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 1. Introduction

 The Itô integral [4, 5] is well-known. It has been actively studied in recent
 years and applied successfully to solving stochastic differential equations. The
 technique used is measure-theoretic. On the other hand, the Henstock integral
 [2, 7, 10] uses Riemann sums in its definition and is able to achieve such gener-
 ality that it is known to include Wiener and Feynman integration. Stochastic
 integrals using Henstock 's t heory have been at t empted by McShane [9], T. W.
 Lee [8] and most recently by Henstock [3]. In this note, we shall show that
 it also includes the Ito integral. This is achieved by combining the ideas of
 Henstock [3] using Riemann sums and of McShane [9] using belated divisions.
 Furthermore, using the stochastic integral of Henstock we obtain Itô's formula.

 2. The Stochastic integral of Ito

 We give a brief description of the Itô integral, which is essential for the un-
 derstanding of the next section. We follow mainly Ikeda and Watanabe [4]. A
 good reference on stochastic integrals for analysts is Kopp [6]. Let W denote
 the set of all real-valued continuous functions on [0,1] with a metric p given
 by

 piwiiiv?) = sup{|ll?i(/.) - «'2(01; 0 < ¿ < 1}.

 The class of all Borei cylinder sets B in IV, denoted by C, is a collection of all
 the sets B in W of the form

 B = {tu;M/i),u'(*2),- •• , u'(/n)) e E)
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 where Û < t' < ti < • • • < tn < 1 and is is a Bore! set in (n is not fixed).
 The Borei a-field of C is denoted by ß(lV), i.e., it is the smallest <7-field which
 contains C. Finally, let P'y be the Wiener measure defined on (W, B(W)).
 Then the triple (WÌB('V)Ì P'y) is a probability space with P'v(W) = 1. We
 remark that it is possible to develop the Wiener integral [11] using Henstock's
 general theory of division spaces [2, 7, 10], in which the Borei cylinder sets are
 taken as intervals in the division space. For details, see [1, 10].

 Next, let Lo = L2(]V,B{'V),Pw) be the space of all random variables q
 (real- valued £>( ^-measurable functions on W) such that

 IMIL = / |g(u>)|2dPiy(«>) < +CO. Jw

 Since B{W) is separable, so is Lo- That is, there is a countable dense set
 • • *} in ¿2- This fact will be used later in Section 2.

 Let X = w)}o<t<i be a Brownian motion (or Wiener process) so
 that J V(t,u>) = w(t) for w £ IV, t £ [0, 1], and X '(t.w) is adapted to {Bt; 0 <
 i < 1}. That is to say, X r(t,w) is ¿Vmeasurable for each t € [0,1], where
 Bt = (t{X(s, w;); $ < t) is the smallest <r-field generated by {A'(s,w);s < <}.
 Here X(t , u>) is called a canonical Brownian motion of (W, B(W), Pw' {#tî 0 <
 * < !})• We denote by £o the space of all measurable processes w)}o<*<i
 defined on ( W , B(W ), P'y) (<¿> is a measurable function on [0, 1] x W), adapted
 to {Bt} such that

 IMIij = f [f '<p(t,w)'-dPw(w)]dt < +00. Jo JW

 For convenience, we write

 £(Q(™)) = f Q(w)dPw(w),
 Jw

 where E is called the expectation of a random variable Q with respect to ify,
 and

 llvllia = f E'<p(i,w)'-dt. Jo

 We may regard a process as a family of random variables. We can construct
 a dense set in C'¿ as follows. Let Co be the set of all step processes
 satisfying the following conditions :

 (i) there is M > 0 such that | <£>(/, w)' < M for t 6 [0, 1], w G W'
 (ii) there are a finite sequence of points to = 0 < t' < to < - - < tn <

 tn+i = 1 and a finite sequence of random variables fi(w), i = 0, 1,2, ••• , n,
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 such that ^(0,u>) = fo{iv) and

 »1

 ip(t,iv) = ^/<(U').'(«„<1+1]( 0 for t G (0, 1]
 t' = 0

 where ' denotes the characteristic function of (<», ť»+i] and fi (tv) is measurable
 with respect to for i = 0, 1, • • • , n.

