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 Density and X-density continuous
 homeomorphisms

 1. Preliminaries

 Let Hjsf and Hi stand for the increasing homeomorphisms that are density
 and J-density continuous and let Tij/ and 7iļl denote the classes of inverses
 of functions from Hjsf and 7ťj, respectively; i.e., classes of increasing homeo-
 morphisms that preserve density and I-density points. In the paper we prove
 that classes Tťj and 1 are closed under the addition operation. A
 similar result for the class TiJ/ has been proved by Niewiarowski [7]. The
 theorem that the class Tiļ 1 is closed under the addition operation is also con-
 tained in the paper of Aversa and Wilczyński [1, Theorem 4]. (See also [11,
 Theorem 25].) However, their proof contains an essential gap. (The gap will
 be discussed in the last paragraph of the paper.)

 This paper contains also the examples showing that none of the above
 theorems is correct if we admit the possibility that one of the homeomorphism
 is increasing, and the second one is decreasing, even in the cause when their
 sum is still a homeomorphism.

 The notation used throughout this paper is standard. In particular, R
 stands for the set of real numbers and M = {1, 2, 3, ... }. For A, B C R and
 d £ R the complement of A is denoted by Ae, while B- d = {x- d G R: x € B}
 and dB = {dx 6R:x6ß}. The symbols C and B stand for the families of
 subsets of R which are Lebesgue measurable and have the Baire property,
 respectively. M and J denote the ideals of Lebesgue measure zero and first
 category subsets of R. If A € £, its Lebesgue measure is denoted by m(^4).

 To define the density topology T and the J-density topology Tj we need
 the following notions of density and Z-density points [8, 11].
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 Let AÇ C. A number x, not necessarily in A, is a density point of A if

 lim m(^ n (* - h> x + h )) _ ļ
 fc- »o+ 2 h

 The set of all density points of A G C we denote by $.v(./4). The family of sets

 TV = {A G C: A C *#(A)}

 forms a topology on R [6, 8] and is called the density topology on R.
 We say that 0 is an l-density point of a set A € B [11, Theorem 1] (see also

 [10, Corollary 1] and [9]) if for every increasing sequence {<*}*€ N of positive
 numbers diverging to infinity there exists a subsequence {<jb¿}»€N such that

 HrnXu.^.!,!) - *(-i,i) î-a.e.

 It is worth noticing that the above condition is equivalent to the fact that the
 set liminf,--»oo¿*¿<A = ÌS residual in (-1,1). We say that a
 point a is an Z-density point of A € B if 0 is an Z-density point of A - a. The
 set of all I-density points of A G £ we denote by $i(A). The family of sets

 Tj = {A£B: AC$I(A)}

 forms a topology on R [9, 11] called the l-density topology on R.
 We also use the following notions dual to the density definitions given

 above. We say that x is a dispersion (I -dispersion) point of A if x is a density
 (i-density) point of Ac. In particular, 0 is an Z-dispersion point of B if for
 every increasing sequence {tk}keii of positive numbers diverging to infinity
 there exists a subsequence {¿*t-}ť€N such that

 (1) (-1, 1) n Pl (J tk¡B = (-1, 1) n limsup(ifc.B) G 1
 j€Ni>j

 and 0 is a dispersion point of B if

 /o'
 /o' (2) lim

 h- »0+ ¿n

 A function /: R - ► R is density continuous (l-density continuous ) if it is
 continuous with respect to the density (Z-density) topology on the domain and
 the range. A homeomorphism h: R - ► R preserves density (Z-density) points
 if ft""1 is density (Z-density) continuous.

 All the continuity and density definitions given above can be restated in
 more-or-less obvious ways in one-sided versions. For technical reasons it is
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 often more convenient to work with one-sided density or continuity. For ex-
 ample, to show that a point a is an 7-density point of a set A , it is often
 easier to establish that it is both a left and right J-density point. Such simple
 technical extensions to the definitions will be used without further comment.

 We say that a set (Jn€N(a*> ^0 ÌS a interval set if 6n+i < an < bn for
 n € N and limn-oo = 0.

 In what follows we will need the following facts.

