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 NORMS AND DERIVATIVES

 1. Introduction

 The main purpose of this note is to investigate the equation

 (*) f+g2 = h 2

 where /, <7, and h are derivatives. In particular, we shall look for conditions
 under which (/2 + g 2)1^2, the Euclidean norm of the pair (/,<;), is again a
 derivative. It turns out that the corresponding results hold also for some other
 norms. In Theorems 3.7, 3.8, and 6.3 we investigate n-tuples of derivatives,
 where n is any integer greater than 1.
 Setting /(x) = d(x) = cos¿ for x 0 and /(0) = ^r(O) = 0 we

 have derivatives for which /2 -f g 2 is not the square of any derivative. On
 the other hand we would like to find nontrivial examples of triples (/, <7, h) of
 derivatives fulfilling (*); this can be done with the help of Proposition 3.6 and
 Theorems 3.7 and 3.8. Theorem 6.2 gives information about g and h under
 some assumptions about / provided that (*) holds. Theorems 6.3, 6.8, and
 6.9 point in the opposite direction; if / and g fulfill certain conditions, there
 is a derivative h for which (*) holds. Examples 2 and 3 indicate that it would
 not be easy to weaken the assumptions in Theorems 6.8 and 6.9.

 2. Notation

 The word function means a mapping to the real line M. By C>L%Cap,D we
 understand the systems of all continuous functions, Lebesgue functions, ap-
 proximately continuous functions and derivatives on the interval I = [0, 1],

 respectively. Symbols like J fl6 /, fç f denote the corresponding Lebesgue inte-
 grals. If Y is any system of functions, then bY [Y+] stands for the system of
 all elements of Y that are bounded [nonnegative].
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 Throughout this paper, p is an element of (1, oo) and R2 = 1 x R. Further
 we set Sp = {/ € D' 'f'p e D},

 1 íy
 Tp = {fe D' lim sup

 V- z Jx

 It is well-known that bCap = bLy L C D O Cap and that a function /
 integrable on I is in D if and only if /*/-♦• f(x) (y -> x,y € I) for each
 xel.

 For any system Y C D let M(Y) = {g G D; fg G D for each / G Y}.

 3. Elementary and Known Results

 Lemma 3.1 . Let /,£ G Cap, |ý| ^ / G -D. Then g G L.(See [Ml], 1.8.)

 Lemma 3.2 L is a vector space. Iff G L , ťAen |/| G I. (This is well-known.)

 Proposition 3.3 Sp is a vector space. If f G 5P, then /, ļ/ļ^ G L.

 Proof. Let / G Sp. It follows from Lemma 4.4 in [MW] that /, 'f'p G L. If
 also g e Spy then / -f G L and |/ + ^ 2*>(|/p> + |^|p) G L. By Lemma 3.1
 we have 1/ + g'p G L so that / -f g G Sp.

 Proposition 3.4 Let q G (l,oo), - + - = 1. Let f G SPì g G Tļ. TAcn
 /i € D.

 PROOF. Let x £ I. By Proposition 3.3 we have / - f(x) G Sp whence
 ¡rh Xy I/ - /(*)ř - 0. Thus Ijlj £(/ - /(*))s| g (jlj XT I/ - /(*)lp)1/p •
 (¡rh /* If l')1/f - 0 (y - x, y € J). Hence ^ fg = ^ /* (/ - /(*))</ +

 /* 9 -+ /(*)</(*) (y -+x,y 6 I).

 Definition 1 Let Y C D. We say that Y has property Vp */(|c*|p + 'ß'p)l^p G
 V, whenever a,ß £Y .

 Proposition 3.5 Let Y have property Vp . Let n G {2,3,...} and let a' , . . . , an
 G y. Then (££,, € Y.
 (The proof is left to the reader).

 Proposition 3.6 Let Y G {C, bCap, Sp, L}. Then Y has property Vp.

 Proof. It is obvious that C and bCap have property Vp. Now let a,ß G
 L, 7 = (|a|p -f 'ß'p)l/p. Then 7 G Cap, |t| ^ M -f |/?| so that, by Lemmas 3.2
 and 3.1, 7 G í. If or, ß G Spi then, by Proposition 3.3, jp G L whence 7 G 5p.
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 Theorem 3.7 Let Y have property Vp. Lei n € {2,3,...}, ai,...,an ÇY,
 V e M(Y). Set fi = 1 K- 0' = 1. • • • . "). h = V- • (E Mp)1/p- ™en /;, A € D
 Ei/jř = W-

 (The proof is left to the reader).

