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 ABSOLUTE INTEGRATION USING VITALI
 COVERS

 1. Introduction

 In the Henstock theory of integration, we use Riemann sums to define an
 integral. An immediate question is to prove the uniqueness of the integral. On
 the real line and for the ordinary covers, the uniqueness follows from the Heine-
 Borel covering theorem. For other cases, the situation is more complicated.
 At times, we have to use the category argument which is standard in the
 classical integration theory. It is interesting to note that when Kubota [1]
 proved the uniqueness of his integral he used the Vitali covering theorem
 and not the Heine-Borei covering theorem. The Vitali covers have also been
 used by McShane [3, p.89] to define a stochastic integral which he calls the
 belated integral. An advantage of using Vitali covers is that we do not need to
 prove the existence of partitions of a given interval. The B- variational integral
 defined by Thomson [5, p.381] and the proximal integral defined by Sarkhel [4]
 are integrals of this sort, in which the existence of partitions is not necessary.

 In this paper, we shall consider an absolute integral using Vitali covers,
 which includes McShane's nonstochastic Itô-belated integral, and prove that
 this absolute integral and the Lebesgue integral are equivalent. As a conse-
 quence, McShane's nonstochastic Itô-belated integral and the Lebesgue inte-
 gral are equivalent, which gives an affirmative answer to the question (related
 to the above statement) posed by McShane in [3, p. 91].

 2. B * integrals

 The terminology used in this paper follows mainly Thomson's papers [5].
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 Let R be the set of real numbers. Let Ï be the set of all closed intervals

 in R having a non-empty interior. An element (J, x) G I x R is called an
 interval-point pair. Let jí be a collection of interval-point pairs. Then ß is
 said to be a Vitali cover of a set E C R if for each e > 0 and any x in E there
 is an interval-point pair (/, x) € ß such that x e I and the length |/| of I is
 less than e. Let B be a collection of Vitali covers of [a, 6], Then B is filtering
 if ß' > ßi € ß, then there is ßz G B with /?3 C ßi H /?2- Let D C ß, ß € ß. For
 brevity, we write D = {(/, x)} where (/, z) denotes a typical interval-point pair
 in D. Then D is said to be a partial /?-partition of [a, 6] if {/; (/, x) 6 D) is a
 finite collection of nono veri apping subintervals of [a, 6]. A partial /^-partition
 D = {(/, x)} of [a, 6] is a ^-partition of [a, 6] if U {/; (/, i) 6 D} = [a, 6].
 Example (i). Let S(x) > 0 on [a, 6], and

 ßi = {([«I v], z); X e [o, 6], x G [«, v] C (* - ¿(x), x + ¿(x))}.

 Then ßt is a Vitali cover of [a, 6]. Let be the collection of all /?«. Then Bh
 is filtering.
 Example (ii). Let 6(x) > 0 on [a, 6] and

 ßt = {([«i "]> *); x 6 [a, 6], [ti, d] C [x;x + 6(i)),u = x).

 Then ßi is a Vitali cover of [a, 6]. Let Bm be the collection of all ßt. Then
 Bm is filtering.
 Example (iii). Let S be a positive constant, and

 ßb = {([u,v],x);x€ [a, 6], x 6 [u,t>] C (x-6,x + 6)}.

 Then ßs is a Vitali cover of [ a , 6]. Let Br be the collection of all ßb- Then Br
 is filtering.

 For other interesting examples, see [5, pp. 98-105].
 Throughout this paper, a collection of Vitali covers of [a, 6] is always de-

 noted by B . We always assume that B is filtering. ( D ) denotes the sum
 over D = {(/,x)} and 'I' denotes the length of an interval I.

 Now we shall introduce the B* integral and its properties.

 Definition 1 A function f defined on [a, 6] is said to be B* integrable to A
 if for every e > 0 there exist rj > 0 and ß G B such thai for any partial
 ß-partition D = {(/, x)} of [a, 6] with ( D ) £ |/| > b - a - r}, we have

 Note that the above definition is well-defined, in view of Vitali's covering
 theorem.
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 Denote A = (B* ) j f.
 Most of the proofs of the following theorems are similar to those of the

 corresponding theorems for the Henstock integral, [2,pp.4-12].

 Theorem 1 The B* integral is uniquely determined.