 Proposition 1.1, Let h: R- *R 6c an increasing homeomorphism with the
 property that h(0) = 0. Then

 (i) h is right density (I-density) continuous at 0 if, and only if, 0 is not a
 dispersion (I -dispersion) point of h(D) for every closed set D C [0,oo)
 such that 0 is not a dispersion (I- dispersion) point of D;

 (ii) h preserves right I-density points at 0 if, and only if, for every right
 interval set E for which 0 is a right 1-density point, 0 is a right 1-
 density point of a right interval set h(E).

 Proof, (i) follows easily from [2, Theorem 3] in density case and from [1,
 Theorem 3] in I-density case. For (ii) see [1, Theorem 3]. □

 Proposition 1.2. 0 is a right 1-density point of a right interval set E if, and
 only if for every increasing sequence of positive numbers diverging to
 infinity and every nonempty interval (A, B) C (0,1) there exists a nonempty
 subinterval J C ( AyB ) and a subsequence such that for every i G N

 JCtkiE.

 Proof. See [4, Lemma 6.1 (iii)]. □

 Proposition 1.3. Let P C (0,1] be closed and nowhere dense and let
 {dk}ke N be a sequence of positive numbers such that lim^oo dk+i/dk = 0.
 Then there is an open set V D suc ^ ^ ia * 0 15 an 1- dispersion point
 ofV.

 Proof. See [4, Lemma 2.4]. In fact, Proposition 1.3 says that 0 is a deep-Z-
 dispersion point of UJb€W d'¡P. □

 Proposition 1.4. Let a > 0 and let {d*}*€ n, {a*}*€N and {&*}*€ N be
 sequences of positive numbers such that a < a¿ <6* for every k G N and

 lim dk - lim [bk - a*] = 0.
 *- ► OO Jf- ► oo
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 Then, 0 is an X-dispersion point of

 [J dkiakibk).

 Proof. It follows immediately from [11, Theorem 2]. See also [10, Theorem
 1]. □

 Proposition 1.5. Let h: R - ► R be a homeomorphism. If h and h~l satisfy a
 local Lipschitz condition then h and h~~l preserve density and X -density points
 and are density and X -density continuous.

 Proof. For the density case see [3, Lemma 1], (Compare also [2, Corollary
 2].) The Z-density case can be found in [1, Corollary 1], [11, Theorem 26] or
 [4, Theorem 5.8]. □

 2. Density continuous homeomorphisms

 In this section we prove that the sum of two increasing density continuous
 homeomorphisms is density continuous.

 Theorem 2.1. If f,g G then f + g G Htf.

 Proof. Let /, g G Hjsf and let a G R. It is enough to prove that / -f g is right
 density continuous at a, as the left-hand side argument is similar. Without
 loss of generality we may assume that a = f(a) = <7(0) = 0. Let D C [0, 00) be
 a closed set for which 0 is not a dispersion point of D. By Proposition l.l(i),
 it is enough to prove that 0 is not a dispersion point of (/ + g)(D).

 Let Df = {x G D: g(x) < f(x)} and Dg = {x G D: f(x) < ý(x)}. Then 0
 is not a dispersion point of either Dj or Dg. Assume that 0 is not a dispersion
 point of Dj. We may assume, without loss of generality, that D = Dj. Thus,

 g(x) < f(x) for every x G D.

 But / G Tijsf and 0 is not a dispersion point of D. So, 0 is not a dispersion
 point of f(D) C [0, 00) and, by (2), there exist e > 0 and a decreasing sequence
 {/»n}n€N of positive numbers converging to 0 such that

 |,m8upn,(/(P)n(0,ft„))=i
 n- *00 "n
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 Let h'n = sup /(£)) n (0,A„] € (0,A„], tn = f~l(h'n) € D and define p„ =
 (/ + ffX'n) < 2 f{tn). Then, lim„_oo Pn = 0 and

 + = ,imsupm((/+!,)(0n(0,',)))
 n-+ oo Pn rwoo Pn

 (3) ł n-»oo

 2 ¿ n-* oo p 2 ¿ n-* oo '*n

 > ļZpī»IM ¿ n-*oo hn

 = i>0,

 where the numerator part of inequality (3) holds, because m ((/ + <7)(>1)) >
 m(f(A)) for every A E C. Thus, by (2), 0 is not a dispersion point of ( f+g)(D ).
 This finishes the proof of Theorem 2.1. □

 Corollary 2.2. ///,</ € Wjv, <Aen /<; € Htf.

