
 Real Analysis Exchange
 Vol. 18(2), 1992/93, pp. 330-338

 Gy. Petruska, Department of Mathematics Univ. of the Witwatersrand, Jo-
 hannesburg 2050, South Africa

 ON BOREL SETS WITH SMALL COVER:

 A PROBLEM OF M. LACZKOVICH

 The following problem has been raised by M. Laczkovich [1]: is it true, that
 a Borei set H C R can not be covered by zero measure Ta set (the small cover
 referred to in the title) if and only if H is residual in a closed set metrically
 dense in itself (i.e. every portion of the closed set has positive measure)?

 In this paper we answer the above question in the affirmative, moreover
 we show that the equivalence of the two properties in question holds also for
 analytic sets. It remains open, how far the equivalence could be extended
 to higher projective classes. As for measurable sets, the next remark was
 communicated by J. Mycielski and R. Laver:

 There exists a set -Y C [0, 1] of measure 0 such that .Y cannot be covered
 by an T0 of measure 0 and À' is not residual in any perfect set.

 The same counterexample was found by one of the other referees as well.
 Moreover, as it was pointed out by him, assuming the Axiom of Construe tibil-
 ity it follows that there are projective classes for which this equivalence fails.
 Thus the question to ask is whether it is consistent with ZFC (for instance,
 assuming the Axiom of Projective Determinacy) that every projective set satis-
 fies this equivalence, or it is provable in ZFC that a projective counterexample
 exists.

 We carry out the proof for subsets of [0,1], though our theorem holds for
 polish (i.e. separable complete metric) spaces replacing [0, 1], and for finite
 continuous Borei measures replacing the Lebesgue measure, as well. The proof
 itself easily extends to the case when the underlying space is a closed subspace
 of the irrational numbers. Any zero dimensional polish space is homeomorphic
 to such a space, on the other hand, given a finite Borei measure on any polish
 space, one can easily find a zero dimensional Gb subspace of full measure, and
 hence the generalization readily follows.

 Definitions and notation. The closure and the interior of H is denoted

 by H, ini H respectively, and A denotes the Lebesgue measure.
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 to be .metrically dense in itself, or briefly, P is an md set. If P is a closed set
 and I Ci P is a portion, then I fl P is called a closed portion of P.

 Let C denote the family of sets of real numbers that can be covered by a
 zero measure Ta set. It is immediate, that C is a sub-^-ideal in the system Z
 of sets of measure zero as well as in the system J of sets of first category: C
 C Z H I .

 Sets with H £ C will be called noncoverable, or (NC) sets and we refer to
 this relation as the (NC) property.

 A set H is said to have the (RR) (relative residual) property, if there exists
 a closed md set P such that H fi P is a residual subset relative in P.

 We use the Souslin operation to represent analytic sets in the standard
 way (see [2], or [4]). M denotes the set {s} of all infinite sequences of natural
 numbers, p, q,r denote multi-indices, i.e. finite sequences of natural numbers.
 If p = (ri!, ..., n.fc), q = (ni,...,njb,njb+i,...,?7/), r = (mi,..., my), we write
 IpI = k, p'q , pr = (ni,...,nfc,mi,...,m¿). For 5 = (ni , ..., nkl ...) eM we put
 s'k = (ni,...,n*), sk = (nfc+i, njk+2, ...)> rs = (mi.^m,-,«!,...).

 For every interval I = (x - ft,x-f h) and t > 0, denote ti = (x - th¡x + th).
 Our main result in this paper is the following

 Theorem 1 Let H C [0, 1] be an analytic set. If H £ C , then there exist a
 closed md set B and a set C C (H fi B) such that C is everywhere dense
 in B. In particular , every analytic (NC) set contains a Q ¿ (NC) set

 Remarks, (i) It should be noted, that the implication (RR) => (NC) is
 trivial for any set H . Indeed, if P is md and F is a closed set with À (F) = 0,
 then FOP must be nowhere dense in P, and hence any set H G C is of first
 category relative in P. Thus, having (NC) => (RR) by the Theorem, we
 obtain that if H C [0, 1] is an analytic set, then properties (NC) and (RR) on
 H are indeed equivalent to each other.

