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 Abstract

 In this paper we prove that each Baire one function u : Rm - ► R can
 be written as u = / • g -f hì where /, g, h : Rm - ► R are non-degenerate
 derivatives (both notions with respect to the ordinary differentiation
 basis).

 In 1982 D. Preiss proved the following theorem [6].

 Theorem 1 Whenever u : R - ► R is a function of the first class there are
 derivatives f.g.h : R - ► R such that u = f - g + h. Moreover one can find
 such a representation that g is bounded and h is Lebesgue and in case u is
 bounded such that f and h are also bounded .

 The generalization of this theorem for derivatives of interval functions (with
 respect to the ordinary differentiation basis) was proved in 1989 by R. Carrese
 [2]. However, it is well known (and easy to prove) that derivatives needn't
 be non- degenerate everywhere. In this paper I prove that each Baire one
 function u : Rm - ► R can be written as u = / • g -f h, where /, g, h : Rm - ►
 R are non-degenerate derivatives (both notions with respect to the ordinary
 differentiation basis). In the proof I use the Preiss 's method.

 First we need some notation. The real line (-00,00) is denoted by R,
 the set of integers by Z, the set of positive integers by N and the set of
 rationals by Q. To the end of this article m is a fixed positive integer. The
 word function means mapping from Rm into R unless otherwise explicitly
 stated. The words measure, almost everywhere (a.e.), summable etc. refer to
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 the Lebesgue measure and integral in Rm. We denote by a V 6 (a A 6) not
 smaller (not greater) of real numbers a and 6. The Euclidean metric in Rm
 will be denoted by g. For every set A C Rm, let diatnA be its diameter
 (i.e. diamA = sup{g(x,y) : x>y G v4}), 'a its characteristic function and
 'A' its outer Lebesgue measure. Symbol fA f will always mean the Lebesgue
 integral. We say that / is a Baire one function, if it is a pointwise limit
 of some sequence of continuous functions. By ||/|| we denote the sup norm
 of a function / (i.e. ||/|| = sup{|/(ť)| : t G Rm}). Finally, the oscillation
 of a function / on a non-void set A C Rm will be denoted by u>(f,A) (i.e.
 u >(/, A) = sup{|/(i) - f(y) I : X, y e >1}).
 The word interval (cube) will always mean non-degenerate compact inter-

 val (cube) in Rm, i.e. Cartesian product of m non-degenerate compact intervals
 (compact intervals of equal length) in R. We denote by T the family of all
 intervals.

 Let n G N. We say that I is a basic cube of order n, if

 j _ k' -f 1 ^ km km -f 1
 _ ~~ [2" 1 2n J ^ ["2^' 2n

 for some G Z. The family of all basic cubes of order n will be
 denoted by Tn. Elements of Tn will be called simply basic cubes.

 Remark. Observe that for any two basic cubes I and J, either I and J do
 not overlap (i.e. I fl J £ T), or I C J, or J C /.

 The following lemma is a slightly modified version of Lemma 2.1 of [5].

 Lemma 2 Lei A C Rm be closed and e > 0. Then there exists a family J of
 non-overlapping basic cubes such that the following conditions are satisfied :

 i) each X £ A belongs to the interior of the union of some finite subfamily
 of J,

 ii) diam J < e A [^(^4, J)]2 for each J G J .

 Proof. Let Z be a family of basic cubes such that |JZ = Rm ' A and each
 X £ A belongs to the interior of the union of some finite subfamily of X [5,
 Lemma 2.1]. Write each cube I G T as the union

 */

 ' = IK<
 i=i

 of non-overlapping basic cubes of diameter less than e A 1)]2 and define

 J = J 61, «€{1,... ,*/}}.
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 Then the requirements of the lemma are obviously satisfied.
 □

 By interval function we will mean mapping from T into R.
 We say that intervals J, J are contiguous , if they do not overlap and J U J

 is an interval. We say that an interval function F is additive , if F(I U J) =
 F(I) + F( J) whenever I and J are contiguous intervals.

