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 TYPICAL PROPERTIES OF CONTINUOUS

 FUNCTIONS VIA THE VIEROTIS

 TOPOLOGY

 If E is a residual subset of a complete metric space X, each x in E is called
 a typical element of X. When the set of all elements of X with a given property
 is residual, we say that this property is typical. We consider typical properties
 in C(X) where X is compact metrizable and C(Ar) denotes the Banach space of
 all continuous real-valued functions with the norm ||/|| = sup{|/(x)| : x G X}.
 In particular, we take XCI = [0, 1].

 Several typical properties in C(I) are known (see [Br]). Among them, those
 concerning level sets [/ = a] = {x : /(x) = a}, a G R, and, more generally,
 sets of the form [/ = h' = {x : /(x) = A(x)}, h G Dy where D is a fixed
 subset of G(J), have been studied. It turns out that each level set of a typical
 / G C(7) is small in various senses. We employ the Vietoris topology on the
 space K(X) °f nonempty, closed sets in X and describe a new technique
 of showing that, for some D Ç C{X) and E Ç K(X)y the set

 {feC(X):(VheD)[f = h}eE}

 is residual. We give two applications.

 Let X be a compact metrizable space. Let K(X) denote the space of
 all nonvoid closed subsets of X, with the Vietoris topology generated by the
 subbase consisting of sets

 U(G) = {F € K(X) : F Ç G}, V {G) = {F G K(X) : F fi G ¿ 0}

 where G is an arbitrary open set in X . Then K(X) is compact and metrizable
 ([Kr], §42 I, II). If y is a topological space, '¡) : Y - ► K(X) is called upper
 semicontinuous (abbr. use) when tp"1[U(G)] is open for each open G Ç X
 (cf. [Kr], §43 I).

 We say that E Ç K(X) is of type GJ (or is a G¿ set) if E = fļneu; Wn
 and each Wn is the union of sets of the form U(G) for an open G Ç X.
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 Note that some open sets of the form V(G) are not of type GJ. Indeed,
 consider any open G such that 0 / G ^ X. Suppose that V(G) is of type
 GJ, i.e. V(G) = rin€wUt€Tn V(ßt) w^ere TnS are arbitrary sets and G^'s
 are open in X . If F = {xi^x^} where x' G G and xi £ G, then, obviously
 F G V^(G). Hence, for each nGw, there is some <„ inTn such that F 6 Í7 (GJ*ä ).
 Consequently, {x2} G fìnew ^(^?n) £ ^(^0» which contradicts x2 £ G.

 Proposition 1 If E Ç /ť(X) is a GJ seť, then, for any D Ç C(-Y), the set

 Q(ZJ, £?) = {/€ G(.Y) : (VA G D)[/ = A] G £}

 is of type G s .

 Proof. For any A G D, let : C(X) - C(X) and r : C(.Y) - K(X) be
 given by 07>(/) = / - A and r(f) = /-1[{0}], respectively. Then r is use (see
 [Kr], §43 I, Th.l) and an is obviously continuous. Thus Toah is use. Hence the
 mapping iļ> : C(X) - ► K(X) given by ^(/) = f)heD(TOCrh)(f) is a,so usc ÜKr]>
 §43 I,
 Th. 5). This, by the definition of a G ¿ set, easily implies that rļ>~l[E] is
 of type G¿. Since %1>~l[E] = íí(.D, J5), we get the assertion. □
 For XCI and D Ç C(/), we denote {/ 'X : / G D) by D'X.

 Theorem 1 Let X be a closed subset of I. Let A denote the family of all
 analytic functions on I. If E Ç K(X) is a G*6 set containing all finite sets in
 X, then , for any DCA such that A'D is dense in G(/), the set Q(D'X , E )
 is dense of type Gs, hence residual in C(X).

 Proof. In the light of Proposition 1, it suffices to show the density of
 Q(D'X , E ). This will be done if we prove (j4'D)|JY Ç Q(D'X, E) since,
 clearly, (^'£>)I-Y
 is dense in G(JY). So, take arbitrary / G (A'D)'X and h G D'X. Then
 [/ = h ] is finite since, otherwise, it has a point of accumulation and from
 /, h G A'X we would get / = /i, a contradiction. So, [/ = h] G E and,
 consequently, f G Q(D, E). □
 The sets of all standard polynomials and of all trigonometric polynomials

 serve as examples of D in Theorem 1, which follows from the fact that they are
 dense in C(/) and their intersection (the set of constant functions) is nowhere
 dense.

