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ON A THEOREM OF MENKYNA*

Abstract

We charaterize the set where an almost everywhere continuous Baire 1
function is not a.e. continuous in the O’Malley sense.

In the paper [3] Menkyna gives a characterization of the set of points at
which a Baire 1 function f : (a¢,b) — R is approximately continuous. In
this article I show an analogous characterization of the set where an almost
everywhere continuous Baire 1 function is a.e. continuous in O’Malley’s sense
(cf [4]). Since the set of all points at which f is not approximately continuous
is of (Lebesgue) measure zero and the set where f is not a.e. continuous
may be of positive measure, such a characterization of the set where f is a.e.
continuous is not possible for all Baire 1 functions.

Let R denote the set of reals and let m be the Lebesgue measure in R.
If A C R is a measurable (in the Lebesgue sense) set and if z € R then the
number

du(A,z) = lir}?sup m(AN [z —h,z+h])/2h
-0

is called the upper density of A at z. The lower density di(A, z) is defined
analogously. If dy(A, z) = di(A, z), we call this number the density of A at
z and denote it by d(A,z). The family T, of all measurable sets A C R such
that if z € A then d(A,z) =1 is a topology said the density topology (cf [1]).
The family T,, of all sets A € Ty such that m(A — intA) = 0 (intA denotes
the euclidean interior of A ) is a topology said the a.e. topology (O’Malley
[4]). Let f : (a,b) — R be a function. The function f is said to be a.e.
continuous at a point z € (a, b) if for every € > 0 there is a set B € T,, such
that z € B and f(B) C (f(z) —¢, f(z) +¢€) (cf [4]). Denote by C,.(f) the set
of all points z € (a,b) at which f is a.e. continuous. Let I,...,I,,... be a
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sequence of all open intervals with rational endpoints. Forn, k,1 =1,2,... let
Apnri be the set of all points z € (a,b) for which there exists an open interval
Jn(z) containing z and such that

(1) m(cl({t € Ju(z); f(t) € R - I})) > m(Ja(2))/1

(cl(X) denotes the closure of X) , m(Jn(z) < 1/n, and if I = (ck,di) then
f(z) € [ex + m(I)/4,dr — m(I)/4].
It is easy to verify that:

Remark 1 The equality
[o2) o)
(a» b) - Cae(f) = U ﬂ Anki
kJl=1n=1

holds.

Remark 2 If f is a Baire 1 funclion then every set Appi,n, k,1=1,2,..., is
an G sel. Consequently, the set (a,b) — C,e(f) is an Gso sel.

Remark 3 If f is an almosl everywhere continuous function then m((a,b) —

Cae(f)) = 0.
Now, let & be a family of sets. Define

d(®,z) = du(|_J{A € ®;d(4,2) = 0},2)

(cf [3)) -

The main result of this article is the following:

Theorem 1 If f : (a,b) — R, a,b € R, is an almost everywhere continuous

Baire 1 function then there is a sequence of open sets V,,n = 1,2,..., such
that
2) m(cl(Va)=Va)=0,n=1,2,...,
and
[>°]
3) (a,6) = Cae(f) = {1z dL({T2),2) > 0,
n=1

where T? are the components of V,, and conversely, for every sequence of open
sets V, C (a,b),n=1,2,..., satisfying (2) there is a Baire I function f such
that (3) holds.
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Proor. If (V) is a sequence of open sets satisfying (2), then the same as in
the proof of Theorem 5 from [3] we define for n = 1,2,...,

_ 0 if z € (a,b) - ,(a:nbr‘l)
1) = { Gt - a0 a) 15 € oh B

where (@, b%) is the middle open third of T}.
It is easy to compute that every f, is a derivative (compare [1]) and that

(a,0) = Cae(fn) = {z; du({T3 }s, 2) > 0}.

The function f =4-1f; +...4+4""f, + .- - is a derivative (cf [1] ,p.17) and
therefore a Baire 1 function. Moreover,

(a,0) = Cae(f) = U((a,b) = Cae(fn)) = U{z;d;({T,:},,z) > 0}.

For the proof of the converse implication we introduce some notation and
prove several lemmas.

Lemma 1 Let f : (a,b) — R be an almost everywhere continuous Baire
1 function. There is a sequence of almost everywhere conlinuous Baire 1
functions fir such that every set fi((a,b)) is isolated, and

|fe = f| < min((4k)~1, m(Ix)/8), k =1,2,...