 (n) By (¿) it is obvious, that C is a proper subfamily in Z fi 1 which
 indicates the "smallness" of its elements.

 (iii) By Theorem 13.4 in [3], A C R is a set of first category if and only if
 there exists a homeomorphism h of the real line onto itself such that A(j4) G C.
 This is obviously equivalent to the following statement: A C R is of second
 category if and only if h(A) is (NC) for every homeomorphism h : R - * R.
 Hence, making use of our result, the following corollary is immediate.

 Corollary 1 An analytic set A C R is of second category if and only if h(A)
 has the (RR) property for every homeomorphism h : R - ► R.

 Lemma 1 Let the sets Fn be (relative) open in Fn. Then F = f)Fn is a
 set in P = f1.Fn. In particular , if F is dense in P, then it is a dense set in
 P.
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 Proof. We have Fn = G„ D Fn for some proper open sets Gn-
 OO OO OO CO OO

 F=f)Fn= fļ(0nn7^) = (fļGn)n(fļ7^) = Pn fļ G„,
 n= 1 n = 1 n = l n=rl n = 1

 showing that F is indeed a subset.

 Lemma 2 For an arbitrary X C [0, 1] denote

 X' = X' 1J{/ : the portion I fl X € C}.

 Then

 (¿) X* = X ' (J {I : I is a rational interval and I C'X G C);
 (n) X ' X* G C, X* is relative closed in X; X G C <=£> X* = 0;
 (m) if X £ C, then for every portion If) X* £ C; in particular, X* is md or
 empty;

 (iv) if X = Uf=1 then Uf=1 XJ C X* CX7 C U;°°=i Xr

 Proof. All the statements are trivial. Let us verify X* C XJ only.
 Suppose X $ 'J?=iXj- Then there exists a neighborhood x G I such that

 I nfljjli Xj) = 0» and hence inXJ = 0, j = 1, ... . That is, iDXj G C, j =
 1, ... . Thus I n X = U£ lU n Xj) G C proving x<£X*.

 Lemma 3 Let Anì n = 1,2,... be a sequence of perfect sets , denote U =
 Un=i^n> F = U. Let e > 0, rj > 0, and finitely many open intervals
 JiiJï, - ìJn be given. Then there exist pairwise disjoint closed sets Ck C Ak
 such that

 (i) C = Ur=i C* is a dense open set in B = UifeLi Ck - C;
 (ii) A (B n Jk) > (l - ¿)A(F n Jk) (Jb = l, AO;
 (üi) a/C* 0, Ca- consists of finitely many closed portions of Ak, such that
 the measure of each portion is at most r¡ and the end points of the underlying
 interval are not isolated points of the portion ;
 (tv) if Ak is an md set for k = 1, ..., then B is md as well .

 Proof. The sets Ck will be defined by induction. We put C' = A'. Note
 that, if I fi D is a portion of a perfect set £>, then / nö = /TlDisa closed
 portion of D (not necessarily equal to IOD) such that the end points of J' are

 never isolated points of I' fl D. Choose now an integer K > ^, let the closed

 intervals 1} be defined by 7/ fl F = (^, jç) fi F, and put

 N

 Fi = (J 7/ n F.
 1=1
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 Thus Fi consists of nonoverlapping closed portions of F, and each one of these
 portions is a perfect set.
 Suppose that the closed sets Fj and Cj C ( Aj fl Fj) have been defined for

 j = 1, ...,n and for 2 < j < n they satisfy the following properties:

 (1) FjCFj-i,

 (3) Fj = (j(7/ n Fj),
 » = 1

 where 1} are nonoverlapping closed intervals for every fixed j such that the
 endpoints of I¡ are not isolated points of the closed portion I{ fl F' . The
 intervals Ij are called the main intervals of Fj. Now the induction proceeds
 as follows. Consider Fn = IJísiíA* ^ ^i)- Suppose first, that fl Cn ^ 0
 for some i, and denote shortly P = I? fl F'. Then P'Cn is open in P, thus
 P'Cn = rï /¿J, where Ij C are the disjoint contiguous intervals
 of a suitable (relative in 7f) open set G = IJj^i h- ^or a rea' number m > 0
 denote

 Lm = ¿m(P) = ( U [Ii ' (1 - 1)7, )] U ( U Ij).
 j<m j>m

 Since A(Lm) - > 0 for m - ► oo, we can choose m so large, that the estimates

 (4) A((fn'ULra(P))nJt)>(l-I)A(FnnJt) (k=l,...,N)

 all hold true. Let M = { j : 1 < j < m, ((1 - ^)/¿) fl P ^ 0} and for j E M
 let the closed interval Ij(P) be defined by Ij(P) fl P = ((1 - ^ By
 the remark above, the endpoints of Ij(P) are not isolated points of /;(P)nFi.
 Fn+ 1 within P is defined by Fn+iflP = (Uj€m 'i(^))n^n = (U;€m
 Fi. Thus the intervals /¿(P), j 6 M are main intervals for Fn+i. If, on the
 other hand I?nCn = 0 for some i, then will be preserved as a main interval
 for Fn+i as well. That is

 Fn+ 1 = (J{/r D Fi : I" n Cn = 0} U (J{/;(P) n Fl : P n Cn # 0, j € M}.
 • i.-p
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 Thus C„ D Fn+' = 0, showing ( 1 ) for j = n + 1 , and since ( Fn ' 'Jp Lm ( P )) c
 (Cn u Fn+i), we have

 A((C„ U F„+1) D Jk) > (1 - ^)'(Fn D Jk)

 for k = 1 , iV, which is (2) for j = n 4- 1. (3) is obvious by the definition.
 Now we put

 "n + 1

 (5) Cn+ 1 = ļj fi int C An+i H Fn+i.
 i=i

 (Note that Cn+ 1 = An+' H Fn+ 1' finite set.) Thus the sets C*, F* satisfy (1),
 (2) and (3) by induction. In particular, Cj are pairwise disjoint, (C1UC2U...U
 Cj-i)C'Fj = 0, and C* C Fj for any k > j. Thus C/n(C,_iU...UCi) = 0.
 This shows that Ck is open in B , and hence C is indeed a dense open set in
 B . In order to prove (it), we show first that

 00

 (6) S = Č = CU(p|F;'Q),
 J= 1

 where Q, consisting of some isolated and one sided limit points of f]Fn , is
 a countable set. Let first x G C ' C, then any neighborhood I of x meets
 infinitely many Cj sets, thus / meets infinitely many, and hence by (1) all
 the Fj sets, therefore x G fļj^i Fj. On the other hand, let x G C'j°=i Fj suc^
 that x is a two sided limit point of fļjtri Fj an<^ ^ be a neighborhood of
 x . We choose for every n a main interval In of Fn such that In D /n+1
 and x G (/n fi Fn) = (/n fi Fi). Suppose A(Jn) does not tend to 0. Let
 T denote the interior of the nondegenerate closed interval finLi^n> ^en x
 being a two sided limit point, we have 0 ^ (Tfi F') C ( In fi Fn) for every n.
 Since U is dense in Fi, there is an index n such that An C'T H F' ^0, say
 y G An DT fi Fi. This implies both y G ( An fi int In) C Cn and y G Fn+i,
 contradicting Fn+i fi Cn = 0. Thus we have A(/n) - ► 0, and we can choose
 n such that In C I and A(/n+1) < A(Jn). If the main interval In is not
 preserved, then by the definition of Fn+ 1, we must have Cn fi In i= 0- Hence
 /nc^0, i.e. x G B and (6) is proved. Now the statement ( ii ) of the lemma
 follows easily. Adding A(C¿_o H Jjt) to both sides of (2) we obtain