 We say that a sequence of intervals {/n : n £ N} is o-convergent to a point
 X e Rm, if

 oo

 1. * e pļ In,
 n = l

 2. lim diam In = 0,
 n - ► oo

 (diam In)m
 3. limsup

 n- >oo |/n|

 We will write In => x . (Cf e.g. [5].)
 Let F be an arbitrary interval function and x € Rm. We define

 o-limsupiJ1(7) = sup < limsup F(In) : /„ => x > .
 /=>r L n-^oo J

 In similar way we define o-liminfF(7) and o-lim F(J).
 /=>r /^x

 We say that function / is an o-derivative , if there exists an additive interval
 function F (called the primitive of /) such that for each x G Rm,

 ■íJ;?Tír=/w-

 Recall that o-derivatives are Baire one functions (cf [1, Lemma 2.1, p. 151]
 and [5, Lemma 3.1]).

 We say that x € Rm is an o-Lebesgue point of function /, if / is locally
 summable at x and

 o-lim^17"/^1 =0.
 /=> r |/|

 We say that / is an o-Lebesgue function , if each x G Mm is an o-Lebesgue point
 of/.

 We say that x G Rm is an o-dispersion point of a set A C Rm iff

 <_limJ4Q2! '=>* l'I = 0. '=>* l'I
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 We say that A is d0-open, if each x G A is an o-dispersion point of Km ' A.
 The family of all d0-open sets forms a topology on Rm, so called o- density
 topology (cf [4]). The terms "d0-closed", ad0-in1erior" (d0-int) etc. will refer
 to this topology. We say that function / is o- approximately continuous if
 and only if it is continuous with respect to this topology. The family of all
 o-approximately continuous functions will be denoted by C0_a p- Recall that:

 • for every measurable set A C Mm, 'A ' d0-intA ' = 0,

 • each element of Co_ap is a Baire one function,

 • each bounded element of Co- ap is an o-derivative.

 The following lemma can be found both in [3] and in [2].

 Lemma 3 Let B C Rm be measurable , let Fi,...,Fn C d0-intB be closed
 and let ci,...,cn 6K. Then there exists an o-Lebesgue function <p such that

 • <p(x) = d, ifx e Fi, i € {1, . . . , n},

 • <p(x) = 0, ifx £ B,

 • IMI < max{|c,| : i e {1, . . .,«}}•

 We say that function / is o-non-degenerate at a point x G Mm if and only
 if x is not an o-dispersion point of the pre-image of the set (f(x) - e , f(x) + e)
 by / for any e > 0. We say that / is o-non-degenerate , if it is o-non-degenerate
 at each point x E Rm.

 Lemma 4 Assume that a sequence of pairwise disjoint sets {Hn : n G FI}, a
 sequence of o-approximately continuous functions {hn : n G N} and c G (0, 1]
 satisfy the following conditions :

 i) hn(x) = 0, ifx £ Hni n G N,

 ii) '{xeHn: hn(x) = 0}| > c • 'Hn', n G N,

 iii) for every x £ UnLi an ¿ everV T > 0, there exists a cube I 3 x such
 that diam I < r and for each n G N, either 'Hn fl I' = 0 or Hn C /,

 iv) for each j G N and each x G Hj , there is a p > j such that for each
 n> p, diamHn < [é>(x, Hn)]2 .

 Set h = hn. Then h is o-non-degenerate.
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 Proof. Take an a: € Rm and an e > 0. Denote by A the pre-image of the set
 (/»(*) - £,h(x) + e) by h.
 First assume that x £ U~=1 H„. For each n € N, let I„ be a cube chosen

 according to iii) with r = 1/n. Then clearly /„ ^ x and by conditions i) and
 ii), we get

 OO

 'A n /„I > '{t € In : h(t) = 0}| > /„ ' (J Hk + Y, c ■ 'Hk' > C ■ |/„|.
 ib = l i/lcC/n

 Hence
 |A n /|

 o-limsup - ¡-71 - > c > 0.
 /=►* m

 Now let x G Hj for some j € N. Let p be a number chosen according to iv)
 and let r > 0. Since the function g = hi is o-approximately continuous
 and g(x) = h(x)> there exists an rj > 0 such that for each cube I 3 x, if
 diam I < 77, then

 |{<€/: 'g(t)-h(x)'<e}'>(l-r).'I'.

 Let I be a cube such that x G I and diami < rj. Denote by B the union
 of those Hn with n > p which intersection with the frame of / is non- void.
 Observe that

 |sn/|< 2 m • ma x{diam Hn : n > p) > ( diam I)m~l < 2m • ( diam /)m+1,

 so

 'ADI' > I {tel: I g(t) - h(x) I <e}n{tel: h(t) = ^(0)1

 > (l-r).|/|+^|{<€/nffn: /,„(0=0)1+ I''jHn - |/|
 n>p n>p

 > -T ■ 'I' + c ■ 'I ' B' > (c - r - 2 rn1+m/2 • diam I) • |/|.