 Then we can prove that Co is dense in £o- More precisely, for every <p G £2
 there is a sequence {v? 1, • • • } in £0 such that

 H^m - vHUa 0 »S m °°-

 If V? € £0 is a step process as given in (ii) above, then we define the Itô integral
 of (p to be

 n

 I{tp)(w) = ^/¿(tl))[lí.-(íi + i) - «>(<,■)]•
 7=0

 Note that /(ç?) G ¿2- I" general, whenever <p G £2 there is a sequence
 {<Pii ^2» •*•} in £0 such that ||^m - - 0 85 m - * Then we de-
 fine the Ito integral 7(<¿>) of ç to be

 I(p) = lim I(<pm) in L2>
 m- co

 that is,

 I |/(^m) - I(ip)'2dPw - 0 as m - 00.
 J w

 We can prove that the Itô integral 7(<¿>) is uniquely determined in Lo.

 3. The stochastic integral of Henstock

 A full cover A is a family of interval-point pairs ([u, r], £) such that £ G [w, v] C
 (£ - ^(0>£ + ^(f)) f°r some given 6(£) > 0. We shall define a belated full
 cover Ab as follows. Fix a sequence of pairwise disjoint measurable subsets
 Mi, AÍ2,-- • of [0,1] whose union is [0,1]. Let. = inf{t't G A h}> Define
 ¿(£) > 0 so that tk < £ - ¿(£) whenever £ G A/¿ ' { tk }• Obviously, the family
 A of all interval-point pairs ([w, t>],£) satisfying £ G [w, t;] C (£ -
 forms a full cover. Then a belated full cover A¿, is a collection of all interval-
 point pairs ([u, v], ?/(£)) such that, ([m, t>],£) G A and t/(£) is defined as follows:

 (i) when £ G Ah- and £ = t¡. (noie that may not belong t.o M¡¿ ), put
 y(0 = 0,

 (ii) when £ 6 A/* ' {<t} and ([«,<'],£) € A, put. y(£) 6 M* n[<t,u].
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 Note that y(0 depends 011 [u,i>] and £ when £ G Mk ' {¿il-}. Since there
 exists a division D = {([tí, v],0} of [0, 1] from A, there also exists a division
 (a belated division) D = {([w, v], y(0)} [0» 1] ^rom The above belated
 full cover A & is said to depend on {Mk} and <$(£).

 Given {Mjk} with 7l/i, A/2, • • • pairwise disjoint and 'J^LxMk = [0,1], an-
 other sequence {Mļ} is called a split of {Mk} if for each fc, Mļ C for
 some i , Aff, A/Í , • • • are pairwise disjoint and U^ij A/£ = [0, 1]. A measurable
 process {ip(t, u>)}o<t<i is said to be Henstock belatedly integrable or HB inte-
 grable to I(<p) G Lo if for every e > 0 there is a sequence of pairwise disjoint
 measurable subsets M', A/o, • • • of [0, 1] with = [0, 1] such that for
 every split {M£} of {Mk} there exist 6(0 > 0 and a belated full cover A&
 depending on {Mļ} and <5(0, and for any D = {([u, v], y(0)} fr°m we
 have E'(D) ^ ^(í/(í)» tu)(io(i>) - iv(u)) - 7(^)|2 < £, where ( D ) ¿ denotes the
 sum over all interval-point, pairs ([w, v], 2/(0) in A an(l E ^ e expectation with
 respect to P'y. We write

 I(<p) = (HB) [ tp(t,w)dX(t,w)
 Jo

 and call I((p) the Henstock belated integral of <p.
 We shall verify briefly that the Henstock belated integral I(<p) as defined

 above is unique. Suppose there are I'{<p) and Iņ(<p) satisfying the above con-
 ditions with {Mik} and {M^k} respectively. Then consider Muf'M2k for all
 i, k and label it {Mļ}. Note that {Mļ} is a split of both {Mik} and {M2fc}.
 Hence by definition there exist 6(0 > 0 and a belated full cover A& depending
 on {M¡¡} and <5(0 such that for any D = {([w, v], y(Ç))} from A& we have

 E'h(<p) - h(<fi)'2 < 2£,|/i(v?) - (£>)]T^(y(£),u>)(tt;(t>) - tu(u))|2

 + 2£| (D) ^2 ç(y(Z ), w)(w(v) - w(n)) - 72(y?)|2
 < Ae.

