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NORMS AND DERIVATIVES

1. Introduction

The main purpose of this note is to investigate the equation
(*) fPtg®=h

where f, g, and h are derivatives. In particular, we shall look for conditions
under which (f2 + ¢2)1/2, the Euclidean norm of the pair (f,g), is again a
derivative. It turns out that the corresponding results hold also for some other
norms. In Theorems 3.7, 3.8, and 6.3 we investigate n-tuples of derivatives,
where n is any integer greater than 1.

Setting f(z) = sinl, g(z) = cosl for z # 0 and f(0) = g(0) = 0 we
have derivatives for which f2 + g2 is not the square of any derivative. On
the other hand we would like to find nontrivial examples of triples (f, g, h) of
derivatives fulfilling (); this can be done with the help of Proposition 3.6 and
Theorems 3.7 and 3.8. Theorem 6.2 gives information about g and A under
some assumptions about f provided that (*) holds. Theorems 6.3, 6.8, and
6.9 point in the opposite direction; if f and g fulfill certain conditions, there
is a derivative h for which (*) holds. Examples 2 and 3 indicate that it would
not be easy to weaken the assumptions in Theorems 6.8 and 6.9.

2. Notation

The word function means a mapping to the real line R. By C, L,Cqp, D we
understand the systems of all continuous functions, Lebesgue functions, ap-
proximately continuous functions and derivatives on the interval I = [0,1],
respectively. Symbols like | : f fQ f denote the corresponding Lebesgue inte-
grals. If Y is any system of functions, then bY [Y*] stands for the system of
all elements of Y that are bounded [nonnegative].
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Throughout this paper, p is an element of (1,00) and R?2 = R x R. Further
we set S, = {f € D; |f|P € D},

v
T, = {f € D; ]imsuPylz/ |fIP < oo (y— z,y€I) foreach z € I}.
- z

It is well-known that bCsp = bL, L C DN Cgp and that a function f
integrable on I is in D if and only if -2 y_z fy f— f(z) (y = z,y € I) for each
z€l

For any system Y C D let M(Y) = {g € D; fg € D for each f €Y}.

3. Elementary and Known Results

Lemma 3.1 . Let f,g € Cqp, |g| £ f € D. Then g € L.(See [M1], 1.8.)
Lemma 3.2 L is a vector space. If f € L, then |f| € L. (This is well-known.)
Proposition 3.3 S, is a vector space. If f € S, then f, |fIP € L.

PROOF. Let f € S,. It follows from Lemma 4.4 in [MW] that f, |f|P € L. If
also g € Sp, then f+g € L and |f +g|P £ 2°(|f|P + |g|P) € L. By Lemma 3.1
we have |f + g|P € L so that f+g € S;.

Proposition 3.4 Let ¢ € (1,00), % % =1 Let f€ Sy, g €T,. Then
fg€D.

PROOF Let z € I. By Proposition 3.3 we have f — f(z) € S, whence
V—z sz 2 If = f(2)lP — 0. Thus |12 [2(f — f(=))gl S (G35 [7 If - f(-’r)l")‘/’

= gl —0(y— =z, yGI) Hence ;1 [Y fg = 2L [1(f - f(=))g +
F@) 29— £(2)9(2) (v — 2,y € D).

Definition 1 LetY C D. We say that Y has property V, if (|a|P +|B[P)}/? €
Y, whenever a,f €Y.

Proposition 3.5 LetY have propertyV,. Letn € {2,3,...} and leta,,...,a,
€Y. Then (L} laj [yir ey.

(The proof is left to the reader).
Proposition 3.6 LetY € {C,bCap,Sp,L}. Then'Y has property V,.

PROOF. It is obvious that C and bC,, have property V,. Now let a,8 €
L, v =(la|P +|B|P)}/?. Then v € C4p, |7| £ |a|+|8] so that, by Lemmas 3.2
and 3.1,7 € L. If a, B € Sp, then, by Proposition 3.3, v» € L whence y € S;.
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Theorem 3.7 Let Y have property V,. Letn € {2,3,...}, a1,...,an €Y,
Y EM(Y). Set fj =va; (j=1,...,n), h=9 (X |ej|P)!/?. Then f;,h € D
and 3°|f;|P = |hP.

(The proof is left to the reader).