ProoF oF LEMMA 1. Denote by C(f) the set of all continuity points of f.
Since m((a,b) — C(f)) = 0, by Vitali’s Theorem there is a countable disjoint
collection Ji, ..., Jn,... of open intervals such that m((a,b) — Jp=; Jn) =0
and oscy, f < min((4k)~!,m(I;)/8)/2,n=1,2,.... Then the set F = (a,b) -
U, Jn is closed in (a,b) and m(F) = 0. There is a Baire 1 function ht : F —
R such that the set hi(F) is isolated and |hx — f| < min((4k)~1, m(I})/8) (cf
[2], p-294). Then the function

— Yn ifzeJﬂ)n=l,2,...
fi(z) = {h,,(a:) ifzeF,

where |y, — f(z,| < min((4k)-?, m(I;)/8)/2 forsome z, € Jo,n =1,2,...and
the set hiy(F)U {yn;n = 1,2,...} is isolated, satisfies all required conditions.
This finishes the proof of Lemma 1.

Now, let K¥,i,k = 1,2,..., be closed sets such that |J; K¥ = (a,b) for
k =1,2,..., and the restrictions of the functions fi from Lemma 1 to K¥ are
constant functions. Let

i, = I(',‘k nﬂA,.u.
n
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Since f is an almost everywhere continuous Baire 1 function, every set Ai, is
of type G5 and measure zero.

Lemma 2 The inclusions
f(cl(AY) C I, k,1,i=1,2,...
hold.

PROOF. Every function fi is constant on the set c/(AL;) C K} and |f(z) —
fie(z)| < min((4k)~1, m(I;)/8) for every z € (a,b). Fix y € Ai,. Then

If(@)] < 1f(2) = fi(2)l + | fe(z)] < m(1e)/8 + | fi(y)]
< fe(y) = fFWI+ (W] + m(1k)/8 < m(1k)/8 + m(1k)/8 + |f(y)]
for every z € cl(A};). Since
f(y) € lee + m(Ie)/4, di = m(Ie)/4],
f(z) € I, = (ck, dx) for each z € cl(AL)).

Lemma 3 Let U D Al be an open set. Then there is an open set U’ such
that U D U’ D A}, and for each component T, of U’ we have

m(T, N [(a,d) — cl(4};)] > m(T, Ncl({z; f(z) € R = I}) > m(T,)/2l.

PROOF. From the definition of the set A%, it is evident that for every z € A},
we may choose an open interval J(z) C U such that

m(cl({t € J(z); f(t) € R = I})) > m(J(z))/l.

Let U’ = J{J(z);z € AL,}. If T, is a component of the set U’, then according
to Lemma 2 from [3] we have

m(cl({t € T,; f(t) € R - I })) > m(T;)/ 2.

So, we have the second inequality. Since f is almost everywhere continuous,
we have also

m(T, N {z; f(z) € R - It}) = m(T, Ncl({z; f(z) € R - I+})).
From this, by Lemma 2, we obtain the first inequality.
Lemma 4 For every set AL, there is an open set V such that
(a,0) = Cae(f) D {2; d}({T2}s,2) > 0} D A}y,

where T, are the components of the set V.
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ProoOF. The proof of this Lemma is completely analogous as the proof of
Theorem 4 and Corollary 1 in [3]. In the construction of the intervals Ji" we
apply Lemma 3.

Remark 4 Observe that the set V from Lemma { is such that m(cl(V)-V) =
0.

Indeed, from the definition of AL, it follows that cl(A%,) C cl({z € (a,b); f(z) €
R — I}). By Lemma 2, f(cl(A};)) C It. Since f is almost everywhere con-
tinuous, we have m(cl(A};)) = 0. From the construction of V (cf [3], pp.416 -
417) it follows that m(cl(V) — V — cl(AL;)) = 0. so, m(cl(V) - V) = 0.

Now the proof of the converse implication of Theorem 1 is the same as that
from [3]. It suffices to observe that (a,b) — Cae(f) = Ugyi=1 Aki and apply
Lemma 4.

In the same way as in [3] we obtain:

Remark 5 Theorem 1 is true, if we replace the concept “an almost everywhere

continuous Baire I function” by “an almost everywhere continuous derivative”.
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