 Remark 1 The systems M(C) and M[bCap) have been characterized in [MS]
 (Theorems 1 and 12). According 1o Ļ2 in [Ml] tue have M(L) = bD. Propo-
 sition 3.4 says that Tq C M(SP); it will be proved elsewhere that M(SP) = Tq.

 Remark 2 The next theorem shows that if Y = Sp, then the assumption a j G
 Y can be replaced by the weaker assumption that aj G D and ]T) |a¿|p G D .

 Theorem 3.8 Let n G {2,3,...}. Let ai,..., otn G D , G D. Let
 V» G r„ where 1 + 1 = 1. Set fi = ipotj (j = I,. . ,,n), h = V> • (E |o'il',)1/p-
 Then fi,h€D and E L/jT =

 Proof. Choose an s G (l,p). Then £3 lailp € Qs> where Q, is as in Section
 5.4 of [MW] (we take r = q' = 1 there), so that we can apply Theorem 5.5
 of [MW] (where we take pi = p and s instead of p) and we get G L. By
 Lemma 3.1 we have 'otj'p G í so that Qj G Sp (j = 1, . . . , n). Now we apply
 Proposition 3.4, Proposition 3.6, and Theorem 3.7.

 4. Conventions

 For any (Lebesgue) measurable set Q C R let 'Q' be its measure. If Q is such
 a set and 6 G R, we write d(Qib) = lim|Q fl (6 - x,6 + x)|/2x (x - * 0+),
 provided that this limit exists.

 Throughout the rest of this note we write M = M(bCap) (= M(bL)).
 For v, w G R2 let v • tu be their scalar product.

 If z = (x,y) G R2, then ||z||p means (1*1* + |y|p)1/p.
 In Lemma 5.2 and Proposition 6.1 we suppose that || • || is a norm in R2

 and that 0 is a mapping of R2 to R2 with the following properties:

 (i) For each (x, y) G R2 we have |y| ^ ||(x, y)|| = ||(x, -y)||.

 (ii) If z = (x, y) G R2, X ^ 0 and 0(z) = (^4, jB), then A ^ 0 and |B| • ||z|| <
 z . 0(z).

 (iii) If v, z G R2 and ||v|| = ||¿||, then v • 0(.z) ś z • 0(z).
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 5. Preliminary Results

 Proposition 5.1 For each z = (a;, y) G K2 set ||z|| = ||z||p and set 0(z) =
 (|x|')~l5ýnz) |y|p-l5ýny). Then the conditions (i)-(iii) are fulfilled.

 Proof, (i) is obvious. Let z - (ar, y) G R2, x jt 0, 6(z) = (A, B). Clearly
 A * 0, z • <?(*) = ||r||" = ||;|| • ||z||"-i and ||r||r-» = (|«|p + |y|P)(f-»)/P >
 |y|p- 1 = |5|. Now let v, z E R2, ||v|| = ||z||. Define q by ì + ì = 1. Then
 p=q(p- 1) = l+p/q, t > 0(z) g ||o|H|0(«)||f = ||-|| (|x|(p~1),-»-|y|<p-1)í)1/<ř =
 11*11 • (W + |y|p)1/ł = M1*"1 = II-II" = * • '(*)•

 Lemma 5.2 Letze M2'{(0,0)}. Set K = z -e{z)l''z''. Then v-6(z) Ś /<|M|
 for each v G R2.

 Proof. Let v G R2' {(0,0)}. Set tv = v||¿||/||i;||. Then ||u>|| = ||z|| so that,
 by (iii), v • 6(z) = w ■ 0(z)|M|/||z|| g r • 0(z)|M|/|M| = K''v''.

 6. Main Results

 Proposition 6.1 Lei f G M, g E D ' M, f > 0. Suppose the conditions (i)
 - (iii) are fulfilled . Then ||(/,ý)|| £ D.

 Proof. Set h = ||(/,<;)|| and suppose that A G D. Then all the functions
 /,</,/* are Lebesgue integrable. By Theorem 12 in [M3] there is a 6 G /
 and a measurable set Q C I such that d(Q,b) = 0 and that the relation
 r fQn(b-x b+r) <7 0 (a: - ► 0+) fails. We may suppose that 6 = 0 and that
 lim sup £ fçn^or)^ ( x ls Positive; ca'l ^ u • Applying again Theorem
 12 in [M3] we get

 (1) -( /- 0(x-0+).
 x JQn( o,x)

 Set z = (/(0), </(())), 0(z) = (A,B), K = z • 0(r)/||z||. By Lemma 5.2 we have

 (2) Af + Bg ^ Kh.