Remark 1 The systems M(C) and M(bC,p) have been characterized in [M3]
(Theorems 7 and 12). According o 4.2 in [M1] we have M(L) = bD. Propo-
sition 3.4 says that Ty C M(S,); it will be proved elsewhere that M(S,) = T,.

Remark 2 The nezt theorem shows that if Y = Sp, then the assumption a; €
Y can be replaced by the weaker assumption that oj € D and 3 |o;|P € D.

Theorem 3.8 Letn € {2,3,...}. Letay,...,an € D, Y |aj|P € D. Let
¥ € T,, where ,l,+ % =1 Set fj =va; (j=1,...,n), h=9¢ (3 |aj|P)}/?.
Then f;,h € D and 3 |f;]P = |AP.

PROOF. Choose an s € (1,p). Then Y |a;|P € Q,, where Q, is as in Section
5.4 of [MW] (we take r = ¢; = 1 there), so that we can apply Theorem 5.5
of [MW] (where we take p; = p and s instead of p) and we get o; € L. By
Lemma 3.1 we have |a;|P € L so that o; € S, (j = 1,...,n). Now we apply
Proposition 3.4, Proposition 3.6, and Theorem 3.7.

4. Conventions

For any (Lebesgue) measurable set Q C R let |Q| be its measure. If Q is such
a set and b € R, we write d(Q,b) = lim|Q N (b — z,b + z)|/2z (z — 0+),
provided that this limit exists.

Throughout the rest of this note we write M = M (bC,p) (= M(bL)).

For v,w € R? let v - w be their scalar product.

If z = (z,y) € R?, then ||z]|, means (|z|P + |y|P)V/P.

In Lemma 5.2 and Proposition 6.1 we suppose that || - || is a norm in R2
and that 8 is a mapping of R? to R? with the following properties:

(i) For each (z,y) € R? we have |y| < [|(z, y)l| = l|(z, -v)II.

(ii) If z = (z,y) € R?, z # 0 and 0(z) = (A, B), then A # 0 and |B| - ||z]| <

z-0(z).

(iii) If v,z € R? and ||v]| = ||z||, then v - 8(2) £ z - 8(2).
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5. Preliminary Results

Proposition 5.1 For each z = (z,y) € R? set ||z|| = ||z]|, and set 8(z) =
(lz|P-sgnz,|y|P~tsgny). Then the conditions (i)-(iii) are fulfilled.

PROOF. (i) is obvious. Let z = (z,y) € R?, z # 0, 6(z) = (A, B). Clearly
A#0, z-0(z) = ||zllP = [lz]| - lz]IP~* and [|z||P=! = (|z]P + [ylr)P=1/P >
|vlP=! = |B|. Now let v,z € R?, ||v]| = ||z]|. Define ¢ by 1 + ¢ =1. Then
p=q(p=1) =14p/q, v-0(2) < |lo||-[0()llg = l|=|- (J|P= 13 4|y|(P=Da)t/s =
llzll - (lzlP + lylP)M e = ||z *+7/s = |lz|lP = =z - 6(2).

Lemma 5.2 Let z € R?\{(0,0)}. Set K = z.0(z)/||z]|. Then v-6(z) < K||v||
for each v € R2.

PROOF. Let v € R?\ {(0,0)}. Set w = v]|z]|/||v]|. Then |jw]| = ||z|| so that,
by (iii), v - 0(z) = w- 8(2)l[vll/llz|l £ z - 6()llll/ll=ll = K|Jo]l.

6. Main Results

Proposition 6.1 Let f € M, g € D\ M, f > 0. Suppose the conditions (i)
- (iii) are fulfilled. Then ||(f,9)|| € D.

ProoF. Set h = ||(f,9)|| and suppose that h € D. Then all the functions
f,9,h are Lebesgue integrable. By Theorem 12 in [M3] there is a b € I
and a measurable set Q C I such that d(Q,b) = 0 and that the relation
%an(b-z,b+z)g — 0 (z — 0+) fails. We may suppose that b = 0 and that
limsup L an(O,:) g (z — 0+) is positive; call it u. Applying again Theorem
12 in [M3] we get

(1) ;Lm@f“O“““”

Set z = (£(0),9(0)),0(z) = (A, B), K = z-6(z)/||z||. By Lemma 5.2 we have
(2) Af + Bg < Kh.