 That is, Ii(<p) = h(<p) in ¿o-
 The idea of a split is due to Chew Tuan Seng. We remark that it helps to

 prove the uniqueness of the HB integral easily and it is not used in the proof
 later. In fact, we shall show in Section 4 that it can be dropped.

 Theorem 1 If <p G Co then for every e > 0 there exists a belated full cover
 Aļ, such that for any division D = {([u, v], 2/(0)} from A¿ we have

 J E'
 where (D)Y^ sums over all interval-point pairs ([u, v], 2/(0) in D.
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 PROOF. First., fix a countable dense set. {<71,72« • • •} in Lo. Let 0 < e < 1/4
 and define Ofc(£r) = {</ G Lo; ||<7 - <7a-||l2 < £*/2} t for k = 1/2, - • • . Since

 • • • } is dense in Lo, have Ok( c) = Lo. Next, define

 Mi = {/.€[0,l];^(ť,.)€0i(0}.
 ik - 1

 Mk = {ť6[0,l];^(ť,.)€Ot(ff)'UOj(ř)}.
 ;= 1

 k = 2,3,- . Note that (JfcLi M* = ßi !]• Let ?; = Ya= iVk <
 c2 ^ 3(|| ç jk I |x»3 + £)~2. Using {Mk} and {771.} we can choose a sequence of
 open sets Gi,G2, • • • such that Gk D Mk and | Gk ' Mk ' < i]k for each fc, and
 choose ¿(£) such that (£ - + ¿(0) C G k whenever £ G Mk for some k.
 Furthermore, write t¡¡ = inf{t' t G Mk} and put tk < £ - ¿(0 whenever
 £ G Mfc'{ťfc} and also 6(£) < i]k/ 2 when £ = /.* € M*. Consequently, we define
 a belated full cover depending on { Mk} and 6(£) with t/(£) defined a 5 usual,
 i-e-, y(0 = 0 when £ = G M* and y(£) G Mk fl when £ G A/* ' {<*}
 andíG[u,t;]C({-í(0,í + í(0).

 Then take any division D = {([w, v], y(£))} of [0, 1] from and split D
 into D' and Do in which D' consists of ([w, u], t/(£)) such that £ = <¿ G M* for
 some k and D2 consists of ([w, v], y(£)) such that- £ € A/* ' {/¿}. For brevity,
 we denote by Mç the set Mk when £ G M*. Then we have

 / £|(£>) sKy(i). w)'(«,»](0 - <p(t, «01 2<lt Jo

 < (£>1)^2 Í E'ç(0,u:)-^(t,w)'-dl

 +(D'j)y2 f E'?(y(Z),u>) - tp(t,iv)'-dt
 J[u,v]r'Mļ

 +2(Do) T [ EMyitlwtfdt
 J[u,v]'M(

 +2 (£>2) [ E'<p(t, w)''dt
 J[u,v]'Mļ

 = Äl + R>2 + Ä3 -h Rą.

 Without loss of generality we can assume £71^(0, u;)|2 < 00 throughout this
 paper. Since («Di)^Z lv - u' < ZZfcLi = 7? anc* ^ € ¿2» we can choose rjk
 and in fact r¡ sufficiently small so that R' < e/4. When t/(£), t belong to the
 same Mk for some k , we obtain

 llp(y(0, •)-¥>(*. Oik, < l|y»(y(Î).0-ïtlkî + IM<.0-ifclka
 < t.
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 Therefore /?•_> < s'J < e/4. Note that when £ € Mk for some k, we have

 ^b(j/(0.«')|2 < (IlîtIUî + e)2-

 It follows that

 #3 < Žy^(lkfclU3 + g)2|Gl; ' Mķ'
 k = l

 oo

 < 2 + < e/4-
 Jk = l

 Finally, note that Ylť=i ' -^*1 < 77 an<^ V5 € £2- Hence again for choosing
 sufficiently small 77 we have Ä4 < e/A. Consequently, we obtain

 R.' + Ä2 + ^3 /Ï4 < £•

 The proof is complete.
 We remark that Theorem 1 also holds true with A & replaced by a full

 cover A. However belated divisions are required later when considering the
 Itô integral, hence Theorem 1 was stated in terms of a belated full cover A&.