 Hence

 (3) A í f + B í gúK í h
 J Z J Z J z

 for each measurable set Z C I. There are xi, £2, • • • G (0, 1) such that xn - ► 0
 and that, setting Qn = Q C I (0,xn) and un = j- g , we have un u and
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 un > 0 for each n. Define t„ by

 (4) A [ f + B [ </ = <„/ h.
 JQh JQ . JQ*

 Since g źh, we have |ť„| fQn g Ś |í„| fQn h ś 'A' fQn f + 'B' JQn g, |ť„|u„ ^

 |v4|^- fç f + by (1) we get limsup|tn| 5Ś |£|. Hence we may suppose
 that the sequence {tn) converges to some t. Then ť ^ |5|. By (ii) we have
 1*1 < K so that t < K. There is an m such that t„ < K for each n > m.
 From (4) and (3) with Z = (0, *„) ' Qn we get A /*" / ■ + B /*" g Ś K /*" h -

 (K-tn)fq%h* hence K /0" h Ì Aß* f + Bfi* g + (K-*n)¡Qng(n > m).
 We see that u < oo. Since z • 0(z) = K''z'' and ||z|| = h( 0), we have

 Kh(0) Ž Af( 0) + Bg( 0) + (K - *)« = K''z'' + (K - t)ti > I<h{ 0);

 a contradiction.

 Theorem 6.2 leť f € M, g,h € D, f > 0 and let fp + 'g'p = |/i|p . Then
 g,heM.

 Proof. We may suppose that h > 0. Then h = ||(/, <;)||p. By Proposition 5.1
 and Proposition 6.1 we have g £ M. Since h / + |<j|, it follows easily from
 [M3] (see condition (ii) in Theorem 12) that h G M.

 Remark 3 Let 1 = xo > x' > • • • , xn -► 0, xn/xn+i - ► 1. Set dn = xn_i -
 xn . Let xn < yn < zn < xn«i,zn - yn < dn/n. Let / be a nonnegative function
 on / such that /(0) = 1, / is continuous on (0, 1], / = 0 on (0, 1] ' U(yn, zn)
 and f** I = dn (n = 1,2, . . .). It is easy to see that / G D. Now let vn G
 (xn, y«)) wn G (*n,zn_i), < dn/n. There is a function u such that
 0 ^ u; ^ 1 on J, u; is continuous on (0, 1], w = 1 on U(yn, zn) and u = 0 on
 J ' U(vn,it;n). It is obvious that lim ap /(«) = 0 (x - ► 0+), cj G bCap and
 /u; = / on (0, 1]. Since (/w)(0) = 0, we have lu £ D so that / £ M.

 Now it is clear that there are /,/¿ G ö+ ' M continuous on (0, 1] such that
 /(0) = fi( 0) = 1, lim ap ¡(x) = lim ap ļi(x) = 0 (z - ► 0+) and I fi = 0 on
 (0,1].

 Remark 4 Example 1 shows that the requirement ttf > 0* in Theorem 6.2
 cannot be replaced by af > 0 on (0, 1]".

 Example 1 Let / be as in Remark 1. Set f(x) = x (x € /), 0 = 1+/, h =
 (/2 + <,2)1/2, y> = f/g. Then <p e C and h = g(<p 2 + l)1/2. Since D+ C M(C)
 (see, e.g., Theorem 7 in [M3]), we have h € D. Clearly / € M, /2 + y2 =
 Ä2, g€D'M.
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 Remark 5 ///, ý,/i G D, f2 +92 = h2 and i/liminf ap h(y) > O (y - ► x,y €
 /) /or each x G J, ihen, by Proposition Ą.6 of [MW], there are a,ß, and '¡>
 (namely 'ļ> - h) such that

 (5) / = aý, g = ßil>, aje Cap.

 Examples 1 and 2 in [MW] (sections 5.12-5.13) indicate the importance of
 the corresponding assumptions. If we set a(x) = x sin ß{x) = x cos £ , V>(z)
 = ¿ (s G (0, 1]), a(0) = ß(0) = V>(0) = 0, / = <*'ļ>, g = ßxp, h = (/2 + (j2)1/2,
 we see that the assumption liminf ap h(y) > 0 (y - ► xi y G I) for each x G I
 does not imply that h > 0 on J (even if (5) holds and f,g G h D).

 Now we would like to find conditions for / and g that would allow us to
 deduce from (5) the existence of an h G D fulfilling /2 + g2 = h2.

 Theorem 6.3 Let n G {2,3,...}, /i,...,/n G M, ai,...,an G Cûp. leť
 53 or? > 0 on I. Let '¡> be a function on I such that fj = ocjiļ> ( j = 1, . . .,n).
 TAen Mere is an h G M such that £ |/¿|p = 'h'p.

