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 AN INTRODUCTION TO SHELL POROSITY"

 Abstract

 Porosity and several different variations of porosity have been used
 to describe small sets for some time. A common link between these

 notions is that off of the real line these small sets are not necessarily
 disconnected. In this paper, shell porosity is introduced and some prop-
 erties of shell porous sets are investigated. This includes the fact that
 in a complete metric space, any closed set which may be expressed as a
 countable union of shell porous sets must be totally disconnected.

 1. Introduction and Historical Remarks

 Porosity, under different names, has been used by analysts since the early part
 of the twentieth century. In 1920, A. Denjoy [5] used a notion similar to what
 is now called the porosity index in his study of properties of trigonometric
 series. A. Khintchine [14], in 1924, used porosity for describing arguments
 involving density. E. P. Dolženko [7] gave us the current nomenclature in
 1967. He needed porosity to describe a subset of the measure zero, nowhere
 dense sets.

 We begin with some definitions.

 Definition 1.1 Let E bea set in Rand let a <b. Define A (E' a, 6) = X(E' 6, a)
 as the length of the largest subinterval in ( aib)C'Ec , where E€ denotes the
 complement of E . If x is any point in R, we define the right hand porosity of
 E at X as

 -L/m v i- '(E;x,x + h)
 p+(E'x) -L/m v = limsup- i-

 /1-0+ "

 •Many of the results presented here are from the author's Ph.D. dissertation written
 under the direction of Michael J. Evans
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 Similarly, the left hand porosily of E at x is given by

 / r-7 ' 1- '(E'x - h%x)
 p~ (E' / r-7 x) ' = 1- hm sup

 h- o+ "

 Finally , the porosity of E at x is

 p{E'x) = lim sup = max{p+(jE;x),p"(£?;ar)}.
 ä- o K'l

 Note that for any x , p(i?;ar) 6 [0, 1].
 Introducing some terminology associated with these definitions, we say E

 is porous at x if p(E'x) > 0. If p(E'x) = 1, then E is called strongly porous
 at x. The set E is called porous if it is porous at each of its points. Lastly,
 the set E is called cr-porous if it can be expressed a s a countable union of
 porous sets. While it is clear that a cr-porous set must be both of measure
 zero and of first category, the converse is not. true. L. Zajíček [18] was the
 first to construct a nowhere dense, measure zero perfect set which fails to be
 (T-porous.

 The (7-porous sets have been used to describe several types of exceptional
 sets. Dolženko [7], in his study of cluster sets, showed that given a function,
 /, from the half-plane into the complex plane, the set of x eRsuch that there
 exists two Stolz angles, 0i, and 0o, with 0/(01, x) ^ CjiOn.x) is a (7-porous
 set. C. L. Belna, M. J. Evans and P. D. Ilumke [4] have shown that for a
 continuous function, / :R- ►R, the set of points where / is not differentiate,
 but the symmetric derivative exists is a cr-porous set. Later, Evans and Humke
 [8] proved that if / is monotone, the collection of points where the upper, or
 lower, left and right derivatives are not equal is a cr-porous set.

 Some other applications of porosity include J. Foran's construction of a
 non-averaging set which is both strongly porous and of Hausdorff dimension
 one [11], and Zajiček's [19, 20] and V. Kelar's [13] investigations of topologies
 generated by porosity and strong porosity.

 It is obviously possible for a set, E , to be porous at x while either p+(E; x) =
 0 or p~(E'x) = 0. We say a set is bilaterally porous at a point if both
 p+(E;x) > 0 and p~(E'x) > 0. Still, this does not guarantee us any relation-
 ship between the location of the gaps in E to the right of x and the gaps to
 the left of x . To counter this we bring in the notion of symmetric porosity.

 Definition 1.2 Let E C R«wrf let x be any point. For R > 0 define y (E' x , R)
 as the supremum of

 {li > 0 : 3 t > 0, t+li < /?, (x-t - h, x- t)C'E = 0 and (£+ 1, x-M-f h)C'E = 0}.
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 We define the symmetric porosity of E at x as

 ģt„ x .. y(E'x,R)
 p'(E'x) ģt„ x = hmsup ..