 Hence, since r was arbitrary, we get

 'AM'
 O-limSUp

 /=>x |i|

 □

 Lemma 5 The sum of an o- approximately continuous function with an o-non-
 degenerate function is o-non- degenerate.
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 The proof is left to the reader.
 □

 Lemma 6 Given a function v and a non-empty set A C i/u;(t;,v4) < M2
 for some MÇl, then

 a) w (-y/H.yl) < 'M',

 b) w (|v| V yH, ,4) < M2 V 'M',

 c) u (1 A yR,>i) < 'M',

 Proof. Set w' = 'v' V '/Jt7f and = 1 A '/M- x,y € A.
 a) If >/|i;(a:)| < 'M' and y/'v(y)' < |M|, then obviously

 |'/ra-N/rai|<i^i.
 In the opposite case we have

 M*** - ^ - I JUrail s
 b) If 'v(x)' < 1 and 'v(y)' < 1, then

 |wi(x) - u>!(j/)| = ļ'/|f(z)| - '/|f(t/)|ļ < 'M'.

 In the opposite case we have

 H(z) - wi(y)| < I K*)l - |v(y)| I < M2.

 c) If |v(x)| > 1 and 'v(y)' > 1, then

 I w2(x) - w2{y)' = 0.

 In the opposite case we have

 |u>2(s) - t/>2(y)| < |'/H*)| - '/|i(y)l| < 'M'.

 □

 The following two lemmas are due to R. Carrese.
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 Lemma 7 [ 2 , Proposition 3] Let H i, //2, • • be a sequence ofpairwise disjoint
 compact subsets o/IRm and let (Kn)nefi be a sequence of non-negative numbers
 such that the function Kn • XHn is & Baire one function . Then there is
 a sequence (fnJneN of positive numbers satisfying the following conditions :

 a) for every sequence of functions /1, / 2, .. if for each n£ N,

 i) fn is an o-derivative,

 H) fn(x) = 0, ifx £ Hn,

 iii) 1 1 fn 1 1 < I<n,

 iv) J fn < €n for every interval I,

 then function f = fn is an o-derivativef

 b) for every sequence of functions W2, . . if for nÇH,

 i) wn is an o-Lebesgue function ,

 ii) wn (x) = 0, if X 0 Hn,

 Hi) llu,n|| < I<n,

 iv) / 'wn'<en,
 JKn

 then function w = Wn ,s an °-Lebesgue function .

 Lemma 8 [2, Proposition 2] Let u be a Baire one function. There are a Baire
 one function v, a sequence {Hn : n G N} of pairwise disjoint compact subsets
 o/Km and a sequence (cn)n€N of positive numbers such that the

 i) u - v is an o-Lebesgue function,

 ii) v is o- approximately continuous at all points of Un€N^n>

 Hi) t'(x) = 0 whenever x G Hn for some n € N and x £ d0-intHni
 00

 n = 1

 v) ^2 cn ģ XHn is a Baire one function ,
 n€ N

 vi) v is bounded provided that u is bounded.

 The next lemma is a modified version of Proposition 4 of [2].
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 Lemma 9 Assume that a set A C is non-void, bounded and measurable,
 function v is o- approximately continuous, v(x) = 0 for x £ A, ||v|| < c < oo
 and € > 0. Then there exist o- approximately continuous functions f and g
 such that the following conditions are satisfied:

 i) f(x) = g(x) = 0 for x £ A,

 ») ll/ll < 2c V y/2c, llffll < 1 A VŤČ,

 |y /1 < £> 1/ <7 J < £ for every interval I, in)

 iv) |^(v - / • $o| < £ for every interval I,

 v) I {a? G A : f(x) = 0}| > 'A'/4, '{x e A : g(x) = 0}| > 'A'/4,

 vi) '{x e A : v(x) = f(x) - y(x)}| > Ml/4.