Hence

(3) A/zf+B/Zg§I\"/zh

for each measurable set Z C I. There are z1,z,,... € (0,1) such that z, — 0
and that, setting Q, = QN (0,z,) and u, = ?rl..' fQ. g, we have u, — u and
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u, > 0 for each n. Define t,, by

(4) A/'f+B/Qng=t,,/Q.h.

Since g £ h, we have [ta| [ 9 S |tal fo, h S 141 Jo, f+ 1Bl [, 9, ltnlun S
IA|% fQ.. f + |Blun; by (1) we get limsup |t,| < |B|. Hence we may suppose
that the sequence (t,) converges to some t. Then t < |B|. By (ii) we have
|B] < K so that t < K. There is an m such that t, < K for each n > m.
From (4) and (3) with Z = (0,2,)\Qn weget A [ f+B [{"gS K [~ h-
(K —tn) [q, h whence Kf~hZAf~f+B 3" 9+ (K =ta) [ 9 (n>m).
We see that u < co. Since z - 8(z) = K||z|| and ||z|| = h(0), we have

Kh(0) 2 Af(0) + Bg(0) + (K — t)u = K||z]| + (K —t)u > Kh(0);
a contradiction.

Theorem 6.2 Let f € M, g,h € D, f > 0 and let fP + |g|P = |h|P. Then
g,heM.

ProoF. We may suppose that h > 0. Then h = ||(f, g)||,. By Proposition 5.1
and Proposition 6.1 we have g € M. Since h £ f + |g|, it follows easily from
[M3] (see condition (ii) in Theorem 12) that h € M.

Remark 3 Let 1=2z9> 21> -+, 2, =0, 2,/2p41 — 1. Set dy = 2,1 —
z,. Let 2, < yn < 2p < Zn_1,2n—Yn < dy/n. Let | be a nonnegative function
on I such that [(0) = 1, [ is continuous on (0,1], { = 0 on (0,1] \ U(yn, 2n)
and f;:l =d, (n =1,2,...). It is easy to see that | € D. Now let v, €
(n,Yn), Wn € (2n,Zn-1), Wn — vy < dn/n. There is a function w such that
0 Sw<1lonl,wis continuous on (0,1}, w = 1 on U(ys,2,) and w = 0 on
I\ U(vn,wn). It is obvious that lim ap I(z) = 0 (z — 0+), w € bCqp and
lw =1 on (0,1]. Since (lw)(0) = 0, we have lw & D so that [ ¢ M.

Now it is clear that there are l, 4 € Dt \ M continuous on (0, 1] such that
1(0) = p(0) = 1, lim ap I(z) = lim ap p(z) = 0 (z — 0+) and Ip = 0 on
(0,1].

Remark 4 Ezample 1 shows that the requirement “f > 0” in Theorem 6.2
cannot be replaced by “f > 0 on (0,1]”.

Example 1 Let [ be as in Remark 1. Set f(z) =z (z€1I), g=1+1, h=
(f2+9%)'2, o = f/g. Then p € C and h = g(p? + 1)!/2. Since D+ C M(C)
(see, e.g., Theorem 7 in [M3)), we have h € D. Clearly f € M, f2+ g% =
h?, ge D\ M.



348 MaR(k

Remark 5 If f,g,h € D, f?+g¢* = h? and ifliminf ap h(y) >0 (y— z,y €
I) for each z € I, then, by Proposition 4.6 of [MW], there are a, 3, and ¢
(namely ¥ = h) such that

(%) f=a, g=p¢, a,f € Cop.

Examples 1 and 2 in [MW] (sections 5.12-5.13) indicate the importance of
the corresponding assumptions. If we set a(z) = zsin 1, f(z) = zcos L, y(z)
= 1(z€(0,1)), a(0) = A0) = ¥(0) =0, f = a9y, g = B, h = (f? + g2)/2,
we see that the assumption liminf ap h(y) >0(y —» z,y € I) foreachz € I
does not imply that A > 0 on I (even if (5) holds and f, g € bD).

Now we would like to find conditions for f and g that would allow us to
deduce from (5) the existence of an h € D fulfilling f2 + g = h2.

Theorem 6.3 Let n € {2,3,...}, fi,....,.fa €E M, a1,...,an € Cqp. Let
Ya}>0o0nl Lety be a function on I such that f; = aj9p (j = 1,...,n).
Then there is an h € M such that )" |f;|P = |h|P.