 7Î-0+ "•

 The definitions of strong symmetric porosity and ^-symmetric porosity
 follow analogously. It is this symmetric porosity which is directly related to
 Denjoy's bilateral porosity index [6]. Using symmetric porosity, Zajíček [22]
 improved on Belna, Evans and Humke's result by showing the set is actually
 ^-symmetrically porous.
 Moving on to a general metric space, porosity is defined as follows:

 Definition 1.3 Let E be a set in the metric space (A', d). By Bx(r) we mean
 the open ball centered at x of radius ?*, i. e. {y G A' : d(x , y) < ?'}. For x € X
 and R > 0 define i(E'x,R) as the supremum of

 {h > 0 : 3 z E X with B:(h) C B*(R) fi Ec }.

 Furthermoref define the porosity of E at x as

 t īp ' or 2 IfiE^x^R)
 p(E;x) t īp ' = 2 or hmsup

 o+ R

 As with porosity in R, this general definition of porosity is blind to the
 symmetry of the "holes" in E. Shell porosity is our way of incorporating this
 symmetry.

 First, we must define what we mean by shells. Let x G A' and 0 < r' < 7*2.
 The open shell about x of radii 7*i and rn is given by

 Sx(ruro) = 5x(ro) ' ¿Mn).

 Now we may introduce shell porosity.

 Definition 1.4 For R. > 0, toe define A(E'xiR) as the supremum of

 {h > 0 : 3 t > 0 with t -f h < R and. Sx(t,t H- li) fi E = 0}.

 The shell porosity of E at x is given by

 ./_ . A(E;x,R.)
 p'(E,x) ./_ . = Inn sup

 /?- o+

 Note that this is not abusive notation for if A' = Ift, then shell porosity is
 symmetric porosity.
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 The purpose of this paper is to introduce shell porosity and discuss several
 of its properties. To begin with, we will show that, in the space of compact
 sets from a complete metric space endowed with the ¡IausdoríT metric, strongly
 shell porous sets are typical. That is, they form a dense G s set. Next, we
 will compare shell porosity with the definition of porosity in a general metric
 space. Several properties of porous sets do not apply to shell porous sets but
 shell porosity also has some features lacking in porous sets. We will then
 conclude with comparisons and contrasts with two other definitions of porous
 sets: hyperporous and totally porous.

 2. The Abundance of Shell Porous Sets

 Many papers have been published, showing that in a certain sense the "typical"
 set encountered in many situations is either porous or a-porous; e.g., see [3],
 [4], [8], [16], [17], and [21]. This section contains another such result. We show
 that the typical compact subset of the real line Ris shell porous. Actually, we
 shall show more, but before we state the precise result, some definitions and
 terminology are in order.

 Let (X, d) be a complete metric space and recall that, a set A is called shell
 porous if it has positive shell porosity at each of its points. We shall say A
 is r]-shell porous if it has shell porosity at least ?/ at each of its points. Our
 main goal here is to show that the "typical" compact set in A' is strongly shell
 porous, i.e., is 1-shell porous. We shall now clarify what we mean by "typical."

 Let C be the collection of nonempty compact subsets of A'. For A,B G C,
 let

 pi = inf{f > 0 : B C (J Bx-(f)}-
 x£A

 The Hausdorff distance between A and B is

 p(A,B) =

 It can readily be shown that tC = (£,/>) is a complete metric space [2, 15].
 Hence, any dense G¿ subset of K, is residual in K. We shall show that the
 collection of strongly shell porous compact sets in A' is a dense G¿ subset of
 K. It is in this sense that we assert that strongly shell porous sets are typical.

 Let P(rj) = {F € C: F is 77-shell porous}, and let ? denote the collection
 of all nonempty finite subsets of A'. From the definitions, it is easy to see that
 if 0 < or < /? < 1, then

 P(a) D P(ß) D P{ 1) and P(ß) = fļ P(j).
 t<ß

 We also have the following elementary lemma.
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 Lemma 2.1 For each i 7 € [0, 1], T C and T is dense in K.

 PROOF. Clearly T C P(i]) for every ?/. To see that F is dense, let e > 0 and
 C € C. Choose a finite subset of {Bx(e) : x 6 C}, say

 {£*,(«),

 to cover C. Clearly, if F = {ari, x2, . . . , *»}, then FGf and p(C' F ) < e.

 Theorem 2.1 The collection of all strongly shell porous compact subsets of
 X is a dense G s subset of AC.