 Proof. Write A as the union A = (J*=1 An of measurable, pairwise disjoint,
 non-void sets of diameter less than

 e

 16 m • (1 V c) • (1 V diamA)m -1

 For n £ {1 do the following.
 If |.4„| = 0, then set pn = 1, Bn = Cn = Dn = An,i = Pn%' = Qn>1 = 0,

 fnl = <pn l = 0 and vn = v. Otherwise find disjoint measurable sets Bn,Cn C
 An and a closed set Dn C d0-intCn such that

 7M„|/24 > 'Cn' > 'Dn' > 'Bn' > 'An 1/4.

 Let (pn be a non-negative ©-approximately continuous function such that:

 • <Pn(x) = 1 if X e Dn,

 • <Pn(x) = 0 if X ^ Cn,

 • V^n < 1 on Rm

 (cf Lemma 3). Put
 Ib v

 Vn = V + <Pn-'JJLL-.
 fcn V«
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 Express the set An' Bn as the union A„' Bn = Ujlj Anj of measurable,
 pairwise disjoint, non- void sets such that for j 6 {l,...,pn}, v„ does not
 change its sign on An j and

 For j G {1, . . • i Pn } » find closed, disjoint sets Pnj,Qnj C cf0-intj4n¿ such that
 1-^ = an(^

 Kj ' (PnjUQnj)' < (1 V c) '
 use Lemma 3 to find an o-approximately continuous function fn,j such that

 • fn,j(x) = 1 if X G Pnj,

 • V>n,j(x) = 0 if X £ Anj,

 • Vn,i(x) = -1 if X e Qn, j,

 • '9nJ' <lonr

 and set

 (<Pn,j • (t>n ' ('Vn Vvra) if if»« vn < > 0 0 on on An%j. An>j , ' ('Vn if vn < 0 on An%j.
 Define

 k Pn

 /=¿£/»j Pn
 n = 1 j = 1

 and

 9 = YL ((ÍAn/M) •
 Then clearly / and g are o-approximately continuous and i) is fulfilled. Since
 for n E {1, . . . , &}i if I An I > 0, then

 IK||<|HI + f^<c V" + cļ§4<2c, lJn I Jcn V" « lJn I

 so condition ii) holds.
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 Let I be an arbitrary interval. Denote by B the union of those Anj which
 intersection with the frame of I is non- void. Let 6 denote the diamA. Observe
 that

 |ßfi/| < 2mn'Rx{diamAnj : n G {1, . . . , Ic), j G {1, . . . , pn}} • ¿m_1
 < 2m

 16m • (1 V c) • (1 V i)™-1 8-(lVc)

 Since for every n G {1, . . . , Je} and every j G {1, . . . ,pn},

 / ' s / w '
 < {2cvV2cj • 8Jkpn.(1Vc) +w (|wn| V y/M,Anj) 'Pn,j'

 < £ . g'MnJ I
 ~~ 4lcpn 1 V 4|yl|

 (cf Lemma 6), so

 // = I/ s¿£ / /+ E / /
 s '<f

 Similarly we can prove that |/7 <z| < €.
 For n G we have

 ♦Mn I

 < f (v-fg)+ f (v-Vn) + [ (vn-f.g)
 JBn JAn'Bn J An'Bn

 < ¿(/ 'vn-f'9'+[ |vn-/-0N
 i = 1 '^n.i'(i,«.iUgWii) JPnjUQnJ J

 - HVyl ^ * ^11 ' l^n»i ' (Pnj ^ Qnj) I
 ;=i

 < Pn 4c gjļ.^ . (1 V c) ~ '
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 so

 Jl /( v-f-g ) = I/ ( v-fg ) Jl 'JAnI

 < si/ I/ (»-/•«)

 < * • ¿ + JBni lv - / • si < 5 + II" - / • ffll • Iß n /| < e.

 Note that {i G i : /(s) = 0} fi {z E -4 : <7(2) = 0} D Un=i and
 'Bn I > |-,4n 1/4 for n G {1, . . . ,*}> so v) holds. Finally observe that

 k

 |{* G A : t>(«) = f(x) ■ y(x)}| = J]) |{* e An : «(as) = /(«) • <7(x)}|
 n=l

 ifc

 ^ K® € '• "(*) = "»(*)) n ix e An : "«(*) = f(x ) • ff(*)}l
 n=l

 í=í i = l n=l V 8A*» /
 > Ml/4.

 □

 We will need a modified version of Lemma 8.