PROOF. Set v = (3" |o;IP)!/?, B; = |aj/v|P~* -sgn @j, h = 3 B;f;. Then
Bj € bCop so that h € D; clearly h€ M, h =¥ fiaj =Y |a;P/yP~! =
¥y whence |hP = 9P [$IP = 3~ |aj ¥l = 3 |f51P.

Remark 6 The reader may compare this theorem with Proposition 5.10 and
Theorem 5.11 in [MW].

Our next goal is Theorem 6.8 which is a modification of Theorem 6.3 with
n = 2. In Theorem 6.8 we still assume that f; € M, but the requirement
f2 € M is replaced by other conditions. We need a few lemmas.

Lemma 6.4 Let f € M, g € D, f2+9%> >0, g 2 —|f|. Let o,B,¢ be
functions on I such that (5) holds. Leta,b€ I, a < b and let ) > 0 on (a,b).
Then ¢(a) > 0.

Proor. Clearly ¥(a) # 0. We distinguish two cases.

(i) f(a) #0. Set v = (a? + f?)V/2, o = Ya?/v. Since p 2 0 on (a,b) and
¢ = fa/y € D, we have p(a) 2 0, ¥(a) > 0.

(i) f(a) =0. Then a(a) =0, B(a) #0, g(a) 2 —|f(a)] = 0. Since ¥y > 0 on
(()a,b), we have § 2 —|a| on (a,b), B(a) 2 —|a(a)] =0, B(a) > 0, Y(a) >

Lemma 6.5 Let f,g,a,,v be as before. Then sgn o is constant.
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PROOF. Set o = sgn %. Clearly ¢ = (af + 89)/(a® + 82), 0 = ¥/|¢|. Then
o is a Baire one function. Let G be the set of all points where o is continuous
(with respect to I). It is easy to see that G is open in I and that o is constant
on each component of G. Let F = I\ G. Suppose that F # 0. Then there is
a b € F such that o is continuous at b with respect to F. There is an open
interval J such that b € J and that o is constant on FNJ. By Lemma 6.4
o is constant on the closure of each component of G. Hence ¢ is constant on
JNICG;a contradiction. Thus F =@, G = I and o is constant on I.

Lemma 6.6 Let A = {(0,y);y € (—00,0]}, G = R?\ A. Define a function F
on G setting F(z,y) = ((|z[P + |ylP)!/? — y)/z (z # 0), F(0,y) =0 (y > 0).
Then F is continuous.

PROOF. It is obvious that F is continuous at each point (z,y), where z # 0.
Now let yo, € € (0,00). Let y > 40/2, |z| < yo(ep)/P=1)/2. Set t = ¢|z|/y.
Then |z[P~! < y?~lep, |zlP < yPip, [z]P +1? < $P(1+1tp) S W(1+1) =
(y+e¢lz])?, (|| + y*)/? —y < ¢|z|, |F(z,y)| < €. This proves the continuity
of F at (0,yo).

Lemma 6.7 Let G, F be as before. Let k € (0,00), H = {(z,y) € G; y 2
—k|z|}. Then |F|S2k+1 on H.

ProoF. If z,y € (0,00), then zP +y? < (z+y)? so that 0 < F(z,y) < 1. Now
let >0, —kz Sy <L 0. Then (2P + [ylP)/P —y S z+ |yl + |y £ (2k + 1)z
whence 0 < F(z,y) £ 2k + 1. Clearly F(-z,y) = -F(z,y).

Theorem 6.8 Let f € M, g€ D, f2+g2 > 0. Let a, 8,9 be functions such
that (5) holds. Let k € (0,00), g 2 —k|f|. Then (|fIP + |g|P)!/? € D.

PrROOF. Let G, H, F be as before. By Lemma 6.5 we may suppose that ¢ > 0.
Then (a(t), B(t)) € H for each t € I. Clearly y + zF(z,y) = (|z|° + |y|P)!/?
for each (z,y) € G. Hence (|f|P + |g|P)/? = g + fF(f,g) on I. It is easy to
see that F(f,g) = F(a,B); by Lemmas 6.6 and 6.7 we have F(a, 8) € bCqp.
Thus fF(f,g) € D which proves our assertion.