 Proof. For each natural number n and each 0 < ?/ < 1, let

 Pn(rļ) = {F 6 C : Va: G F 3RX G (0, 1/n), hx > 0, and tx > 0

 such that tx + hx < RXihx/Rx > /;, and Sx(txitx + hx) C Fc}.

 Choose any F G Prł(»y) and let x G F with /iXł 1r< and Rx as above. Let

 r, = > 0.

 For each y G Bx(rx) let

 hy = /ir - 2d(x,y) > 0

 and

 ty = /■* + </(*,*/) > 0.

 Then we see that

 ^y ^y < + hr < Ä.ri (1)

 /?y /ïj - 2?^

 Ā7 Řl

 and

 Sy(řy,<y + /ly) C S ,(/,.** + A,)t (3)

 where this set inclusion can be seen as follows: if r € S y(ty,ly + hy), then

 d(z, x) < d(z , y ) + c/(z, y) <ty + hy + d(x' y) = 1r + hT,

 and

 d(z, x) > d(z,y) - d(x, y) >iy- d(x.y) = ir.
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 The collection {Bx(rx) : i 6 F) is an open cover for F and, hence, there
 is a finite subset {¡rj , xi, . . . , arp} of F so that the open set

 G s Ů Bx,(rxi) ' (J Sx, (*,„<*.
 » = 1 »=1

 contains F. Now, if y € G, then there is an 1 < i < p, such that y G (»*,.),
 and consequently, from (1), (2) and (3) we know that there exist positive
 numbers ty and hy such that

 ty + lly < Rx, < "" «

 ily

 iů.>,h
 and

 Sy (ty , ťy + Ay) C G° .

 Thus any compact subset of G is in P,i(v).
 Let 6 denote one-half the usual "distance'' from the compact set F to the
 closed set Gc. So 6 > 0, and if S is any nonempty compact set such that
 p(F,S) < 6, then p§ < 6 , and hence

 S C (J B,(6) C G.
 xe F

 Consequently, S G Pn(ij)- Therefore, P,»(ř;) is open in /C , and this is true for
 every natural number n and every 0 < ?; < 1.

 Now, let a G (0, 1). Then since

 CO CO

 p(a)= fi fi Pn(a-l/m),
 n = 1 m=l

 P(a) is a G 6 set in K. Thus
 oo

 P(l)= p|P(l - 1/n)
 n = l

 is a set and from the lemma is also dense in K. Hence, our proof is complete.
 After obtaining this result we discovered that P. M. Gruber [12] had inde-

 pendently proved virtually the same observation in 1989. He did not introduce
 a nomenclature for shell porosity, but a careful reading of his work shows that
 he has indeed obtained Theorem 2.1.
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 Applied to Rwith the usual metric, this result yields the fact that the
 collection of strongly symmetrically porous compact, subsets form a dense G¿
 in the space of compacta of Rwith the Hausdorif metric, and, consequently,
 the larger collection of compact sets in Rwhich are bilaterally strongly porous
 is also residual in the same space. This latter result was originally announced
 by L. M. Larson at the Summer Symposium on Real Analysis in Esztergom,
 Hungary, August, 1987 2 and the proof presented here is modelled on his
 original argument.

 3. Comparisons of Porosity and Shell Porosity

 In this section we shall compare and contrast the notions of porosity and shell
 porosity. We shall do this for sets in Rn and in the more general setting of a
 metric space.
 First, in Rit is fairly easy to construct a set which is bilaterally strongly

 porous at one point, but which is not symmetrically porous at that point. A
 deeper concern would be whether a set which is bilaterally strongly porous
 at each of its points could fail to be a symmetrically porous set, or even a
 cr-symmetrically porous set. Recently, Evans, Humke and K. Saxe [9] have
 shown that the latter situation is possible: that is, they constructed a sym-
 metric Cantor set in Rwhich is bilaterally strongly porous and showed that
 this contains a residual set which is not ^-symmetrically porous. Thus, in
 contrast to the abundance of symmetrically porous sets set forth in the previ-
 ous section, this reult seems to indicate that the symmetrically porous sets in
 Rare in some sense less populous than the porous ones.
 This view of symmetric porosity as being more restrictive than porosity is

 further enhanced by another example constructed in [9]. Specifically, Zajíček
 [21] had observed that given any 0 < c < 1 and any c-porous set A in R,
 A can be expressed as the union of a sequence of sets, An , such that the
 porosity of each An at each of its points is at least c. Evans, Humke and Saxe
 showed the existence of a symmetrically porous set which cannot be expressed
 as a countable union of sets, each having symmetric porosity greater than
 four-fifths at each of its points.
 Here, and in the next section, we wish to continue this comparison of

 shell porosity and porosity and more general notions of porosity. In addition
 to showing that analogues of the Evans-Humke-Saxe examples exist in Rn
 we shall compare and contrast porosity and shell porosity by examining a
 space with two equivalent metrics, looking at the products of porous and shell
 porous sets, utilizing the notion of very-porous and very-shell porous sets,