 Lemma 10 Whenever u is a Baire one function there exist a Baire one func-
 tion v, a sequence of pairwise disjoint , compact sets {Hn : n G N} and a
 sequence (cn)„gN of non-negative real numbers such that the following condi-
 tions are satisfied :

 i) u - v is an o-Lebesgue functionf

 ii) v is o- approximately continuous at all points of (JnLi ^n>

 iii) v(x) = 0, if X E Hn for some n G N and x £ d0-intHn,
 00

 iv) M <^2cn XH.,
 n = 1

 00

 v) cn • 'Hn is a Baire one function ,
 n=l
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 vi) v is bounded provided that u is bounded ,

 vii) for every x £ (Jn=i H n an ^ everV T > 0; there exists a cube I 3 x such
 that diami < r and for each n G N, either Hn fi I = 0 or II n C I,

 viii) for each j G N anrf eacft x G Hj, there erists a p > j such that for each
 n>p, diamHn < [eix, Hn)]2 .

 Proof. First use Lemma 8 to find a Baire one function t>, a sequence of pairwise
 disjoint, compact sets {Hn : n G N} and a sequence (cn)n€N of non-negative
 real numbers satisfying conditions i)- vi). Analysing the proof of this lemma
 it is easy to observe that we may also require that IJ^Li Hn C (R ' Q)m. Set

 k 1 ~~*~
 J0 = r i and no = 0. For each k G N, set Ak = U»=i k 1 H* an(^ aPP'y Lemma 2
 to find a family of non-overlapping basic cubes Jk = {Jk,n : n G N} such that
 'JJk = Rm ' Ak , every x G Rm ' ^¿ belongs to the interior of the union of
 some finite subfamily of Jk and

 diam Jk¡n < ¿ A [e(j4*, Jt,n)]2

 for each n G N. We may also assume that Jk is a refinement of J7jb_i, i.e.
 each element of Jk is contained in one of elements of Jk-' (cf Remark on
 p. 600). By the compactness of Hk , only finitely many sets of the family
 {Jk,n H Hk : n G N} are non-void. Denote those sets by Hnkmmí+ 1, . .
 and set c,- = Ck for i G -fi,..

 It is easy to see that conditions i)- vi) are still fulfilled. To prove vii) take
 an x £ UnLi and r G (0, 1). Let k > 1/r and let n G N be such that
 x G Jk,n • Set I = Jk,n- Then / H Hi = 0 and for / > n*_i, either
 Hļ fi I = 0 or H¡ C I (cf the construction of the family {Hn : n G N}).

 Finally let j G N and x G Hj. Then j < n* for some Jfc G N. Set p = n*. It
 is obvious that p satisfies the requirements of condition viii).

 □

 Theorem 11 Whenever u : IRm - ► R is a Baire one function there exist
 o-non-degenerate o-derivatives f^g^h : Mm - ► M such that u = f - g + h.
 Moreover one can find such a representation that g is bounded and in case u
 is bounded such that f and h are also bounded.

 Proof. Let function v, sequence of compact sets {Hn : n G N} and sequence
 of non-negative real numbers (cn)n€N be as in Lemma 10. Apply Lemma 7
 with Kn = cn V y/Ķļ (n G N) and find a sequence of positive numbers (£n)n€N
 satisfying conditions of this lemma. For each n G N, use Lemma 9 with
 A = H n and e = £n, getting in result o-approximately continuous functions
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 fn and gn fulfilling its requirements. Set / = £^=1/n, 9 = 9n and
 h = u - / • <7. By condition a) of Lemma 7, we get that /, g and v - / • g are
 o-derivatives (conditions ii)- iii) of Lemma 10 and o-approximate continuity of
 functions fn and gn imply o-approximate continuity of t;„ = v'Hn - fn • <7n for
 each nGD).
 By consecutive use of Lemma 4, for the families {/n : n G N}, {</„ : nÇR}

 and {t>„ : n G N}, we get that /, g and v - / • g are o-non-degenerate (the
 assumptions of this lemma follow by conditions i), v) and vi) of Lemma 9 and
 conditions vii)- viii) of Lemma 10). Since ti - v is o-approximately continuous
 and v - / • g is o-non-degenerate, h = (u - v) + (t; - / • g) is o-non-degenerate,
 too (cf Lemma 5).
 If u is bounded, we can choose function v also bounded. Then the families

 {fn : n G N} and {vn : n G N} have common bound, so / and h are bounded,
 which completes the proof.

 □
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