 Proof. By Proposition 1.5, functions exp and In are density continuous. We
 show that f g is density continuous at a € R. Translating and restricting /
 and <7 to an open neighborhood of a, if necessary, we may assume that / and
 g are positive. Then, In /, In <; E tijsf, as composition of density continuous in-
 creasing homeomorphisms is a density continuous increasing homeomorphism.
 Thus, by Theorem 2.1, density continuous is also

 f g = exp (ln/ -f In <7). □

 Let us also notice that in fact we proved the following result, which is a
 little bit stronger that Theorem 2.1.

 Corollary 2.3. Let f and g be increasing homeomorphisms such that f(a) =
 g(a) for some a € R. If g (x) < f(x) for every x > a and f is right density
 continuous at a then f -f g is also right density continuous at a.

 3. X-density continuous homeomorphisms

 The purpose of this section is to prove that the sum of two increasing I-density
 continuous homeomorphisms is Z-density continuous. For this we need the
 following lemmas.
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 Lemma 3.1. Let D £ B be such that 0 is not a right Z-dispersion point of D.
 Then there exists an increasing sequence {tk}keii of positive numbers diverging
 to infinity and a nonempty interval (a, 6) C (0, 1) such that

 (liminf *-00 tkD J J is dense in (a, 6). *-00 J

 Proof. Since 0 is not a right J-dispersion point of D then, by (1), there exists
 an increasing sequence {sn}n€N of positive numbers diverging to infinity such
 that for every its subsequence {$nk}*€N

 (4) ^limsupsnjl£>^ fi (0, 1) £ Z.
 Let (pkyQk) C (0, 1) be a sequence of all nonempty intervals with rational

 endpoints. Let us construct, by induction on fc, sequences {s*}n6N such that
 {s°}n€N = {sn}n€N isn)n€īi is a subsequence of {«n-^neN such that

 (5)

 either ^lim sup s^D^j n(p*,gfc) = 0 or ^liminfsjji)^ fl [pkiÇk] ^ 0.

 Put tje = s*. Then, by (4), (lim sup^^ tkD) f1(0, 1) £ I; i.e., there exists a
 nonempty interval (a, 6) C (0, 1) such that

 ( limsup tkD ) is dense in (a, 6).
 V *-oo /

 But this, together with (5), guarantees that then also

 (liminfťfc-D *-oo J ) is dense in (a, 6). *-oo J

 This finishes the proof of Lemma 3.1. □

 Lemma 3.2. Let h : R - ► R be an increasing J -density continuous homeomor-
 phism such that h(0) = 0 and let {tk}ken be an increasing sequence of positive
 numbers diverging to infinity . Then for every nontrivial interval [a, 6] C (0, 1)
 there exists a nonempty interval (c, d) C (a,t) and a subsequence {<*<}»€!* °f

 such that the limit

 j. h(eftki)
 h{d/tkl)

 exists and is positive.
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 Proof. By way of contradiction assume that it cannot be done; i.e., that

 (6) lim sup = 0 for every a < c < d < b.
 k-+oQ h(a/tk)

 We will show that this contradicts I-density continuity of h.
 So, let {qk : k G N} be an enumeration of Q = [a, 6] fl Q and for each ť G N

 let ¿i, . . . , di be an increasing enumeration of çi, . . . , g,*. Choose {^Jb. }«€N such
 that

 (7) y h(a/tki) hidj/tk •) < T i for every j < i, i € N. h(a/tki) hidj/tk •) i

 This can be done by (6). Let

 Ui = 'J h{dj/tki) (l-i,l * + iV ' j<i * '

 and put U = U»€N^»'- Then, by (7) and Proposition 1.4, 0 is an I-dispersion
 point of U. But 0 is not an I-dispersion point of h"1(U)i since for any sub-
 sequence {ťm}m€N of {**, }, -€n the open set (Jm>m0 D Q is dense in
 (a, 6) for every mo G N, and so,

 (-1, 1) fl iimsup(tmh-l(U)) g I.
 m- »oo

 This finishes the proof of Lemma 3.2. □

 Lemma 3.3. Let a < 6, //*: [a, 6] - * R be a sequence of increasing home-
 omorphisms and lei us assume thai there exists a dense subset Q of [a, 6]
 containing a and b such that the limit H(q) = lim*-oo Hk(q) exists for every
 q £ Q. If H (Q) is dense in [H(a)yH(b)] and H(x) = inf H(Q fl [x,oo)) for
 every x € [a, 6], then Hk converges uniformly to H.