 Theorem 2 If <p £ Co, then <p is HB integrable and

 (HB) [ <p(t, w)dX(t, 10) = (1) [ <p(t, w)dX(t, w) J 0 J 0

 where the right-hand side above denotes the Itô integrai

 Proof. Let I(<p) £ Lo he the Itô integral of <p £ £2- For € > 0, let A&
 be a belated full cover depending on {Mk} and 6(£) as defined in the proof of
 Theorem 1. Take a division D = {([u, v], y(Ç))} from and write

 /a ' í ^(0, w) when t = 0
 ' ' ~ { <p(y(0, ^(0, w) "') when ť t e = («. 0 "].

 for each ([w, v], 2/(0) from D. Note that xv) is a step process and therefore
 its Itô integral exists. Then by Theorem 1 and the Ito isometry [4; p.48, 6;
 p. 15] that

 E'(I) Í <f(t,w)dX(t ,w)'2 = Í E'<p(t,w)'2dt
 Jo Jo
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 for <p 6 £2, we have

 £|(°)]C^(i/(Ć)'u;)(u'(t,)-tl'(,ł))-/(^)l2 = Eï(!) f [VDÍt^) Jo

 -<p(t,w)}dX(t,w)'2

 = í E'ipD(t,u>) - ip(t,w)'2dt
 Jo

 < e.

 To prove the existence of the HB integral, let {M£} be a split of {Mk}- The
 above proof still goes through with {Ml } replaced by {A/£}. Hence if the Ito
 integral exists, so does the HB integral with the same value.

 Theorem 3 Let p G £2- U is HB integrable to l(ip) then the Itô integral
 exists and tue have

 E'I(<p)'~ = f E'<p(t,w)'2dt. Jo

 PROOF. Since is HB integrable, by definition there is a sequence of belated
 divisions Dn = {([t/n, t>n], t/(£n))} such that

 n-+oo lim £"|(Z)„) V3 ' ' V>(y(ín), - w(u„ )) - I(<p)¡2 = 0. n-+oo ' '

 Alternatively, we write

 lim E'{HB) ['Dn(t,iv)dX(t,w)~ I(<p) |2 = 0.
 Jo

 It is clear that for step processes <pD the HB integral and the Itô integral
 coincide and the Itô isometry holds. So we have

 E'{HB) i' <pD(t,w)dX(t,w)'2 = E'(I) i' vD(t,w)dX(t,w)'2
 Jo Jo

 = f E'tpD(t,w)'-dt.
 Jo

 Hence it follows from Theorem 1 that

 E'I(<p)'2 = lim E'(H B) (l <pDn(t,w)dX(t,w)Ý
 n-o o J0

 = lim [ E'<pDn(t.,w)'2clt
 n-+<x>J o

 = f E'<p{i,w)'-dt.
 Jo
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 Using Theorem 3, we see that if ņ G Co and 9 is IIB integrable to I(<p)
 then I(ip) is also the Ito integral of <p. Hence the IIB integral lia s provided a
 Riemann-type definition for the Itô integral.

 4. The HB integral

 We shall show that the use of splits in the definition of the HB integral can
 be dispensed with.

 Theorem 4 Let <p be a Lo-valued measurable process. Then <p is HB integrable
 to I(<p) if and only if for every e > 0 there exists a belated full cover A&
 depending on {Mk} and 6(£), where {Mk} is a sequence of pairwise disjoint
 measurable subsets of[ 0, 1] with UgĻļM* = [0, 1],

 'k = sup {E'<p(t, u>)|2; t G Mk } < 00

 for k = 1,2, • • • , and 6(£) > 0, such that for any D = { ( [1/ , v], t/(£))} from A&
 we have

 E'(D)^r<P(y(0'w)(w(v) - «>(«)) - I(p)'2 < £,

 where denotes the sum over interval-point pairs ([u, v], y(£)) in D.

 Proof. From the proof of Theorem 1, we see that if <p is HB integrable
 then we can choose {Mk} so that A* is finite for each k. Indeed, for t G Mk
 we have ||^>(ť, -)||¿3 < c/2 + ||çit||i,3 or E'<p{t, u;)|2 < (e/2 + ||íl|U,)2. That
 is, At is finite.