 2See Real Analysis Exchange , Volume 13, 19S7-SS, pp. 116-118, for an outline of that
 presentation.
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 investigating what we shall call "sections1' of shell porous sets, and observing
 the relationships between a set being connected and its being either porous or
 shell porous. Some notation and definitions will be needed for this endeavor.
 We define product spaces and the product metric as follows. Given two
 spaces (X,di) and (Y, </3) we denote (A' x ''d) a s the set of all pairs (x,y)
 with x 6 X and y £ Y along with the product, or box, metric d, defined by

 d((«i. yi), (*2. Vi)) = max{di(x-i , x2), d2(y' , y2)}.

 The definitions of porous and shell porous can be changed to those for
 very-porous and very-shell porous by replacing the lim sup in the definitions
 with lim inf. Specifically, the v-porosity and v-shell porosity of a set E in the
 metric space (X, d) are given respectively by

 pv(E'x) = lim inf ? 1 ^ and psv(E' x) = lim inf
 r- *0+ V r- ' 0+ V

 The first way we will analyze shell porous sets is by looking at the behavior
 of a shell porous set in a space A' where A" has been given two equivalent met-
 rics. Following the terminology of Barnsley [2] we shall say that two metrics
 d and d* on X are equivalent if there exists m > 0 and M > 0 such that
 md*(z,y) < d(xiy) < Mdm(x,y) for every x and y in A'. Unlike a porous set,
 in order to be shell porous at a point with both metrics a certain condition
 must be met.

 Theorem 3.1 Let (A', d) be a metric space and suppose that the metric dm is
 equivalent to d. Let E C A' and x G A' be such that the shell porosity of E at
 x in the d metric satisfies ps(E;x) = 1 - xļ>% where xl) < m/M. Then the shell
 porosity of E at x in the dm metric satisfies pļ(E:x) > 1 - ( M/m)tļ> .

 Proof. Since p*(E'x) = 1 - there must exist two sequences {rn} and
 {Rn} with

 0 < rn < Rn, Rn ► 0, Sx(rn, Rn) C Ec

 and

 ~~ Rn~* v'
 Since '¡> < m/M , for n large enough we have rn/m < Rn/M.

 Since d(x,y) and d*(x,y) are equivalent, then for any radius r

 Bļ(r/M) C Bx(r) C JB;(r/iW)

 where B*(r) an<^ ^«(r) are ^ie open balls of radius r in (A 'd*) and (X,d)
 respectively.
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 Using a large n along with rn and Rn from above, we know Bļ{Rn/M) C
 Bx(Rn) and Sar(rn) C Bļ(rn/m). Thus we have S£(rn/m, Rn/M) C Ecy since

 B*{rn) C Bļ(rn/m) C Bļ(Rn/M) C B,(Rn).

 So for (X>d*), we have

 p9m(E;x) ~~ > lim - - = 1 - - lim rn/Rn = 1 - -tp.
 ~~ n- oo 4a. m n- co ??l

 Al

 A consequence of this is the following corollary, which we shall see later
 does not hold when strongly shell porous is replaced with strongly porous.

 Corollary 3.1 If a set is strongly shell porous at a point in one metric , then
 it will be strongly shell porous at that point in any equivalent metric.

 Proof. This is an application of Theorem 3.1 with xp = 0.
 If the assumption that p'(E;x) > 1 - m/M in Theorem 3.1 is omitted,

 then it is possible for p'(E;x) to be positive and p8m(E'x) to be zero as the
 following example illustrates.

 Example 3.1 There is a set in the plane which has shell porosity at the origin
 of 1 - l/y/2 using the box metric , and shell porosity at the origin of 0 using
 the euclidean metric .

 Proof. In M2 with the box metric,d, let

 E = {x : %/2/2fc+1 < d(Q,x) < l/2fc, k 6 N).

