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 An absorption property for the composition of
 functions

 1. Introduction

 We investigate various classes of functions of a real or complex variable with
 respect to the following property: if go f is in a given class for some surjection
 / in the class, then g is in the class.

 We begin by noting the following simple, fundamental result which is well
 known [10], but for which we include a proof since there does not seem to be
 a proof written down anywhere.

 Theorem 1.1. Let f be a continuous function from the reals , R1, onto R1.
 If g is a function from R1 into R1 such that g o f is continuous , then g is
 continuous.

 Proof. Let y„,y E R1 such that yn - ► y. We will show that there is a
 subsequence {yn, } of {yn} such that g(yni) -> g{y)- This implies the continuity
 of g.

 Choose points p, q £ R1 such that p < y < q and p < yn < q for each
 n. Then, there are points a < b such that /({a, 6}) = {p, g}. Then, since
 /([a, b]) is connected and p, q 6 /([a, 6]), [p, q] C /([<*>&]). Thus, we have
 yn,y € /([<*, t]) for each n. Hence, for each n , there exists xn 6 [a, 6] such
 that f(xn) = yn. Let be a convergent subsequence of with
 xni -> X. By the continuity of /, f(xnt) -> f(x). Thus, since f(xni) = yni
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 and yni - ► y, /(x) = y and /(xnJ - ► y. Hence, using continuity of g o /,

 Hm 9(yr>i) = lim ( g o /)(x„,) = (g o /)(x) = g(y).
 l-KX) »-»CO

 This finishes the proof. □
 We remark that straightforward modifications of the proof just given show

 that Theorem 1.1 remains true when the domain of / is any metric semi-
 continuum (= any two points lie in a compact, connected subset) and the
 range of g is any topological space. Related results are in [7] and section IV
 ofM-

 We also remark that / in Theorem 1.1 is required to map onto R1 since,
 otherwise, g could behave arbitrarily on IR1 ' /(R1).

 The theorem above leads directly to the following general notion. Let T be
 a class of functions from a space X into itself such that at least one member
 of T is a surjection (= a map of X onto X.) We say that T has the right
 absorption property (abbreviated RAP) provided that if g: X - ► X is such that
 g o f G T for some surjection / € then g € T.

 Note that Theorem 1.1 says that the class of all continuous functions from
 R1 into R1 has RAP. Also note that any class T of functions on a space X
 which is a group under composition has RAP (since g = (g o /) o /-1 for any
 g: X X and any / G T.)

 We shall obtain some results about RAP. The classes of functions we con-

 sider are of general interest, and our results provide some interesting contrasts.

 2. Results

 We begin with the following classes of functions. Let A' denote the class
 of all analytic functions from R1 into R1 (i.e., A' consists of all those C°°
 functions /: R1 - ► R1 which sure locally equal to their Taylor series.) Let A2
 denote the class of all analytic functions from the complex plane, C, into C
 [1, p. 24]. For each n = 1,2, . . ., let Cn denote the class of all continuous
 functions from Euclidean n-space, Rn, into Rn, and, for any k such that 1 <
 k < 00, let C* denote the class of all functions from Rn into Rn which are k
 times differentiate. (Note: C' A2 since, for C*, we are using the Fréchet
 derivative, i.e., the matrix of partíais.)

 Theorem 2.1«

 fa) A2 has RAP , but A' does not have a RAP.

 (b) Cn does not have RAP for n > 1 though C' has RAP.

 (c) C* does not have RAP for any n = 1,2, .. . and for any k = 1,2, . . .,00.
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 Proof OF (a). To prove that A2 has RAP, let g: C -* C be such that gof G At
 for some / G A2, where / maps C onto C. Let ç 6 C. We show that g is
 analytic at q. For this purpose, let p G C be such that f(p) = q . We consider
 two cases.

 Case 1: /'(p) 0. Then there is an open neighborhood U of p such that /
 has an analytic inverse, A, on W = /([/) [1, p. 132]. Thus, since

 g = (gof) oh on W and gofeA^y

 g is analytic on W. Therefore, since W is an open neighborhood of q, we
 conclude that g is analytic at q.