 Conversely, suppose the condition is satisfied. Take a split {Mļ} of {Mk}.
 As usual, let tļ = inf{ť; t G Mļ } and define ¿*(£) > 0 so that tļ < £ - ¿*(0
 whenever £ G Mļ ' {<£}• We may assume 6*(£) < 6(0- Again, A* is a
 full cover using 6*(£) and Aļ a belated full cover depending on {Mļ} and
 6*(£). Now take a belated division D = {([w, v], y*(£))} from AJ. Note that
 ([u> 2/*(£)) = ([u> 2/(0) € A¿> whenever £ ^ tļ for all k. Let D' be the
 partial division of D in which £ = tļ G Mļ for some k. Obviously, = 0.
 Replace D' by in which ([u, v], y(ťj)) G A&. Then the division ( D'Di)'JD2 ,
 denoted by £>3, comes from A ¿ with ( D ) = (^3) JZ +(^1) H "(^2) ¿ and ,
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 again by the Ito isometry we obtain

 £|(D)5>(y"(O,t0)(w(v) - u<(«0) - m]'

 < 3 E |(£>3) V(y(0. w)(tf(t>) - t^(w)) - /(p)|

 +3 E ļ(£>i) Y2 V(0, uł)(u>(v) - tt>(u))|

 +3 E '(D2) £ V(y(0, «,)(«/(«) - u>(«))|2

 < 3e + 3£|(Di) p(0,iv)dX(t,w)'2

 +3r|(D2)

 < 3e + 3(Di) Ejf E'?(0,w)fdt

 +3(D2)£ J f E'v{y{0,w)? di. J ti

 In fact, the last two terms aie

 3(£M £ EMO, «0|2(t< - U) + 3 (D2) Y, £|(j/(0, w)|2(t» - u).

 Write i]ļ = 26(ť J). It. is easy to see that by choosing ijļ so that

 CO

 3]C£,|^0'u;)l2r'* < £
 k = 1

 we have

 3 (A ) E'<p(0, w)'2dt < e.

 Further, write rjk = m which the sum is over all t¡ G Mk • Choose r}¡
 and consequently i]k so that ^kVk < £/3. Note that when € M¿, we
 have y(<¿) € M* and E'<p(y(£)y w)'2 < A*. Then we obtain

 3(£>2)£ i" E'?(y(i),™)'2dt < e.
 J U

 Hence the proof is complete.
 In view of Theorem 4, the condition there can be used as an alternative def-

 inition of the IIB integral, and furthermore the integral so-defined is uniquely
 determined.
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 5. Itô's formula

 This is one of the most important tools in the study of stochastic integrals.
 We shall show that it can also be verified using the HB integral.

 Theorem 5 Suppose that
 (i) F(yìw)ì - oo < y < co, is a process defined on (W, B(W), Pw' {Bt' 0 <

 i < 1}) and the map y - ► F(y, iv) is continuous with probability one;
 (ii) Fļ(y> w) and Fy (y, w) are bounded and both y - ► Fý(y, tt;), y

 Fy (y, w) are continuous with probability one;
 (Hi) Both Fļ(X(tiw),w)}o<t<i and {Fy(X(t,w), w)}o<t<' are adapted

 to {Bt' 0 < t < 1} where X(t,w) is the canonical Brownian motion of
 (W,B(W)%Pw'{Bt' 0 < / < 1}).

 Then for every T G [0, 1] we have

 F(X(T, w), w) - F(A'(0, «»), w) = £ Fļ(X(s, tu), w)dX{s , w)
 T

 +ļ ļ T Fy(X(s, w), w)ds.
 To prove Theorem 5 which is known as Itô's formula, we need the following

 two lemmas.

 Lemma 6 Let Up = {<p(t} i^)}o<t< i be defined on (W, B{W), Pw) and the map
 t - ► from [0,1] into L 2 be continuous. Then Theorem Ą holds with
 D = {([u, v],y(í))} replaced by Di = {([u, v], w)}.

 Proof. Suppose <p is HB integrable to I(<p ), i.e.