 Proof. Let e > 0. Suppose that there are AhAi; »71,^2; ßi,ß2 satisfying
 Definition 1. Put ij = min(77i,7/2) and choose ß G B with ß C ß' n/?2- Then
 for any partial /^-partition D = {(/, x)} of [a, 6] with ( D ) £ |/| > 6 - a - 77 we
 have

 Mi-A2| < |^-(D)£/(x)|/|| + |,42-(Z>)£/(*)|J||
 < 2f.

 We obtain A' = A<x.

 Theorem 2 If a function f defined on [a, 6] is Lebesgue integrable then f is
 Bit integrable on [a, 6], and

 (B'h) J f / = (£) /*/. J a Ja

 where Bjj is given in Example (i).

 Proof. Since a Lebesgue integrable function is Henstock integrable and the
 values of the two integrals agree [2, p. 11], for every e > 0 there is ßs0 € Bh
 such that for any partial /?¿0-fine partition D = {(/,x)} of [a, 6] we have

 < e

 where F(I) denotes the Henstock integral of / over I.
 Note that F is absolutely continuous on [0,6]. Then for e > 0 there is

 tļ > 0 such that for any finite sequence D' = {/} of nonoverlapping intervals
 with (D') J2 |/| < 77, we have (D') £ 1^(^)1 < €. Consequently, for any partial
 ßt0 -partition D = {(/, x)} of [a, 6] with ( D ) £ |/| > ò - a - 17, we have

 |(J?)£/(*)|J|-F(a,6)| < (Z?)£/(z)|/|-F(J)

 +(Z?1)^|F(/)|
 < 2e
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 where (Di) denotes the sum over the complement intervals of U{/; (I, x) 6
 D}. Thus / is Bfļ integrable on [a, 6], and

 m) íf-
 Ja Ja

 Elementary properties of the B* integral can be proved. However here we
 only prove that the Cauchy criterion holds and that if / is B* integrable on
 [a, 6], then / is B* integrable on each subinterval of [a, 6].

 Lemma 3 (Cauchy Criterion) . A function f is B* integrable on [a, 6] if
 and only if for every e > 0 there arer¡> 0 and ß 6 B such that for any two
 partial ß-partitions D = {(/,*)} and D' = {(/',*')} with ( D )£ |/| > b-a-r)
 and ( D' ) ¿ 'I'' >b - a - rii we have

 |(£K) £ f(x')'I'' - ( D ) £ /(*) W| < e-

 Proof. We shall only prove the sufficiency. Let en be monotone decreasing
 to 0. Let i]n and ßn be given as in the above condition with given en. We
 may assume that /?n+i C ßn and T]n+i < rjni for each n. Let Sn denote
 (Dn)Y^f(x)'I'i where Dn = {(/,«)} is a partial ^-partition of [a, 6] with
 (Ai) 5Z 1^1 > & - a - *?n • Here Dn , and thus Sn , are fixed. Note that if m > n,
 then Dm is a partial ^-partition of [a, 6] and (Dm) £1^1 > & "" a - r)m >
 6 - a - t)n. Hence

 'Sn Sm I < if ^ ^ n •

 Therefore A = lim Sn exists. Given e > 0, choose n with en < s and
 n-»oo

 |5„ - A' < e. Then for any partial /?„-partition D = {(/,x)} of [a, 6] with
 (D) £ |J| > 6 - a - we have

 |(I>)£/(*)|J|-A| < |(tf)£/(*)|/|-S„| + |Sn->l|
 < £n +e

 < It.

 Thus / is B* integrable on [a, 6].

 Theorem 4 If f is B* integrable on [a, 6], then f is B' integrable on each
 closed subinterval of[a,b ].

 Proof. Let [c, d] C [a, b]. Since / is B* integrable on [a, 6], the Cauchy
 condition holds. Given e > 0, and let ß G B and r¡ > 0 be given as
 in the condition. We may assume that |c - d| > r'ļ 2 and |a - 6| - |c -



 Absolute Integration Using Vitali Covers 413

 d' > t}/2. Take any two partial ^-partitions Di = of [c, cf] with
 (A)EI/(0I > |c - d| - 77/2, 1 = 1,2. Take another partial /^-partition
 D3 = {(/<3>, x(3))} of [a, c] U [d, b] with (£>3) E l/(3)l > |c - a| + |6 - d| - r?/2.
 Let Si = (A)E/(X^)I^I* 1 = Then Di U D3, for i = 1,2, form
 partial ^-partitions of [a, 6] with (JD, UD3)53 Ul > b-a - r¡. The Riemann sum
 of f over Di U D3 is 5,- + 53, for i = 1,2. Therefore by the Cauchy condition
 we have

 |Si - S2I ^ |Si + S3 - (So + 53)1 < 2Ê.