 X((Fj U Q_, U Q.a) n Jk) > (1 - ^)A ((F^., U C,_2) fl Jt)
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 thus applying (2) repeatedly we get

 (7)
 J-1 -

 x((Fj u Cj _ i u .... u co n JO > TT(i - ^¡)X(Fi ¿ n Jk) > (l - e)'(Fi n jt). i=i ¿

 Applying (6) and (7)
 OO

 A (B n JO = MC n JO + A( fļ (Fn n JO)
 n = 1

 = lim (A((Ci U ... U Cn-i) n JO + A(Fn 0 JO)
 n = oo

 = lim A([(C'i U ... U Cn-i) u Fn] n JO > (1 - e)A(Fi n Jk),
 n=oo

 and (u') is verified. Finally, by the choice of the intervals 1} the length of any
 main interval is obviously at most 77, thus (iii) is clear by (5). (iv) is obvious
 by (in) and the non-isolated end point property of the main intervals. Hence
 the proof is complete.

 Lemma 4 Let H = (J, fļn H$'n be an analytic (NC) set in [0,1] represented
 by a monotone Souslin scheme {Hp} of closed sets. Then there exists an
 analytic (NC) set A C H, and monotone Souslin scheme {Ap} of closed sets
 such that A = 'JS (ļn .45|n and

 (i') for every p, Ap is an neighborhood set or empty;

 (") Uj=i Apj = Ap for every p. In particular, if Ap ^ 0, then for some
 suitable j also APj ^ 0.

 Proof. For every fixed index p denote
 00 00

 £p=un = ^ =: u o ^in*
 s n=l s n=l

 Let L = (J, fìn L8'n- We show first L = H . Since Lp C Hp for every p, L C H
 is obvious. Let x G H . Then there exists s such that x G H8 1¿ for every
 k. This means, that for a fixed fc, x G Hs'(k+j) for every j. Denote a = sk ,
 then s'(k -f j) = (<s| Ar)(o-|j ) and we obtain x G H(s'k)(<r'j)i j = 1,... . Hence
 x G Ls'k for every k , and L = H follows, indeed. Since Lļ C Lp C Hp> we
 have L* C Lp C Hp, and hence A C H . Notice that

 ü^i = üu(ñ^H«)) = üu(ñ^)HÍ J =1 j = 1 « 'n= 1 / ; =1 5 'n=2 /
 00

 = U 0 Hp(s'n) = ¿pi
 5 n=2
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 and hence by Lemma 2 (iv) we obtain

 ~ÕÕ OO "ÕÕ

 (8) Ap = L1C' J ^ = 1J ^ = U Apj .
 j= 1 ;= 1 i= 1

 Thus (u) follows, and (¿) 's clear by Lemma 2 (in).
 It remains to verify, that A is indeed an (NC) set. Let x £ H 'A, or, by

 L = H , X G L ' A Then there exists an infinite sequence 5 such that x 6 £3|n
 for every n, and there must exist a j such that x £ As' i.e. x € (£*1; '^í|¿) C
 (L,ļ;- ' This shows

 (h'a)c{J(lp'l;)€C
 P

 by Lemma 2, and hence A is (NC) as stated.
 Proof. (of the Theorem) Let H be an analytic (NC) set. Referring to
 Lemma 4 we take an analytic (NC) subset A = 'JS p|n As'n C H such that the
 Souslin scheme {Ap} satisfies the properties ( i ) and (u) of Lemma 4. Since A
 is (NC), we may assume without loss of generality, that APi still satisfying ( i )
 and («) of Lemma 4 are perfect sets (replacing Ap by its perfect kernel in the
 Souslin operation, we only lose countably many points of A ). Using induction
 we define a new Souslin scheme {Cv} by applying Lemma 3 on the systems
 { Ap , |p| = j}, = 1,... as follows. Put B0 = and let C',Ci% ...
 defined by Lemma 3 applied on the sets A'iA21- with r¡ = 1, e = and
 Ji = (0, 1). Suppose that for 1 < j < n and |p| = j the closed sets Cp C Ap
 and Bj = U|p|=7 CP have been defined with the following properties.
 (i) If Cp is nonempty, it consists of a finite number of closed portions of Ap
 called the main portions of Cp :