 Case 2: f'(p) = 0. First notice that / is not constant since / maps C onto
 C. Hence, / is a continuous, open map [1, Corollary 1, p. 132]. Thus, since g of
 is continuous on C, g is continuous on C [11, Thms 9.2 and 9.4, p. 60]. Thus,
 to show that g is analytic at q , it suffices by [1, Thm 7, p. 124] to show that
 there is a region, 0, such that q and g is analytic on Q ' {q}. Since / is
 not constant, we see that the sets f~l(q) and (//)*"1(0) have no accumulation
 point in C [1, p. 127]. Hence, there is a region, V , such that p G V% f'(z) ^ 0
 for any z G V ' {p}, and V fi f~l(q) = {p}. Now, let Q = f(V). Then, ū
 is a region (since / is an open map), q 6 ÌÌ, and, applying the argument in
 Case 1 to any z € V ' {p}, we see that g is analytic on Í2 ' { q }. Therefore, g
 is analytic at q .

 In view of what we have shown in Case 1 and Case 2, we have proved that
 g € Aí- Therefore, we have proved that A2 has RAP.

 Now, to prove the second part of (a), simply let f(x) = x3 and g(x) = x1/3
 for all x € R1. Then, / € A', f maps R1 onto R1, g o f G A', and g A'.

 PROOF OF (b) AND (c). The second part of (b) is Theorem 1.1, and (c) for
 n = 1 is proved using / and g in the proof of the second part of (a). Finally,
 the first part of (b), as well as (c) for n > 1, is a consequence of Example 2.2
 given below. □

 Example 2.2. For each n > 1, there exists C°° function f from Rn onto Rn
 and a discontinuous function g: Rn - ► Rn such that gof is in C°°.

 Proof. We show this first for the case when n = 2.

 Define h: R1 - ► R1 by letting h(x) = e~*~* for x ^ 0 and h( 0) = 0. It is
 well known that h is C°° [4, p.40]. Now, define /: R2 -► R2 by letting, for each
 (x, y) € R2,

 /(*,y) = (h(x)cos ,M*)sin [= A(*)eia'/(1+»')ļ .
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 Clearly / is C°° map of R2 onto R2. Also, note (*) below which follows from
 simple calculations and which will be used to define the desired function:

 (*) if f(x 1 , yi) = f(x2t y2), then (x', x'y') = x?y?).

 Now, define g from R2 into R2 as follows. Let (x, y) € R2. Then, since / maps
 R2 onto R2, there exists (xi,yi) € f~l(x*y)- Define

 = («?. «i»?)-

 Note that g is a function (i.e., depends only on (x,y)) since, by (★), g(x,y) is
 independent of the choice of (xi,yi) € Z""1 (x, y). Since

 (g o f^z.w) = (z21z2w2) for each (z,ti;)€R2,

 clearly g o f is C°°. However, g is not continuous since, as we now show, g is
 not continuous at (e"1, 0). For each k = 1, 2, . . . , let Zk = /(1, k). Then, since
 (by the formula for /)

 zk = for each k ,

 we see that z* - ► (e""1, 0). However, since (by the formula for g o /)

 g(zk) = flf(/(l, k)) = (1, fc2) for each k ,

 we see that the sequence {ý(^)}tLi is unbounded. Therefore, g is not contin-
 uous at (e'^O). This completes the verifications of the example for the case
 when n = 2. To obtain such an example for any given n > 2, simply consider
 the functions

 /n = (/,"*) and gn = {9iid),

 where f,g' R2 - ► R2 are as above and id is the identity map on Rn~2. □

 Remark. Let T be a class of functions from a space X into X such that
 the identity map of X is in T' if there is a one-to-one, surjection / G T such
 that Z"1 £ T) then T does not have RAP. This general observation expresses
 the real reason that A' does not have RAP (compare with the proof of the
 second part of (a) of Theorem 2.1). It can also be used to show that some other
 classes of functions do not have RAP. For example, it can be used to show that
 the class of density continuous functions and the class of J-density continuous
 functions do not have RAP (in fact, each class contains a homeomorphism
 whose inverse is outside the class). See [9] and [3] for the former, and [2] for
 the latter.
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 For our next result, let ^4o(w) denote the class of all continuous functions
 from C into C which are analytic at all but at most countably many points.
 Similarly, let A'(u) denote the class of all continuous functions from R1 into R1

 which are analytic at all but countably many points. Moreover, for / € *4i(w),
 we let N(f) denote the set of all those points at which / is not analytic. (Note
 that N(f) is closed in R1 since being analytic at a point is, by definition, a
 local property.)

 Now, although A2 has RAP (Theorem 2.1(a)), the functions in Example
 2.2 show that ^(w) does not have RAP. The situation for A' and A'(u) is
 the reverse - A' does not have RAP (Theorem 2.1(a)), but A'(u) does have
 RAP as we now show.

 Theorem 2.3. The class j4i(cj) has RAP .