 Proof. Set 7 = (£ la;lp)1/p> ßj = |»í/tIp_1 • sgn c*;-, /1 = £/?>/,-. Then
 ßj G bCap so that h € D' clearly h e M, h = il>52ßj(Xj = Ip/tp""1 =
 ^7 whence |A|* = 7* |^|p = E ¿ |/j|p.

 Remark 6 TAe reader may compare this theorem with Proposition 5 AO and
 Theorem 5.11 in [MW],

 Our next goal is Theorem 6.8 which is a modification of Theorem 6.3 with
 n = 2. In Theorem 6.8 we still assume that f' G M, but the requirement
 /2 G M is replaced by other conditions. We need a few lemmas.

 Lemma 6.4 Let f G M, g G -D, /2 + g2 > 0, g ^ - 1/|. leť or,/?, ^ ¿e
 functions on I such that (5) holds . Zeť a, 6 G /, a < 6 and Iet 'ļ> > 0 on (a, 6).
 Then ip(a) > 0.

 Proof. Clearly ^(a) -fi 0. We distinguish two cases.

 (i) f(a) 0. Set 7 = (a2 + Z?2)1'2, y? = '¡>a2/y. Since ^ 0 on (a, 6) and
 <p = /a/7 G A we have ^>(a) ^ 0, ^(a) > 0.

 (ii) /(a) = 0. Then a(a) = 0, ß(a) ^ 0, g(a) ^ -|/(a)| = 0. Since '¡> > 0 on
 (a, 6), we have ß ^ -|a| on (a, 6), ß(a) it ~|or(a)| = 0, ß(a) > 0, tp(a) >
 0.

 Lemma 6.5 Let f,g,ot,ß%y'> be as before. Then sgn is constant .
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 Proof. Set a = sgn r{>. Clearly ^ = (of + ßg)/(a2 + ß2), a = iļ>/'il>'. Then
 a is a Baire one function. Let G be the set of all points where <r is continuous
 (with respect to I). It is easy to see that G is open in I and that a is constant
 on each component of G. Let F = l'G. Suppose that F / 0. Then there is
 a 6 G F such that <r is continuous at b with respect to F. There is an open
 interval J such that b G J and that a is constant on F D J. By Lemma 6.4
 a is constant on the closure of each component of G. Hence a is constant on
 J fi I C G; a contradiction. Thus F = 0, G = I and a is constant on I.

 Lemma 6.6 LetA = {(0,y);yG (-oo,0]}, G = R2'A Define a function F
 on G setting F(x,y) = ((Ixf + |y|p)1/p - y)/x ( x ¿ 0), F(0,y) = 0 (y > 0).
 Then F is continuous.

 Proof. It is obvious that F is continuous at each point (x,y), where x £ 0.
 Now let yo, e G (0,oo). Let y > yo/2, |x| < yo(fp)l^p-1* /2. Set t = e'x'ļy.
 Then 'x'P~1 < y"-lep, |x|p < ftp, |x|p + yP <yP( 1 + tp ) g y»>(l + if =
 (y + c|x|)p, (W + yPj^-y < e|x|, |.F(x,y)| < e. This proves the continuity
 of F at (0,yo).

 Lemma 6.7 Let G,F be as before. Let k G (0,oo), H = {(x,y) 6 G; y ^
 - Jb|x|}. Then |F| g 2k + 1 onH.

 Proof. If x,y € (0,oo), then xp+'p < (x + y)p so that 0 < F(x,y) < 1. Now
 let x > 0, -kx śyśO. Then (xp + |y|p)1/p - y ^ x + |y| + |y| ^ (2 k + l)x
 whence 0 < F(x, y) ^ 2k + 1. Clearly F(-x, y) = -F(x, y).

 Theorem 6.8 Let f G M, g € D, f2 + g2 > 0. Let be functions such
 that (5) holds. Let k G (O.oo), g £ -fc|/|. Then (|/|p + 'g'r)lh> G D.

 Proof. Let G, H, F be as before. By Lemma 6.5 we may suppose that xp > 0.
 Then (a(ť), ß(t)) G H for each í G /• Clearly y + xF(x, y) = (|x|p + |y|p)1^p
 for each (x,y) G G. Hence (|/|p + |ý|p)1/p = g + fF(f,g) on 7. It is easy to
 see that F(f,g) = F(a,ß)' by Lemmas 6.6 and 6.7 we have F(a,ß) G bCap.
 Thus fF(f,g) G D which proves our assertion.