 Thus / is B* integrable on [c, d].

 Lemma 5 (Henstock's Lemma) . Let f be B* integrable on [a, 6]. Then
 for every e > 0, there is ß G B such that for any partial ß-partition D =
 {(/, x)} o/[a,6], we have

 where F(I) denotes the B* integral of f over 1.

 Proof. Let e > 0. Then there exist r¡> 0 and ß G B such that for any partial
 /^-partition Do = {(/, x)} of [a, 6] with (Do) E U' > b - a - *?, we have

 |(A>)£/(*)|/|-F(«,6)|<e.
 Let D = {(/, x)} be any fixed partial /^-partition of [a, b]. Let E' be the union
 of intervals I from D . Let E2 be the closure of [a, 6]'JE7i, say Eo = {[a,-, .
 Then / is B* integrable on each [a¿,6i]. For each t, there exist ņ,- with 0 <
 Vi < *ì/N and ßi € B with /?,• C ß such that for any partial /?,--partition
 Di = {(/(*5, of [a,-, bi] with (Di) £ > bi - at- - rç,-, we have

 |(A)E/(*(<))|/(<)| - F(oi, 6,)| < e/N.
 For each 1, choose a fixed Z?,-. Then

 P) E l7l + E(°') E l/(,)l > |6-a|-^,
 »

 and D' = UtA* U D is a partial ^-partition of [a, 6]. For simplicity, D' is
 denoted by {(J,x)}. Hence we have

 |(£oE{/(*)m-TO}| < IpoE/WI7!-^«'6)!
 + - FM)

 i

 < e + ¿.
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 Since D is any fixed partial ^-partition of [a, 6] we have

 (D)J2'f(x)'I'-F(I) <4e.

 3. The Lebesgue integral

 In this section, we shall prove that B* integrals are more restrictive than the
 Lebesgue integral, when B has the e-fine property.

 Lemma 6 Let f be B * integrable on [a, 6]. Let e > 0. Then there are ß G B
 and rļ > 0 such that for any partial ß-partition D = {(/, s)} o/[a,6] with
 (D)Í'I' <ņ we have

 '(D)J^f(x)'I''<e
 and

 |(D)£F(/)|<£,
 where F(I) denotes the B* integral of f over I.

 Proof. Let e > 0. Then there are tj > 0 and ß € B such that for any partial
 ^-partition Do = {(/, *)} of [a, 6] with (Do) 53 |/| > 6 - a - 2t;, we have

 |(A,)£/(x)|J|-F(a,6)|<f/2.

 Let D = {(/, x)} be a partial ^-partition of [a, 6] with (D) £ U' < *?• Let E be
 the union of intervals I from D and E' the closure of [a, 6]'JE7. Then the outer
 measure |JE7i| of E' is greater than [6 - a - rj' - ij. Choose a partial ^-partition
 D' = {(J', re')} of [a, 6] with x' 6 .E' such that the union J of intervals I' from
 D' is in E' and |¿i'J| < rç. Hence

 '[a,b)'J' = |(£U£i)'.7|
 = '(EU(Ex'J)'
 < v + n

 '[a,b]'(EUJ)' = 'Ei'J'
 < V-

 Therefore

 ļC^O f(x')'I'' - F(a, fr)| < f/2
 and

 '(D) 53/(«)|/| + (0)52 f MM - F(o,6)| < c/ 2.
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 Hence

 '(D)^2f(x)'I''<e.
 The second inequality follows from Henstock's Lemma and the above result.

 Lemma 7 Let f be B* integrable on [a, 6] with primitive F . Then F is abso-
 lutely continuous on [a, 6].