 Note that the family of all finite sets in X is dense in /'(^Y) ([Kr], §17
 II, Th.4), so a GJ set E containing all finite sets in residual in K(X). By
 Theorem 1, for the respective D, the operation Q(D'Xi •) transforms E onto
 another residual set (in C(/)).
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 We are interested in the case when E in Theorem 1 consists of small sets,
 for instance, when it forms an ideal of closed sets (thus the assumption that
 E contains all finite sets becomes natural). Note that <r-ideals of compact sets
 were extensively studied in [KLW]. Now, among G¿ tf-ideals in A'(A'), one
 may separate a new class of G¿ <7-ideals. Let us have a look at two examples.
 Recall that a function 7 : V(X) - ► [0,-foo) is a Choquei capaciiy on X if

 (i) 7(0) = 0, and A Ç B implies f{A) < 7 (J9),

 00 7(Un <4") = suPn l(An) 'î A0 Ç Ai Ç A2 Ç . .

 (iii) 7(Pln 'n) = infn 7(Fn) if Fo D Fi D Fi D . . . are compact sets,

 (cf. [D], [KLW]). From (i) and (iii) it follows that if F 6 K(X) and 7(F) < ť,
 there is an open UDF such that 7 (U) < i. So, the family of all closed 7-null
 sets forms a G¿ set in K(X) and, if 7 is subadditive, we get a GJ cr-ideal (see
 [KLW], p. 280).

 Corollary 1 Lei y be a Choquei capaciiy on a closed X Ç /, vanishing on all
 finiie seis. For a iypical f G G(-Y), if h E D where DCA and A'D is dense
 in C(X), ihen 7 [/ = h] = 0.

 In particular, Corollary 1 works for any finite continuous Borei measure
 fi on X (this result is probably known) since the outer measure fi* forms a
 Choquet capacity.

 Example 1 (cf. [My]). Let 2<u> and 2" denote the sets of all finite and infinite
 sequences with terms in {0, 1}, respectively. Assume that 2W is endowed with
 the product topology. For ß Ç 2W and L Ç a/, consider the following game
 r(B, L) between two players: I and II. They choose the consecutive terms of
 X e 2": player I picks x(i) if i G u>'L and player II - if i G L. When each of
 them makes his choice, he knows all previous moves. Player I wins if x G B
 and player II - if x $ B. Let V¡j(L) denote the family of all B' s for which
 player II has a winning strategy in T(J3,L). Now, consider a family of sets
 Ls Çw, for s G 2<u' such that L9q'JLsi Ç Ls and LsoDL8i = 0 for s G 2<u'
 Then M = Ç}{Vu{L$) : s G 2<u>) forms a (T-ideal called a Mycielski ideal.
 It is curious that there exists a set in M whose complement is of the first
 category and of measure zero (we mean the standard product measure on 2W,
 isomorphic to the Lebesgue measure on I).

 From Proposition 2.1 in [BaR] it follows at once that MC'K(2") is of type
 GJ. Since 2W is homeomorphic to the classical Cantor set in /, we may assume
 that 2 WC / and from Theorem 1 we derive
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 Corollary 2 For a typical f in C(2W), if h G D, where DCA and A'D is
 dense in C(I), then [f = h] G AI.

 Let us compare the above results with similar theorems in the literature.
 The assumptions on D in Theorem 1 seem rather strong. For instance, from
 the theorem of Goffman ([GP], p. 158) it follows that, for any ¿r-compact
 D Ç C(7), the set {/ G C(J) : (VA G D)('[f = h] = 0)} is residual (A stands
 for the Lebesgue measure). A similar result concerning Hausdorff measures,
 where D is relatively large ( D ^ ^4), is announced in [H]. On the other hand,
 our Corollary 1 deals with any capacity (but D C A). The role of Theorem 1
 consists in its universal nature: it includes typical properties connected with
 each E Ç K(X) of type GJ containing finite sets (however, to ensure the
 density of 0(jD, E ), we had to restrict the class of sets D). Note that D cannot
 be too large. The result of [BrH] states that, for any <r-compact D Ç C(7), if
 E consists of closed bilaterally strongly porous sets, then Q(D, E) is residual.
 (By the way, we know from [L] that all closed bilaterally strongly porous sets
 form a G s set in K(I ), but we do not know whether it is of type GJ, so,
 Theorem 1 is useless at this moment.) On the other hand, Buczolich proved
 in [Bu] that, for each / G C( /), there is an absolutely continuous h such that
 [/ = h] is not bilaterally strongly porous. Thus D = (absolutely continuous
 functions) is too large to make the respective ft(D, E) residual.

 Finally, note that, having a residual set H in C(X), one can create the
 corresponding residual sets in C(X) x C(X). For instance, the set

 H* = {(/,*) G C( X) X C(X) : f - g G H)

 is good. Indeed, consider a Gs residual set B Ç H. Then B * is also of type
 G e , by the continuity of (/, g) f - g. Moreover, for any g G C(X)Ì the set
 ( B*)g = {/ G C(X) : (f,g) G B*} equals B + g={h + g:he fl}, thus it is
 residual. Hence, by the Kuratowski-Ulam theorem, B* is residual and H* is
 residual, too.
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