 Proof. First notice that the function H(q) = lim*->oo Hk(ç) on Q is nonde-
 creasing, so indeed H(q) = inf H(Q H [ q , oo)) for every q G Q.

 Let us fix e > 0. For x G [a, 6] choose distinct q2 G Q, qi < x < qo, such
 that qi < x < qi for x G (a, 6) and

 Let Nx G N be such that

 'H(ti)-Hn(9i)'<el&
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 for every n > Nx and i = 1,2. Put Ux = (91.92) for * € ( a,b ), Ux = (91,92)
 for z = a and Ux = (91 , 92] for x = 6. Thus, Ux is an open neighborhood of x
 in [a, 6] and, for every y Ç. U x and n> Nx,

 H(qi) < H(y) < H(q2) and Hn(qi) < Hn(y) < Hn(q2),

 so that

 'H(y) - tfn(y)| < 'H(y)-H(q2)' + 'H(q2)-Hn(q2)' + 'Hn(q2)-Hn(y)'
 < |tf(9i) - H{q2)' + e/5 + 'Hn(q2) - Hn{q x)|
 < č/5 -j- e/5 +

 I Hn{q2) - H(q2) I + I H(q2) - H(qi)' + 'H(qi) - Hn(qx)'
 < e/5 + e/5 + ê/5 + e/5 + e/5 = e .

 Choose a finite subcover {{/^ , . . . , UXk} of the open cover U = {Ux}xç[atb] of
 [a, 6] and put JV = sup{NXl , . . . , N*fc}. Then we obtain

 'H(y)-Hn(y)'<e

 for every y G [a, 6] and n> N. This finishes the proof of Lemma 3.3. □

 Lemma 3.4. Let h: M - * R be an increasing X-density continuous horneo -
 morphism such thai h( 0) = 0 and let [a, 6] C (0,1) be a nontrivial interval.
 //{s*}*€N <wd {tk}kçîi are increasing sequences of positive numbers diverg-
 ing to infinity such that Hk(x) = Skh(x/tk) G [0, 1] for every x G [a, 6], then
 there exist a nonempty interval (c, d) C (a,&) and a subsequence {<//jk,}»eN °f
 {#*}*€N such that the sequence Hki'[ed' converges uniformly to a function
 H: [c, d] - ► [0, 1].

 Moreover , t/liminf* i/*(a) > 0 then we can assume that the function H is
 one-to-one.

 Proof. First notice that functions Hk are increasing.
 Let Q = {qi : i G N} be a dense subset of [a, b] containing a and 6. The

 functions Hk'q are elements of a compact metric space [0, 1]^. So, there exists
 a subsequence {//*,}»6N of {Hk}keti that converges in [0, 1]^; i.e., such that
 for every j G N there exists H(qj) G [0, 1] with the property that

 jim Hki(gj) = H(gj).
 t-^oo

 If H(qr) = 0 for some qr G (a,¿) then, by Lemma 3.3, interval [c, cf] =
 [a,qr] and the function H(x) = 0 for every x G [c, d' work. So, decreasing
 [a, 6], if necessary, we can assume that H(a) > 0. This is also the case when
 liminffc Hk(a) > 0.
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 We prove that

 (8) P = cl(tf(Qn[a',6']))<=(0,l]

 is not nowhere dense for every nonempty interval (a', b') C (a,b) such that
 a', b' G Q. Notice that this will finish the proof, because it implies existence
 of a nontrivial interval [c, d] C [a, 6], c, d G Qy such that H(Q fl [c, d]) is dense
 in [H(c), H(d)]. So, Lemma 3.3 gives us the desired uniform convergence.
 Moreover, condition (8) guarantees also that H will be one-to-one on [c, d].

 By way of contradiction let us assume that condition (8) fails; i.e., that P is
 nowhere dense for some nonempty interval (a' , b') C (a, b) such that a' , b' £ Q .
 Choosing a subsequence, if necessary, we can assume that

 lim sr.1 ki+l / sr.1 k* = 0. t'-+oo ki+l k*

 Then, by Proposition 1.3, there exists an open set W D Uí6N skl^ such ^at 0
 is an I-dispersion point of W. We will construct a set V such that 0 is not an
 J-dispersion point of V, while h(V) C W; i.e., h(0) = 0 is an I-dispersion point
 of h(V). This will contradict the assumption that h is 2-density continuous.