 Proof. By Lemma 6, for every t > 0, there exist r' > 0 and ß € B such that
 for any partial /^-partition D = {(/, x)} of [a, 6] with (D) £ |J| < we have

 '(D)^2f(x)'I''<e.
 Let {[ût,&»]} ke a finite sequence of nonoverlapping subintervals of

 [a, 6] with Yli l^í ~ a»l < V- Since / is B* integrable on each there
 exist rji > 0 and /?,• G B with /?,• C ß such that for any partial /?, -partition
 Di = {(/^, £^)} of [a,-, bi] with (Di) - a,- - we have

 |(A)£/(xW)|/('->| - F(a,,6,)| < e2-'

 where F(aí,6¿) denotes the B * integral of / over [a,,6f]. For each i fix a Di
 and note that

 E(ao E i/(<)i<5>
 t' i

 and D = U ,'D¿ is a partial ^-partition of [a, 6]. Hence

 £(A)]T /(*<•>) 'IV' <e.
 i

 Therefore

 EF(a«'6') ^ E(^E/(*(,))i/(,VEF(a'-6»)
 i I s

 + B^E^0)^0!
 i

 < e + e.

 Thus F is absolutely continuous on [a, 6].
 Let ß € B and 6(x) > 0 on [a, 6]. Then 0 is said to be ¿-fine if I C

 (x - 6{x),x + 5(x)) whenever (/, x) € ß- A collection B is said to have the
 ¿-fine property if for every 5(x) > 0 on [a,b], there exists ß G B, which is
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 6-fine. If B has the ¿-fine property and is filtering, then for every ß G B and
 for every ¿(x) > 0 on [a, 6], there exists ß' G B such that ßi C ß and ß' is
 6-fine. Furthermore if G is open, then there exists ß G B such that I C G
 whenever x G G and (7, x) G ß .
 The collection Br given in Example (iii) in Section 2 does not have the

 6-fine property. Obviously, collections Bh and Bm have the 6-fine property.
 A collection B of Vitali covers is said to have the ¿-fine property if for any

 e > 0, there exists ß G B such that 'I' < e whenever (7, x) G ß.
 It is clear that if B has the č-fine property, then B has the ¿-fine property.

 The converse is not true. The collection Br has the ¿-fine property.

 Theorem 8 Let B be filtering and have the e-fine properly. Let f be B*
 integrable on [a, 6] with primitive F. Then D&F(x) = f(x) for almost all
 x G [a, b], i.e., for almost all x G [a, b] and for every e > 0, there exists ßx G B
 such that

 F(I)-f(x)'l' <e|/|

 whenever (/, x) G ßx, with x G I C [a, 6].

 Proof. Since / is B* integrable on [a, 6], by Henstock's Lemma, for every
 e > 0 there is ßo G B such that for any partial /?o-partition D = {(/,*)} of
 [a, 6], we have

 (0)£/(*)|/|-F(7) <e.

 Let X be the set of points x ^ a, 6 at which either D&F(x) does not exist or,
 if it does, is not equal to f(x). We shall prove that X is of measure zero.

 From the definition of X we see that for every x G X there is a rj(x) > 0
 such that for every ß G #, there exists one (7, x) G /?, x G I C [a, b] with

 F(I)-f(x)'I' > ij(i)|7|.

 Fix n and let Xn denote the subset of X for which rj(x) > £. Let An be the
 family of all interval-point pairs (/,x) with x G Xn fl I such that (7, x) G ß
 with ß C ßo and satisfying the above inequality. Then An is a Vitali cover
 of Xn . Here we use the fact that B has e-fine property. Hence we can find
 interval-point pairs (7¿, x*), k = 1,2 , . . . , m from An such that

 m

 'Xn'<52'h' + e.
 k = l
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 Therefore

 l*n| <

 < en + e.

 Hence |X„| = 0 and so |X| = 0.

 Theorem 9 Let B be filtering and have the e-fine property. If f is B* inte-
 grable on [a, 6], then f is Lebesgue integrable there and

 (B') ff Ja = (L) f Ja f. Ja Ja

 Proof. By Lemma 7, the B * primitive F of / is absolutely continuous on
 [a, b]. Hence the derivative F'(x) exists for almost all x € Therefore
 F'(x) = /(x) for almost all x € [a, 6], by Theorem 8. Hence / is Lebesgue
 integrable on [a, 6] and

 (B') // Ja = (£) //• Ja Ja Ja

 By Theorems 9 and 2, we have

 Corollary 10 A function f defined on [a, 6] is Lebesgue integrable if and only
 iff is Bļj integrable and the values of the two integrals agree .

 One of the referees pointed out that we did not investigate the dependence
 of the theory on B . There is a great variety of integrals, and we only know
 that all B* integrals, where B is Altering and has the e-fine property, are
 more restrictive than Lebesgue integral, see Theorem 9. The referee posed
 the following question : Is a real restriction possible? We do not investigate
 this question in this paper. We thank the referee for his very constructive
 comments and interesting question.