 Proof. Let gilH1 - ► R1 be such that gof£ Ai(u>) for some / E A'(u) where
 / maps R1 onto R1 . Let

 B = {xeR1'N(f):f'(x) = Q} and A = BU N(f) U N(g o /).

 Note that B is closed in R1. We will show that f(A) is countable and that g
 is analytic on R1 'f(A). This will finish the proof since, by Theorem 1.1, g is
 continuous.

 To see that f(A) is at most countable, let V be a component of R1 ' N(f).
 Then, V is open and either B fi V is at most countable or / is constant on
 B fi V. In both cases, f(B fi V) is at most countable. Thus, since R1 ' N(f)
 has at most countably many components and B C R1 ' N(f), we conclude
 that f(B) is at most countable. Thus, since the sets N(f) and N(g o f) are
 also at most countable, /(j4) is at most countable.

 To show that g is analytic on R1 ' /(A), let q 6 R1 ' f(A) and let p G R1
 such that /(p) = q. Then, p € R1 ' A. In particular, / and g o / are analytic
 at p and f'(p) ^ 0. Hence, there is an open neighborhood, Î/, of p, such that
 U C R1 ' A and / has an analytic inverse, A, on W = f(U) . Thus, since

 g =z (</ o /) o h on W and U fi N(g o /) = 0,

 g is analytic on IV. Thus, g is analytic at q. □

 Our next result is of a general nature. We give two specific applications of
 it in Corollary 2.5.

 We adopt the following terminology. For a family, T ' of functions from a
 set X into X, we say that a set, C, is hereditary for T provided that, for every
 E C C, the characteristic function of E , Xe, belongs to T .
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 Theorem 2.4. Let T be a class of functions from a set X into X such that
 there exists f € F, f mapping X onto X , and a set S which is not hereditary
 for T but such that f~l(S) is hereditary for J7. Then, T does not have RAP .

 Proof. Let / and 5 be as in the statement of the theorem, and let E C S
 be such that Xe & T, Put g = X¡ 5. Then, g o f e T since <70/ = X/-i(£)
 and f"1(E) is a subset of f~l(S) which is hereditary for T. Thus, T does not
 have RAP. O

 The following corollary is concerned with the class, M , of all measurable
 functions from R1 into R1 (the term measurable means Lebesgue measurable)
 and with the class, ß, of all functions from R1 into R1 with the Baire property

 [5, p. 399], i.e., / € B means that for every open set, [/, in R1, /"l( U) has the
 Baire property. (A set T C R1 have the Baire property provided there exists
 an open set IVcR1 such that the symmetric difference of T and W is of the
 first category in R1 [5, p. 87].)

 Corollary 2.5. Neither class M nor class B has RAP .

 Proof. In what follows, C denotes the Cantor ternary set.
 To prove the theorem for the class M> let ^ denote a well-known homeo-
 morphism of [0, 1] onto [0,2] such that tļ> maps C onto a set of measure one
 [4, Example 16, p. 98]. Extend i/> arbitrarily to a homeomorphism, /, from
 R1 onto R1. Then, f £ M and, letting S = /(C), S is not hereditary for M
 while C = f~l(S) is hereditary for M . Hence, by Theorem 2.4, M does not
 have RAP.

 The proof for the class B is similar. Let T be a subset of C such that T
 is homeomorphic to the set of irrational numbers, P. Then, T is a G s set.
 (In fact we can choose T as C without its end points.) Let <1>:T - ► P be a
 homeomorphism onto P. Extend <¡> to a Baire function / from R1 onto R1 such
 that /(R1 ' T) = R1 ' P. Then: / 6 #, P is not hereditary for #, and, since
 /-1(P) = T C C, /-1(P) is hereditary for B . Hence, by Theorem 2.4, B does
 not have RAP. □

 Two other classes of functions from R1 into R1 which are of general interest
 are the class, of all Darboux functions (/ G D means the image, /(/), of
 any interval I is connected) and the class, /C, of all connectivity functions
 (/ € fC means the graph of the restriction of / to any interval is connected.)
 We note that C' C K C V and that V ^ K [6, p. 131]. We have the following
 example.

 Example 2.6. Neither class V nor class K has RAP.
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 PROOF. We will show this by giving an example of a function / G /C, /
 mapping R1 onto R1, and a function g: R1 - ► R1 such that g o / ç /C and
 g £ V. The functions / and g are defined as follows:

 f * + l(l/*)sin(l/a:)| i>0 f
 /<*) = { f 0 « = 0 «(«) = { f ^ *' [ X - |(l/x)sin(l/x)| X < 0 ^

 It is easy to see that / and g have the desired properties. □
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