 Up 1

 (9) Cp = 'Jh{p)CiAp, XUjtp)) < p,

 where the end points of the closed intervals Ij(p) are not isolated points of the
 main portion Ij (p) fl Ap ;

 (10) (ii) Cp are pairwise disjoint for fixed j, |p| = j, and Cq C Cp if p'q'

 (iii) if J is a rational interval, and the denominators of the end points are at
 most j, then

 (11) A(Ą-nj)>(i-i)A(Ą_,nj).
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 We consider now the closed sets Dpj = Cp f I Apj for every |p| = n and
 j = 1,2, ... such that int Ik(p) fi Apj ^ 0 for some k. Since 'JJLX Apj is dense
 in Ap and Cp consists of portions of Ap , also the set (Jjlļ Dpj is everywhere

 dense in Cp. Therefore 'Jp j Dpj = Bn. Note that

 Dpj n ik(p) = ik{p) n Cp n APj = ik{p) n Ap n APj = ik{p) n APj

 are perfect sets. Let 77 = and Ie*» Jh «/jv be the system of
 rational intervals such that the end points have denominators at most n + 1.
 Now we apply Lemma 3 with these parameters for the perfect sets Dpj n/fc(p)
 for & = 1, one after each other and denote the union of all the resulting
 sets by Cpj. Properties (9), (10), (11) are immediate by Lemma 3. Since
 we apply Lemma 3 on the main portions one by one, for every main portion
 Ik(p)nAp of Cp ^ 0 there exist j and / such that the main portion I'{pj)C'Apj
 of Cpj ^ 0 satisfies

 (12) I,(pj)r'Apj C Ik(p)DAp.

 Notice that U|p|=jfe *s an cover of A for every fixed fc, thus A(ļJ|p|=fc Ap) >
 0. Therefore by (9), the nonempty Cp sets are neighborhood sets. Hence Bn is
 neighborhood for every n. Denote B = fļ fln, B is obviously closed. We show,
 that B is an neighborhood set. Let J be a rational interval, let n be the greater
 of the denominators of the fractions at the end points. If Bn fl J = 0, then
 B PI J = 0. If Bn H J ^ ®, A(5n H J) > 0 because Bn is an neighborhood
 set. Thus by (11) we have

 A (Bj H J) >
 1 = 11 + 1

 and hence by the limit with j - ► 00 we obtain

 '(B n J) > xA(¿?„ n 7) > 0,
 o

 showing that B is indeed an neighborhood set. By Lemma 3, U|p|=n Cp *s a
 relative open set in Bn and hence by Lemma 1, C = fìn°=i U|p|=n Cp a S 6
 in B. We prove, that C is also dense in B. Let x 6 B fixed, / = (z - £, x + e).
 Choose n such that £ < Since iGfln and U|p|=n Cp ls dense in ßn, there
 exists p,'p' = n and y £ Cp with |x - y' < |, and hence a main portion
 Qn of Cp such that Qn C /. Thus by (12) there exists a sequence s and a
 sequence of main portions Qk = Jj*(s|fc) H As'i¡ such that Q¿+i C Qk and
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 0 ^ pk Qk c (IC' C), showing that C is indeed dense in B. Thus C is a
 residual Qs in B. But {Cp} is a disjoint Souslin scheme, thus

 c=n u cP=unc*i«cUí>'in=¿ctf,
 n = l |p|=:n sn sn

 and hence H fi B is residual in jB, making the proof complete.
 Acknowledgment. The author is indebted to the referees and to M.

 Laczkovich for their valuable comments.
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