 7 € (0,1). Let k > 1/7 and let n € N be such that
z € Jin. Set I = Jpy. Then INUMET Hi = 0 and for | > nj_y, either
HiNI=0or H CI (cf the construction of the family {H, : n € N}).

Finally let j € N and z € Hj. Then j < nj for some k € N. Set p = n;. It
is obvious that p satisfies the requirements of condition viii).

O

Theorem 11 Whenever u : R™ — R is a Baire one function there ezist
o-non-degenerate o-derivatives f,g,h : R™ — R such that u = f . g + h.
Moreover one can find such a representation that g is bounded and in case u
is bounded such that f and h are also bounded.

Proof. Let function v, sequence of compact sets {H,, : n € N} and sequence
of non-negative real numbers (¢, )nen be as in Lemma 10. Apply Lemma 7
with K, = ¢n V /¢, (n € N) and find a sequence of positive numbers (en)nen
satisfying conditions of this lemma. For each n € N, use Lemma 9 with
A = H, and € = ¢,, getting in result o-approximately continuous functions
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fa and g, fulfilling its requirements. Set f = Y or, fa, 9 = Y ney9n and
h =u— f.g. By condition a) of Lemma 7, we get that f, g and v — f - g are
o-derivatives (conditions ii)-iii) of Lemma 10 and o-approximate continuity of
functions f, and g, imply o-approximate continuity of v, = vx g, — fu - gn for
each n € N).

By consecutive use of Lemma 4, for the families {f, : n € N}, {¢, : n € N}
and {v, : n € N}, we get that f, g and v — f . g are o-non-degenerate (the
assumptions of this lemma follow by conditions i), v) and vi) of Lemma 9 and
conditions vii)-viii) of Lemma 10). Since u — v is o-approximately continuous
and v — f-g is o-non-degenerate, h = (u —v) + (v— f - g) is o-non-degenerate,
too (cf Lemma 5).

If u is bounded, we can choose function v also bounded. Then the families
{fa: n € N}and {v, : n € N}have common bound, so f and h are bounded,
which completes the proof.

]
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