 4. McShane's nonstochastic Itô-belated integral

 Now we shall introduce McShane's nonstochastic Itô-belated integral.

 Definition 2 A finite collection D = {(/, x)} of interval-point pairs is called
 a partial partition o/[a,6] i//, (/, x) € D , are nonoverlapping subintervals of
 [a, 6]. Let 6(x) > 0 almost everywhere on [a, 6]. Then the partial partition
 D = {(/, x)} of [atb] is called a partial belated 6-fine partition if for each
 (/, x) € D , we have I C [x,x + £(x)). The point x need not belong to I.
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 Definition 3 (See [8, p. 51].) A function f defined on [a, 6] is said to be Itô -
 belated integrable to A if for every e > 0, there exist rj > 0 and 6(x) > 0
 almost everywhere on [a, 6] such that for any partial belated 6-fine partition
 D = {(/, x)} of [a, 6] with ( D ) ^2'I' > b - a - r) we have

 '(D)Y^f(x)'I'-A'<e.
 It is known that if / is Lebesgue integrable on [a, 6], then / is Itô-belated

 integrable there [3, pp.89-91]. McShane in [3, p. 91] asks: Is the converse true?
 Next we shall show that the converse is true.

 Lemma 11 If f is Itô-belated integrable to A on [a, 6], then for every e > 0,
 there exist r) > 0 and 6(x) > 0 on [a, 6] such that for any partial belated 6-fine
 partition D = {(/, x)} of [a, b] with ( D ) £ |/| > 6 - a - t; we have

 '(D)^2f(x)'I'-A'<c.
 Proof. If / is Itô-belated integrable to A on [a, 6], then for every e > 0, there
 exist 2r¡ > 0 and 6(x) > 0 on [a, b]'B with B of measure zero such that for any
 partial belated ¿-fine partition D = {(/, a:)} of [a, b] with ( D ) |/| > b-a - 2r}
 we have

 p)£/(s) 'I'-A <e/2.
 Let Bn = {x Ç B;n - 1 < |/(x)| < n}, n = 1, 2, . . .. Let Gn be open with

 Bn C Gn and |Gn| < min(ņ2"n,e2-n-1n~1). If x 6 Bn, define S(x) > 0 such
 that (x - 6(x),x + S(x)) C Gn • Now if D = {(/, x); x 6 B) is a partial belated
 ¿-fine partition of [a, b], then

 (0)£ui<f>-B = *
 n = l

 Thus, if D = {(J, x)} is a partial belated 6-fine partition of [a, 6] with

 (£>)£ 'I'>b-a-r1
 , then (D') |/| > 6 - a - 2r/, where D' = {(/, x) G D' x £ B}. Hence D' is
 a partial belated McShane partition of [a, 6], and thus,

 |(z?1)x;/(«)m-^ļ<f/2.
 Therefore

 |(0)£/(*)m-¿| < ^+liDVDo^/wi/il
 < e/2 + Y nc2~"~1n~1
 = £.
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 Theorem 12 If f is Itô-belated integrable on [a, 6], then f is B*M integrable t
 and the values of two integrals agree .

 Proof. Recall that Bm is given in Example (ii), Section 2. Let ßs € Bm .
 Note that if D is a partial /^-partition of [a, 6], then D is a partial belated
 6-fine partition of [a, 6]. Therefore, by Lemma 11, / is B*h{ integrable on [a, 6],
 and the values of two integrals agree.

 Theorem 13 If f is Itô-belated integrable on [o, b], then f is Lebesgue inte-
 grable there , and the values of two integrals agree.

 Proof. It follows from Theorems 9 and 12.

 McShane established that the converse of Theorem 13 is true [3,pp.89-91],
 therefore we have

 Corollary 14 A function f is Itô-belated integrable on [a, 6] if and only iff
 is Lebesgue integrable there . Furthermore , the values of two integrals agree .

 By Theorems 12, 9 and Corollaries 14, 10, we have

 Corollary 15 The following four integrals are equivalent:
 The Itô-belated integral , the Lebesgue integral , the B*M integral and the B*H

 integral .

 This means that, at least in the deterministic case, McShane's Itô-belated
 integral can be replaced by something altogether simple. This observation was
 pointed out by another referee. We thank the referee for this and other very
 constructive comments.

 We remark that the Nonabsolute integration by using Vitali covers is being
 worked out. It will appear elsewhere.
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