 Using the box metric and the fact that S( o,o)(p-> v?) C Ee

 However, for the euclidean metric note that for any k value both the point

 (0, and the point (^, lie on the ball centered at the origin with radius
 This means that we cannot place a shell centered at the origin which will

 not touch any point in E. Thus p*(E' 0) = 0.
 This idea can be extended as follows:

 Example 3.2 There exists a set in the plane which is shell porous using the
 box metric , but not shell porous in the euclidean metric.
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 Proof. This example will be based on the construction in Example 3.1.
 Now, however, we will have a set which consists of isolated points except for
 one limit point which will be the origin.
 For each natural number k , let /* = a,K' let- Nk be the greatest
 integer less than or equal to lc(>/ 2 - 1), i.e. the greatest integer less than or
 equal to

 Ik

 Define E to be the union of the four sets

 £o = {(0,0)}
 Ei = {(4, 0) : Jb = 0,1,...}
 ^î=U|il{(^-»7tl0):/ = 0.1

 Ei = U£Ļļ{(ījĻ, - -ļf) '■ ' = 0, 1, . . . , 2fc}.

 We claim that E is a shell porous set in the box metric, yet fails to be
 shell porous at the origin in the Euclidean metric. First, since every point in
 E other than the origin is isolated, it follows that E is shell porous at each
 such point in both the box and euclidean metrics. Next., to see that E is shell
 porous at the origin in the box metric again note that each box metric shell

 Ąo,o)(*nr> #) c E' and

 1 i
 lim W * = 1 - -Ļ i > 0. *_=o 4 72

 Finally, we shall show that E is not shell porous at the origin in the eu-
 clidean metric. To this end let 5(o,o)(* > /*) denote any euclidean shell contained
 in Ec. Then there is a k such that

 '/2 . '/2
 2¿+i < ' - 2* '

 If ^ h < ib i then since 5(o,o)(^> ^ ) f E'¿ - 0, h - / < This yields

 h - i lt 1

 h < v| ~ k'

 Next, suppose ^ < h < iß. Since the circle of radius $ centered at the
 origin contains the point (*1r,4r) € lt follows that since 5(o,o)(^^) must
 miss £3, we have h - t < ^ and so

 h ~ 1 ^ JE _ J_ ^ I
 h £ '2k k '
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 Consequently, E has shell porosity 0 at the origin in the euclidean metric.
 This behavior is in sharp contrast to ordinary porosity as illustrated by

 the following theorem, which is probably quite well known. Its statement and
 proof are included for completeness and to further illustrate the difference
 between shell porosity and porosity.

 Theorem 3.2 Let (A T, d) be a metric space and assume that the metric d* is
 equivalent to d. If E C X and x € X , then

 ^ p(E,x ) < p.(E,x)

 and hence E is porous at x in one metric if and only if it is porous at x in the
 other metric .

 PROOF. Say p(E]x) = p > 0. So there exists three sequences {Än}, {r„},
 and {zn} with Rn > rn, Rn - ► 0, such that

 C Bt{Rn) n E' and HpL - p. J'n

 With Bļ(r) denoting the open ball in the dm metric C BSn(rn) and
 bmcb;^)-, so

 BlCjj)C(B1(^)nEc)
 and

 / r-, v -w i*n/ ' M . . m rn m
 p»(E-,x) / r-, v > lim 2( -w i*n/ ' M ) . = 2- . m Inn - rn = -p>0, m

 n- CO H n/m M n - CO J{n M

 yielding fòp(E,x) < p.(E,x).
 Whereas strong shell porosity is preserved by equivalent metrics, strong

 porosity need not be. The following simple example demonstrates this.

 Example 3.3 There is a set in the plane which is strongly porous at the origin
 in the euclidean metricf but is not strongly porous at the origin in the box
 metric.

 PROOF. First we define two sequences. Let {hn} and { rn } be sequences with
 hn = 1/n and rn = (1 - ^)hn. In R2 let be the point (0 Jin)- Next, define
 the open balls Bn = BZn (?*„). Finally, take a subsequence {ii¡¡} of the natural
 numbers so that for j ^ ky Btij fl Bnk = 0. Let E =F:2' {U jBnj). Then for
 the euclidean metric,

 p(E; (0,0)) = lim 2'"' + = n-cc lim ^ 2 - - fi = i. j-co llnj + rnj n-cc 2 - jļ
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 However, using the box metric,

 PME-, (0, 0)) = „Ita ifļ'";',) = < l-
 We now turn our attention to products concerning porous and shell porous

 sets. This first result is well known.