 So, let us choose a countable base {/»Jigw of [a', b'] and for every i,j € N,
 j < i, choose q¡j,q¡j € Q such that qi:j < qij, C Ij, and

 (9)

 This can be done, since P C Sk{W, so the distance d,- between P and the
 complement of s*. W is positive and any interval qļj] for which H(qļ j) -
 H(qij) < di satisfies condition (9). In addition, choosing subsequence of
 {fc«}«€N> if necessary, we can also assume that for every i,j € N, j < t',
 Hki(qitj) and Hk^Qij) are closer to H(qtj) then d,-. This means that

 (10) Ht çíj)) C skiw for every i,j € N, j < i.

 Let Vi = and

 " = Ui7«- *• »€ N *•

 Then, by (10),

 GW - ¿ h* = ¿i""™ c "
 for every i 6 N and, indeed, h(V) C W.
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 On the other hand, 0 is not 7-dispersion point of V, since for any sub-

 sequence of {ťtJieN the Up>p0 V D Up>po v¡, is °Pen and
 dense in (a', b') for every po G N, and so,

 (-1, 1) nlimsup(ť*. * V)£l. p-*oo *

 This finishes the proof of Lemma 3.4. □

 Theorem 3.5. If f,g G Wj, then f + g G 7ťj.

 Proof. Let f,g G Tťj and let a G M. It is enough to prove that / + g is
 right Z-density continuous at a. Without loss of generality we may assume
 that a = f(a) = g(a) = 0. Let Do C [0, oo) be a closed set for which 0 is not
 an Z-dispersion point of Do- By Proposition l.l(i), it is enough to prove that
 0 is not an J-dispersion point of (/ + g)(Do).

 Let Dj = {x G Do: g(x) < f(x)} and Dg - {x G Do: f(x) < y(«)}. Then
 0 is not an J-dispersion point of either Dj or Dg. Assume that 0 is not an
 I-dispersion point of Dj. We may assume, without loss of generality, that
 Do = D j ; i.e., that

 (11) g(x) < f(x) for every x G Do.

 Let D be the interior of Do. Since 0 is an Z-dispersion point of the closed
 nowhere dense set Do'D , 0 is not an Z-dispersion point of D . Then, by Lemma
 3.1, there is an increasing sequence of positive numbers diverging to
 infinity and a nontrivial interval [a, 6] C (0, 1) such that

 (12) Q = liminfťfcJD fi (a, 6) is dense in (a, 6).
 k->oo

 We may also easily assume that b G liminffc_»ooU-D; i.e., that b/tt GÖCÖo
 for almost all k G N. This, together with (11), implies that

 (13) g(b/tk) < f(b/tk) for almost all k G N.

 Now, by Lemma 3.2 used for the function /, the sequence and the
 interval [a, 6], we may find a subsequence {tjb,-}ť€N °f {*&}*€ and a nonempty
 interval (c,d) C (a, b) such that lim,- oo /(c/<fc¿ )//(¿/**,) > 0. Without loss
 of generality we may assume that {<jb, }«eN = {*fc}fceN and [c, d] = [a, 6]; i.e.,
 that

 (14)
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 Let sk = 1 /(/ + g)(b/tk), Fk(x) = skf(x/tk) and Gk(x) = skg(x/tk) for
 X € [0, 1]. Then,

 (15) (Ft + Gk)(x) = suif + 9){x/tk) € [0, 1] for x € [a, 6], k € N,

 «*(/ + g)(b/tk) = (Ft + Gk)(b) = 1 and, by conditions (13) and (14),

 HminfFb(a) = liminfs*/(a/ťt)
 fc- »oo k->oo

 (16) v ' = liminf , . v ' (/ , + »)(6/ti) .

 > - liminf f/f* I - k-oo 2/(6/**)
 > 0.

 By Lemma 3.4 used twice, we can find a nonempty interval (c, d) C (a, 6)
 and a sequence {¿í}í€N of natural numbers such that {i*,|[c,<fj}»€N converges
 uniformly to some F and {Cu-.lic.djJieN converges uniformly to a function G .
 Moreover, by (16), we can also assume that F and F + G are increasing
 homeomorphisms on [c, d]. Without loss of generality we may assume that
 [c,d] = [ a,b ].