 I(<p) = (HB) C (p{tiw)dX(tiw).
 Jo

 Then for every e > 0 there exists a belated full cover depending on {M*}
 and 6(£) such that the conditions in Theorem 4 are satisfied. Now take a
 division D = {([w, v], y(£))} from A&, replace y(£) in D by u, and denote the
 new division by D' = { ( [i/ , v], a)}. Then using the Itô isometry we have

 •E'IC-Oi ) 5Z - iti(w)) - /(v£>)|2 = f E'<pDl(t,w) - ip(t,w)'2dt
 Jo

 where is defined accordingly as in the proof of Theorem 2. We can choose
 6(£) > 0 such that

 IM<> «') - V(£. < e/4 whenever |* - £| < 6(Ç).
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 Consequently,

 E'<pDl(t,w)-<p(t,w)'-dt = (Di) Y2 J E'<p(u,w) - p{t,iv)'2dt

 E'<p(u,iv ) - <p(Ç, w)ļ2di
 J U

 +2(öi) s/; £|v>(Ć.«>) - <p(t, w)'2dt
 < - ul = e-

 Hence the inequality in Theorem 4 holds with D replaced by D'.
 Conversely, suppose the inequality in Theorem 4 holds with D replaced by

 D' and I(<p) by I'(<p ). Since the map t - »• <p( t , •) is continuous in Lņ, we have
 as t' - ► t

 Ill^'.OlUa- llv»(«.-)IUJ < - 0.

 It follows that

 i E'<p(t,w)'2dt < oo,
 Jo

 and <p G £2- Then (p is HB integrable. Suppose

 (HB) í <p(Uw)dX(t%w) = I2(<p).
 Jo

 By going through the same argument a s the uniqueness proof of the HB inte-
 gral, we can show that = Irj(<p). Hence the proof is complete.

 Lemma 7 Let <p = {<p(t, u>)}o<*<i be defined on (W, B(W), Pw) and the map
 t - * (p(X(t, w), w) be continuous with probability one and adapted to {#*;() <
 t < 1}. Further , let ņ be a bounded process. Then for every e > 0 there exists
 a full cover A such that for any D = {([u, v],£)} from A, we replace £ in D
 by any £1, 6 [t/ , v] , denote the new division by D* , and if

 cr = (D")^2'PM^),w){iv(v)-iv(u))2 G ¿2

 then we have

 f1
 E a - / <p(X(s,w),w)ds < e.

 Jo
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 Proof. For brevity, write At = v - u and Aw = u>(v) - tu(u). Then we
 have for D' = {([«,«],££,)} and D' = {([u,r],u)} in which D' is obtained
 from D' by replacing ^ 6 [», i'] with u

 fl 2
 E vK*(s,u>),u;)cfs

 2

 < 3 E |(£>" ) vKMC). tf)|Au>|2 - (Di) ^ <p(w(u), tu)|Aui|2

 +ZE ļ(£»i)^y(tū(«),ti))(|Au)|2 - A<)|
 I fl 2
 +3E'(Di)'^2ip(w(u)iw)At - / <p(X(s1w)}w)ds

 = I' -f Ii -f h-

 We shall show that I' , Io and /3 are small for suitably chosen D * .
 Simple calculation in probability theory (see, for example, [6; p. 14]) shows

 that

 E'Aw' 2 = Ať and £|Au;|4 = 3|Ať|2,

 which in turn imply

 E 1 1 A it? 1 2 - Aź|2 = 2|A/|2.

 Since tp is bounded, we can assume

 |v?(y, u;)| < C0 forali y, w.

 It follows that

 h < 3Cš(£>i)J^£||Au>|2- Ať|2

 < 6C¿(£>i)^|A<|2
 < 6Co(max Aí)(Di)V]A< - ' Di - '

 < 6CoinaxAť. ü
 ü D 1

 Hence given e > 0 we can choose a full cover A with 26(£) < £/18Cq for each
 £ such that for any D from A with D' defined as above, i.e., replace £ € [ti, v]
 in D by ti, we have

 In < e/3.
 Further we define

 t /4' ' Í ^(w(0),u>) when 1 = 0 ,
 TO,(U,(')..»)=ļ t /4' ' Í ,,«>(»>. ^(w(0),u>) «0 „łen when 1 ie =
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 for each ([u, v], u) from D'. Put

 M(u, v) = sup{ļ<p(tv(s),w) - ^(«)(<),w)|; s,t G [u,r]}.