 Theorem 3.3 Let (X,di) and (Y', do) be metric spaces. If E C X has porosity
 Tj at X € X, then E x Y has porosity at least ?; at (x, y) € (A' x V, d).

 Proof. Since p(E'x) = 77 there exists {/?,»}, {''»»} and {zn} such that

 Ä« > rn > 0, Rn - 0, 5*(r„)n £7 = 0, ß*(r„) C B? (Rn),

 and

 Ār~">0'
 Take (ar, y) G E xY. For 77, ,, rn, and rn above

 (*»>y) 6 5(lxi;)('«) <= **>»> x y CE<xY = (Ex Y)<

 and

 So Pxxy(E x Y;(x,y)) > Ihrin-co ^ = jj.
 An easy corollary of this theorem is the following:

 Corollary 3.2 If E C (A',di) /¿as porosity ? 7 «/ x E E and F C (Y', do) Aas
 porosity 7 at y £ F then

 p(E x F;(a:,y)) > max{>?,7}.

 The next example shows the sharp contrast in that shell porosity is not
 preserved when taking products.

 Example 3.4 We can construct a set E C$-which is strongly shell porous at
 two points , x and y , yet E x E is not shell porous at (x,y) using the box metric
 on R2.

 Proof. First we define the following set. in R. Let E' = {x : 1/(2 n + 1)! <
 < 1/(2»*)!» rc = 1,2,3,...} and En = {x : l/(2?i -I- 2)! < d(x% 3) <
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 1/(2 n+ 1)!, n = 1/2,3,...}. Define E by E =K'{£'i U En). It is easy to see
 that both

 n- • CO 1 /{2n)'

 p-(g;3)= v 7 I.m = v 7 n-*oo l/(2n+l)!
 However, E x E CK2 is not shell porous at (1,3) using the box metric. If
 S(i,3)(ri»r2) is a shell which is in ( E x E)c then both

 (1 - ri - r2, 1 - ri) DE = 0, (1 + ri, 1 + ri + r2) D E = 0 (t)

 and

 (3 - ri - 7*2, 3 - ri) fi E = 0, (3 + ri,3 + n + r2) n £ = 0. (+)

 But this is a contradiction. From (f) we can see there exists an no, a natural
 number, such that {(l-ri-ro, l-ri)U(l-fri, l+ri-h7ło)} C {x : l/(2no+l)! <
 d(x> 1) < l/(2rzo)!}. This says {(3-n -r2, 3-ri)U(3-f ri^+ri+r^Jfli? ^ 0.
 Therefore, no shells centered at (1,3) are contained in (E x E)c and

 ps(E x JE7; ( 1 , 3)) = U.

 If we wish to obtain some sort of positive result concerning the shell poros-
 ity of a product, we may do so by requiring at least one of the sets to be very
 shell porous.

 Theorem 3.4 Let (X,d') and (Y, do) be metric spaces. Let F C Y have v -
 shell porosity p > 0 at y E Y , and let E C A' have shell porosity q > 1 - p at
 x G X. Then in (X x Y, d) the set E x F has shell porosity at least q + p - 1
 at (ar,y), where d denotes the product metric.

 PROOF. Let e > 0. From the v-shell porosity of F we know there exists <5 > 0
 such that for all A, 0 < A < there exists /i and i2,0 < t' < t% < h so the

 V-shell Sy (*i,to) is in Fc and > p - e.
 Also there exists b' such that 0 < 6' < 6 and for all A, 0 < A < 6' , there

 exists huh2l 0 < hi < ho < h so that the A'-shell S*(Ai,A2) is in Ec and
 kjtr1 > ?-f-

 Now fix A, 0 < h < 6' and let 0 < Ai < ho < A be as above. Choose

 0 < t' < *2 < h 0 such that Sy (¿1 , ¿2) C Fc and > p - e. Let (si,s2) =
 (thto) H (Ai, A2). The length of (si,s2) is at least

 (/»2 - Al) - [A2 - (ti - *1)] > [(</ - f) - (1 - (p- í ))]/»2 = [p + 9 - 1 - 2í]/»2.
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 This leads to > '3Ç'1 > p + q - 1 - 2c. Note also that S¿'(si,s2) C
 Sy and S^(si,s2) C S*(/»i,/»2)- Hence

 ■S5# (•!,*) c (5^(Sl,s2)xy)n(A'x5i'(SilS2))
 c ( Ee X y) n (A' X Fc) C {Ex F)c.