 Let (A, B) = ((F+G)(a), (F+G)(b)) C (0, 1]. By (12), the set ( F+G)(Q )
 is dense in ( A , B). But if q € Q then, by (12), q/tk € D for almost all k 6 Ñ.
 So, for every sequence {Jfc,},gN of natural numbers and every j € N,

 (F + G)(q) = .lim 8ki{f + 9)(q/tki) € cl ^(J ski(f + g)(D) j
 which implies that the set «*,(/ + g)(D) is dense in (A,B). Thus, the
 Gs set

 (- 1, 1) n limsupsi,.(/ + g)(D) = (-1,1)0 fļ (J ski(f + g)(D) g 1 ;
 '^00

 i.e., 0 is not an I-dispersion point of (/ + g)(D). This finishes the proof of
 Theorem 3.5. □

 Corollary 3.6. ///,<76 Wj, then fg£ Hj.

 Proof. Same as for Corollary 2.2. □

 Let us also notice that the previous proof works also for the following result,
 that is a little bit stronger that Theorem 3.5.

 Corollary 3.7. Let f and g be increasing homeomorphisms such that f(a) =
 g(a) for some a € R. If g(x) < f(x) for every x > a and f is right I -density
 continuous at a then f -f g is also right X-density continuous at a.
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 4. Homeomorphisms that preserve J-density points

 In this section we prove the theorem that / -f g preserves J-density points
 provided / and g are increasing homeomorphisms preserving ï-density points.
 For this we need the following lemma analogous to Lemma 3.4.

 Lemma 4.1. Let h : R - ► R be an increasing homeomorphism preserving Ī -
 density points such that h( 0) = 0 and let and {ť*}jbeN be the in-
 creasing sequences of positive numbers diverging to infinity such that Hu(x) =
 Skh(x/tk) G [0,1] for every x G [0,1]. Then for every nontrivial interval
 [a, 6] C (0, 1) there exists a nonempty interval (c, d) C (a, b) and a subsequence
 {Hki}ią N of {Hk}keîi such thtá sequence converges uniformly to
 a function H: [c, d] - ► [0, 1].
 Moreover , if lim sup* (//¿(6) - Hu(a)) > 0 then we can assume that the

 function H is one-to-one .

 Proof. Let Q = {ę,-: i 6 N} be a dense subset of [a, 6] containing a and 6.
 Functions Hk'Q are elements of a compact metric space [0, 1]^. So, there exists
 an increasing sequence of natural numbers such that í/*, |q converges
 in [0, 1]^; i.e., that for every j G N there exists H(qj) G [0, 1] such that

 lim Hki(qj) = H(qj).
 1-+OQ

 Moreover, if limsupk(Hk(b) - Hk(a)) > 0 then we can also assume that

 H(a) < H(b).

 If H (a) = H(b) then, by Lemma 3.3, interval [c, d] = [a, 6] and the function
 H = H(a)X[Ci<¡1 work. So, we can assume that H(a) < H(b).

 By Lemma 3.3 in order to prove the first part of Lemma 4.1 it is enough to
 show that H(Q) is dense in [# (a), H(b)] C [0, 1]. So, by way of contradiction,
 assume that H(Q) is not dense in [H(a)1 H(b)]. Then, there exists a nonempty
 interval (A,B) C [H(a)yH(b)] such that H(Q) fl [A,B' = 0, and we can find

 € <2, 0 < bi - ai < l/i, such that H (ai) < A < B < H(bi) for every
 i € N. Now, taking subsequence of {fc,},€N, if necessary, we can conclude that

 SkMūiļtki) = Hkt(ai) < A < B < Hkt(bi) = Skth(bi/tkt)

 for every i G N.
 Let U = i). Then, by Proposition 1.4, 0 is an J-dispersion

 point of U . But,

 [A,B] C (Hki(ai),Hk,(b¡)) = sk,h (t^(aitb¡)) C sk,h(U)
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 for every i 6 N. So, by (1), 0 is not I-dispersion point of h(U). This contradicts
 the assumption that h preserves X-density points.

 To prove the additional condition let us assume, by way of contradiction,
 that H is not one-to-one on any nonempty interval (c,d) C (a, b). Then, the
 set

 U = 'J{(c,d)c(a,b):H(c) = H{d)}
 is dense in (a, 6) and the set H(U) is countable. In particular, the set P =
 [a, b] ' U is nowhere dense in [a, 6], while H(P) is dense in [H(a),H(b)]. We
 will show that this implies that h does not preserve right J-density at 0.