 For convenience, we sometimes write Mi, A u>,- , Ať,- for M (u, v), A w, At re-
 spectively where i runs from 1 to n. It follows that

 < 3£?|(Di)5;j»/(«,i»)A/ļ3
 O

 n

 = 3 E ^ Mi At{
 » = 1

 n

 = 3 E Y^, Mï'AU'2 + 2 Yl M¡ M j AU At j
 i = 1 i<j

 < 12 Cl ¿ |Ať,f + 2 Y^iEM^iEMfy^AUAtj
 1 = 1 i<i

 < 12Cq max Ať,- + 2(max£'M/*) ^ AUAtj
 i<j

 < 12 Cq max Aż,- + max jEM? .

 Next, we shall estimate max EM? or max EM (u, v)2. Since i - ► ^(iy(ť), iü)
 is continuous with probability one, for any £ 6 [0,1] and for any 771,172 > 0
 there exists ho = »7i , »72) > 0 such that whenever h < ho

 Pw { sup |y>(u;(s),u;) - tp(w(Ç),w)' > 771} < 770.
 's-S'<h

 We may assume

 m+4C$T)2 < Í and 6(£) < min{ft0, ļ4^cii-

 Then it follows that

 max EM(u,v)2 < rji+ĄCoW-
 D'

 Consequently,

 3 < 6 6 " 3'
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 Following the same argument a 5 in the proof of /3 < £*/3, we obtain

 /1 < eß.

 Hence the proof is complete.
 Proof of Theorem 5. Take a division D = {([u, u],f )} °f [ū> T'- Write D'

 when £ in D is replaced by m, and write Do when £ in D is replaced by a given
 fi € [m, v], where is to be determined later. We can write with probability
 one

 F(iu(T),w) - F(w(0),w) - (£>)^{F(u;(t>),u;) - F(u;(u),u;)}

 = (A) 51 F^(«;(u), «;)(«;(«) - ti>(u))

 +^(jD2)5^^/(U;(C).«')(«;(V) - w("))2

 where fi denotes some suitable value in [u, v] such that the above equality
 holds. Note that fi depending on w may not be a random variable. However
 the above equality shows that the sum (Do) £ ^oes belong to ¿2-

 Since Fy is bounded, the conditions in Lemma 6 are satisfied with <p(t, tv) =
 Fý(w(t)f w). Given e > 0, in view of Lemma 6 there exists a belated full cover
 A b depending on {Mk) and 6(£) and satisfying the conditions in Theorem 4
 such that for any D = {([u, v], t/(f ))} from A¿ we write D' = {([u, v], u)} and
 obtain

 rT
 ^l(£)i)53i»(l£,(u)'u;)(u'(1') - M«)) - / ^(A'(s,u>),u>)oLY(s,u>)|2 < e.

 J 0

 Next, in view of Lemma 7 there exists a full cover Ai such that for any
 D = {([u, v],f)} from Ai we write Do = {([it, v].fÍ)} and obtain

 r' 2

 E(D2)*ž2Fy(w(Zi)>™)(w(v)-w(u)f- Fļ'(X(,s,w),w)d$ < e.
 Jo

 We may assume A& and Ai above share the same 6(f) > 0. Hence combining
 the above inequalities we obtain

 jE|F(u/(T),u/) - Fiutów) - [T Fl(X(s,w)iw)dX(siw)
 J 0

 T

 - 'ļ T F;'(X(s,w),w)ds'2 < 3e.
 Since e is arbitrary, the proof is complete.
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 It is instructional to go through the above proof again for the special case
 when F(yi w) = ^ y 2 and JV (ť, i^) is a standard Brownian motion. It can be
 seen more clearly there how the HB integral is used to prove results. In that
 case, Itô 's formula becomes

 where B(t) denotes standard Brownian motion.
 We remark that the boundedness condition of Fý and FjJ in Theorem 5

 can be removed by means of the usual localization technique (see [4; Theorem
 2.5.1]).
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