 Remark 7 Taking /(x) = sin j (x G (0, 1]), /(0) = 0, g - rļ> = / and
 a = ß - k = 1 we see that the assumption " f2+g 2 > 0" in Theorem 6.8 cannot
 be dropped. If, however, / G M+, g G D, ß G Cap, ß ¡s bounded below and
 g = ßf, then, clearly, (/p+|p|p)1/p = g+f<p, where <p = (l+|/?|p)1/p-/3 G bCap
 so that (/p + |y|p)1'p G D. Thus we may ask whether "f2 + g2 > 0" can
 be replaced by "/ ^ 0". The next theorem gives a positive answer to this
 question.
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 Theorem 6.9 Let f G M+, g G D. Let oc,ßy%l> be functions such that (5)
 holds . Let k e (0,oo), g Ž -it/. Then ( fp + 'g'p)l!p G D.

 PROOF. Set h = ( fp + | g'p)lfp. If f(x) = y(x) = 0, set <p(x) = 0; otherwise
 set <p(x) = F(f(x)1g(x))ļ where F is as in Lemma 6.6. Clearly h = g -f f<p
 and, by Lemma 6.7, '<p' Ś 2k + 1 on I. A simple computation shows that g =
 (|iba + ß' - fc|a|)|V>|. Thus we may suppose that a, ^ 0. Set W = {/ > 0}.
 On IV we have xļ> > 0 and = F(a1ß) so that is approximately continuous
 at each point of W . It follows easily from Proposition 11 in [M3] (see condition

 (iv)) that ¿Tzfžfip-* /(* M*) (y - y € /) for each a: 6 W. If /(z) = 0,
 then the inequalities g ^ |y| ^ A ^ |ý| + / ^ <7 + (2 k + 1)/ imply that
 ¡rh /* Ä 0(x) = A(x)- Thus AeD'

 Remark 8 Let / = 1, g G Cap H D , /7 |y| = oo. Set a = V = 1» ß = 0-
 Then / G M, /2 -h ý2 > 0, (5) holds, but, obviously, (/2 + ^2)1/2 £ -D. We
 see that the requirement "g ^ -¿1/1" in Theorem 6.8 or Theorem 6.9 cannot
 be dropped. This example raises naturally the question whether "g ^ -fc|/|"
 cannot be replaced by "fj |^| < oo". Example 2 shows that this is not possible;
 the corresponding function g is the difference of two nonnegative derivatives.
 (Not every Lebesgue integrable derivative can be expressed in this way.) A
 more complicated example (not given here) shows that not even "|p| G D" can
 replace "g ^ -k'f'" in Theorem 6.8 or Theorem 6.9.

 Example 3 in [MW] (section 5.14) shows that the requirement "/ G M" in
 Theorem 6.8 cannot be replaced by "/ G D+" . Our Example 3 shows the same
 thing in a simpler way. Theorem 6.11 shows that the assumption "/ G Mn is
 very essential. This theorem follows easily from Proposition 6.10 that is stated
 without proof.

 Example 2 Let /,/i be as in Remark 1, section 15. Set / = 1, g = / - /i, h =
 (f2 + ū2)1^2* a = iļ> = 1 ,/?=<;. Then f £ M and (5) holds. However,
 h ^ |ý| = / -f n on (0, 1] whence lim inf ^ h ^ /(0) + /¿(0) = 2 > 1 = h( 0).
 Thus h £ D.

 Example 3 Let /, /i be as before. Set / = 1 + /, g = 1 -f /x, h = (/2 + g 2)*/2.
 Then f,g £ D} g/f G Cûp. Since Z2 -h /x2 = (/ + fi)2 on (0, 1], we have there
 h 2 > l+2(/+/i)+/2+/i2 = (1 +/+/i)2 so that lim inf ¿ h Ž l+/(0)+/i(0) =
 3 > 2-'/2 = /i(0). Thus h £ D. It is obvious that g > - |/| and that (5) holds
 with or = 1, ß = g/f and ^ = /•

 Proposition 6.10 Let f G D' M and let e G (0, 1). Then there is a ß G Cap
 such that 'ß - 1| < e on I, ßf G D and (/2 + ( ßf J2)1/2 g £>.
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 Theorem 6.11 Let f G D ' M and lei f > 0 on I. Then there is a k €
 (0,oo) and functions g,a,ß,'1) such that (5) holds, g G D, g ¿1 - &|/| and
 (P+g2)1,2tD.

 Proof. Let € = | and let ß be as in Proposition 6.10. Now it suffices to take
 a = k = 1, ^ = /» and g = ßf.

 Remark 9 Some of the results of this note withp = 2 have been stated without
 proof in [MS].
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