 Choosing a subsequence of {¿i}i€N> if necessary, we may assume that

 = °-

 Then, by Proposition 1.3, there exists an open set V D U*€n** ^ suc^ ^at
 0 is an J-dispersion point of V. We will show that 0 is not an J-dispersion
 point of the open set h(V).

 So, let {fcp}p€ N he an arbitrary subsequence of {fc,- },€n. Then, for every

 H(x) = lim Hk,(x) = lim sh h(x/tk ) € cl [ (J skrh(V) J
 P^°° P^°° 'r>P J

 which implies that the set iS dense in [/T(a), ^T(fc)] for every
 p € N. Thus, the G s set

 (0, 1) D limsup Sk?h(V) = (0,1) n Pi (J sk,h(V)£I,
 P~°° r€Np>r

 because it is dense in ( H(a) , H(b)) ^ 0. Nowt by (1), 0 is not an J-dispersion
 point of h(V). This finishes the proof of Lemma 4.1. □

 Theorem 4.2. If f>g € Hļl, then f + g € Hjl.

 Proof. Let /,y 6 Wļ 1 and let a E M. It is enough to prove that f + g
 preserves right Z-density at a. Without loss of generality we may assume that
 a = /(a) = g(a) = 0. Let E be a right interval set such that 0 is a right I-
 density point of E , let {5*}fceN be an increasing sequence of positive numbers
 diverging to infinity and let 0 < A < B < 1. By Propositions 1.1 (ii) and 1.2,
 it is enough to prove that there exist a subsequence {£*(}t'€N of and
 a nonempty open interval J C ( A , B) such that

 J C sk Af + g)(E)
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 for every i € N.
 Let us define

 tk = 1 /(/ + g)-l{B/sk), ak = l/(/ + g)-l(A/sk),

 Fk(z) - skf(x/tk), Gk(x) = skg(x/tk)
 and

 Hk(x) = (ft + Gt)(x) = su(f + g)(x/tk).

 Then, tk <ak,A = sk(f + g)(l/ak) and B = sk(f + g)(l/tk). In particular,

 Let {¿»Jig N be a sequence of natural numbers such that the following limits
 exist

 a = lim - € [0, 1],
 «-e© ajb .

 F(a) = .lim Fjb.(a), G(a) = .lim Gki(a)'

 We will show that

 (17) ( F + G)(a) = A .

 By way of contradiction, let us assume that it is not the case. We will
 assume that

 SkAf + ffXl/ati) = A < (F + G)(a) = lim s*,(/ + g)(a/tki).
 I - OO

 The other inequality is similar. Let A < C < (F + G)(a). Then,

 «*<(/ + ff)(l/at¡) = A < C < sk,(f + g)(a/tki)

 for almost all i G N. Assume that it is true for all i € N. Then,

 /(!/<»*.) + ff(l/a*¡) _ ski(f + g)(l/aki) ^A^
 /(«/<*,) + <?(«/**.) _ ~ sk,(f + 9)(a/tki) * C * ■

 Hence, for every i 6 N, either £ or $0/°*)] < £ . Without loss of
 generality, passing to a subsequence, if necessary, we can assume that for all
 n € N

 _ ~ /(l/afc<) < A

 /(_!.«) _ ~ f(a/tki) - < C < l-
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 Let uki = / (ïf-a)- Then

 "r'v (¿sí) 5 ê < 1 = <' (¡r) '

 (18) (^O^'GHsi'"))
 for every i G N. But, choosing subsequence, if necessary, we can assume that
 lim,*-oo tk1 /** 1 = 0 and hence, by Proposition 1.4, 0 is an I-dispersion point

 D=U¿(£.«). ' V *• ' t'€N ' V *• '

 On the other hand, by (18),

 (¿,l)c u^f(D)
 for every i G N; i.e., 0 is not an Z-dispersion point of f(D). This contradicts
 the assumption that / preserves I-density points. Condition (17) is proved.

 Now notice that condition (17) implies, in particular, that a < 1, since
 limi-oo (Fki + Gjb,)(l) = B > A = lirn^oo^*,. + £*,)(<*).