Remark 7 Taking f(z) = sinl (z € (0,1]), f(0) =0, g = ¢ = f and
a = f = k = 1 wesee that the assumption “f2+4g2 > 0” in Theorem 6.8 cannot
be dropped. If, however, f € M+, g € D, B € C,p, B is bounded below and
g = Bf, then, clearly, (fP+|gIP)!/? = g+ fy, where ¢ = (1+|BIP)!/P B € bCap
so that (f? + |g|?)!/? € D. Thus we may ask whether “f2 + g2 > 0” can
be replaced by “f 2 0”. The next theorem gives a positive answer to this
question.
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Theorem 6.9 Let f € M+, g € D. Let o, 3,y be functions such that (5)
holds. Let k € (0,00), g 2 —kf. Then (f? + |g|?)}/? € D.

PROOF. Set h = (fP + |g|P)!/?. If f(z) = g(z) = 0, set p(z) = 0; otherwise
set p(z) = F(f(z),9(z)), where F is as in Lemma 6.6. Clearly h = g + fop
and, by Lemma 6.7, |¢| £ 2k + 1 on I. A simple computation shows that g =
(Jka + B| — k|a|)|#]. Thus we may suppose that o, 9 2 0. Set W = {f > 0}.
On W we have ¢ > 0 and ¢ = F(e, §) so that ¢ is approximately continuous
at each point of W. It follows easily from Proposition 11 in [M3] (see condition
(iv)) that y_#z- [Y fo — f(z)p(z) (y = 2,y € I) for each z € W. If f(z) = 0,
then the inequalities ¢ < |g| S h S |9+ f £ 9 + (2k + 1)f imply that
s J2 h — g(z) = h(z). Thus h € D.

Remark 8 Let f =1, g € CopND, [;lgl =c0. Seta=9y =1, f=g.
Then f € M, f2 + g2 > 0, (5) holds, but, obviously, (f2 + ¢2)!/2 ¢ D. We
see that the requirement “g 2 —k|f|” in Theorem 6.8 or Theorem 6.9 cannot
be dropped. This example raises naturally the question whether “g 2 —k|f]”
cannot be replaced by “[; |g| < 00”. Example 2 shows that this is not possible;
the corresponding function g is the difference of two nonnegative derivatives.
(Not every Lebesgue integrable derivative can be expressed in this way.) A
more complicated example (not given here) shows that not even “|g| € D” can
replace “g 2 —k|f|” in Theorem 6.8 or Theorem 6.9.

Example 3 in [MW] (section 5.14) shows that the requirement “f € M” in
Theorem 6.8 cannot be replaced by “f € D*”. Our Example 3 shows the same
thing in a simpler way. Theorem 6.11 shows that the assumption “f € M” is
very essential. This theorem follows easily from Proposition 6.10 that is stated
without proof.

Example 2 Let |, u be as in Remark 1, section 15. Set f =1, g=1—pu, h=
(FP+g)V2, a=¢ =1, f=g. Then f € M and (5) holds. However,
h 2 |gl = 1+ p on (0,1] whence liminf1 [Fh 2 1(0) + p(0) = 2 > 1 = h(0).
Thus h ¢ D.

Example 3 Let I, u be as before. Set f =141, g =144, h = (f2 +¢?)1/2.
Then f,g € D, g/f € Cap. Since 12+ p2 = (1 + p)? on (0, 1], we have there
h? > 14+2(1+p)+12+p? = (1+1+p)? so that liminf L [ h 2 1+1(0)+p(0) =
3> 2v/2 = h(0). Thus h ¢ D. It is obvious that g > —|f| and that (5) holds
witha=1 f=g/f and ¥ = f.

Proposition 6.10 Let f € D\ M and let £ € (0,1). Then thereis a B € Cop
such that |8 — 1| <€ on I, ff € D and (f* +(8f)?)'/* ¢ D.
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Theorem 6.11 Let f € D\ M and let f > 0 on I. Then there is a k €
(0,00) and functions g,a, 3,4 such that (5) holds, g € D, g 2 —k|f| and
(f?+4¢%)'* ¢ D.

PROOF. Let € = % and let 8 be as in Proposition 6.10. Now it suffices to take

a=k=1, ¢y=f, and g = Sf.
Remark 9 Some of the results of this note withp = 2 have been stated without
proof in [M2].
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