 Using Lemma 4.1 twice for functions i*. and G*t, passing to a subse-
 quence, if necessary, we can find a nontrivial interval [c, d] C (a, 1) such that
 {^J[c,d]}t€N converges uniformly to some function F and that {C?jb,|[c,<i]}ť€N
 converges uniformly to a function G. Let us notice also that condition (17)
 implies that either limsupJb-,00(irjb(l) - Ą(a)) > 0 or limsup^^Cjjkil) -
 G*(a)) > 0, since limsup^^Fjbil) - F*(a)) + (G*(l) - Gk(a)) = H( 1) T
 H(a) = B - A > 0. Thus, we can also assume that the function H = F + G
 is a homeomorphism on [c, d'.

 By Proposition 1.2, choosing a subsequence of {¿,},€N and a subinterval
 of (c, d), if necessary, we may also assume that

 (c, d) C thiE for every i G N,

 which implies that

 ((^ + GjO(c),(^ + G*, )(<*)) = (Fki + Gki)((c,d))

 = sti(f -h <,)(£)'
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 Now, if c <cł <ď < d then

 A < (F + G)(c) < (F + G)(c') < (F + G)(ď) < (F + G)(d) < B

 so, J = ((F -h G)(c'), (F + G)(rf')) C (A, B) and

 J C ((Fki+Gki)(cUFki+GkiM) C **<(/ + *)(£)

 for i' 8 large enough, since + G*,} converges to F + G. Thus, we may
 assume that

 JcskÁf + amniAtB)

 for every i G N. This finishes the proof of Theorem 4.2. □

 Corollary 4.3. If /, g e 7iļlf then f g € TťJ1.

 Proof. Same as for Corollary 2.2. □

 5. Discussion and examples

 We start this section with an explicit statement of the density analog of The-
 orem 4.2, that has been proved by Niewiarowski [7].

 Theorem 5.1. If f,g G then f + g G Hj; .

 We are going to present examples showing that none of the Theorems 2.1,
 3.5, 4.2 or 5.1 remains valid if we admit that one of the homeomorphisms is
 decreasing, even when their sum is an increasing homeomorphism. Moreover,
 the decreasing function can be defined by g(x) = -x.

 Example 1. There exists h G Hi H TťJ1 fi fi C°°, h : R - ♦ R, such that
 f : R - ► R, f(x) = h(x) - x} is strictly increasing but f £ Hj U7iļl UTťJ^1.

 Proof. Let

 {e~x~2 0 -e"*"3 x x x = < > 0 0 0 {e~x~2 0 x = 0 -e"*"3 x < 0

 It is known that / is C°°, which is not 2-density continuous and does not
 preserve I-density points [5, Example 10]. (See also [4, Example 5.7].) It also
 follows easily from Bruckner [2, Theorem 7] that / does not preserve density
 points.

 Define h(x) = /(x) + £. Then h is an increasing, C°° homeomorphism such
 that h and A-1 satisfy a local Lipschitz conditions. Thus, by Proposition 1.5,
 h and A"1 are density and J-density continuous. □
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 Example 2. There exists h 6 Títf fi C°° , h: R - ► R, such that /: R - ► R,
 /(x) = h(x) - X, ¿5 strictly increasing but f £ Tijsf.

 Proof. In [3, Example 1] it is constructed a nondecreasing function / € C°°
 which is not density continuous. In fact, / is strictly increasing except for
 the intervals forming some right interval set. It is not difficult to modify
 this function to be strictly increasing C°° and not density continuous. Then
 function h(x) = /(x) -f x works. □

 Let us finish this paper with the remark that Theorem 4.2 is also contained
 in Aversa and Wilczyński [1, Theorem 4].1 However, their proof, considerably
 shorter that the one presented in this paper, contains an essential gap. In
 their proof Aversa and Wilczyński show that for every homeomorphisms /
 and g preserving J-density points, any sequence {n*} of natural numbers and
 any open set A for which 0 is an X-dispersion point and a nonempty interval
 J C (0, 1) there exists a nonempty interval I C (0, 1) and subsequence {n*, }
 such that /(/) U g(I) C J, and

 f(I) H nkif{A) = 0 = g(I) n nkig(A)-

 From this they conclude that (/ -f g)(I) fl n*.(/ + <7)(-A) = 0. This evidently
 might be false. To see this you can take, for example, f(x) = x3, p(x) = x,
 n*,. = 8, J = (1/3, 1/2) and A = ([1/24, 1/16] U [1/6, l/4])c.
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