 Thus p'(E xF;(i,y))>p + ç-l-2f and, since e was arbitrary, the shell
 porosity of £ X F at (x, y) is at least p 4- q - 1.

 Corollary 3.3 Let (X,d') and (V, d^) be complete metric spaces. Let E C X
 be strongly shell porous at x G -Y and let F C Y have v-shell porosity p >0 at
 y G Y. Then E x F has shell porosity at least p at (x.y) G (-Y x Y, d), where
 d denotes the box metric.

 Proof. This is an application of Theorem 3.4 with q = 1.

 Corollary 3.4 If E C {X, d') has shell porosity at least q >0 at each of its
 points and F C (Y, d?) has v-shell porosity at least p >0 at each of its points
 with q > l - p then E x F is a shell porous set in (X x Y, d), where d denotes
 the box metric.

 Proof. This is an obvious consequence of the definition of a shell porous set
 along with Theorem 3.4.

 Corollary 3.5 Let E and F be subsets ofR. If the shell porosity of E is at
 least q >0 at each of its points and F is very shell porous with v-shell porosity
 greater than 2 - l/'/2 - q at each of its points then E x F is shell porous in
 (ÌH 2,eucl.).

 Proof. The shell porosity of E x F at any point will be greater than 2- l/y/2
 using the box metric on M2. From Theorem 3.1 we know that with the
 euclidean metric on R2 the shell porosity at any point of E x F must be
 greater than zero, hence E x F is a shell porous set in the euclidean metric.

 The next comparison we'll make deals with one of the fundamental mo-
 tivations for considering shell porosity. In Kwhen a set is cr-porous it is by
 necessity totally disconnected. However, we shall see that this is not true for
 a porous set in a general metric space. We will be able to show, however, that
 a closed (7-shell porous set in a complete metric space must also be totally
 disconnected. We begin by noting the following well known lemma.

 Lemma 3.1 If a set E is closed in a complete metric space (X,d), then any
 connected component of E is closed.
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 Proof. Assume not. Say C is a connected component of E which is not
 closed. Since Ü is not connected there exists U and V such that U HÜ ^ 0,
 VnÜ/0, Vflt/HÜ = 0, and Ü = (U U l/)nü. But then U H C ¿ 0,
 vnc Ý 0, (UnV)nC = 0, and C = (U UlOflC, which yields a disconnection
 of our connected set. Thus C is closed.

 Lemma 3.2 Say E is shell porous in a metric space (X,d). Lei C be any
 connected set with E C C. Let G be an open set with card(G Ci E) > 2. Then
 E is not dense in GDC .

 Proof. Assume not. Say E is dense in (G fi C). Let x € (G fi E) and
 y € (G fi E ). Since E is shell porous at x there exists an ?*i and an ro, 0 <
 r' < 1*2 < d(x,y) such that Bx(ro) C G and Sr(ri, rņ)DE = 0. Then no point
 in C is in 5«(ri,f2) else from the density of E in (GfiC) there would be an
 element of E in S*(ri, ro)- So

 C = (S*(r2) n C) u [(A' ' BAñ)) n C],'

 contrary to the assumption that C is connected. Thus E is not dense in
 (GflC).

 Theorem 3.5 If E is a closed a-shell porous set in a complete metric space
 then E is totally disconnected.

 Proof. Let D be a connected component of E. Then both D is closed and
 is (T-shell porous. Write D = Un£)n, where each Dn is shell porous. From the
 Baire Category Theorem there exists no such that Dtl0 fails to be nowhere
 dense in D . So there exists an open set G such that D fi G ^ 0 and Dno is
 dense in G Ci D. By Lemma 3.2 we must have card(G fl Dno) = 1. Thus
 card(G fl D) = 1 else we would get a second point in the dense ( G fi Dno).
 Hence the only connected components of E are singletons; so E is totally
 disconnnected.

 Corollary 3.6 Any a-shell porous set in a complete metric space is totally
 pathwise disconnected.

 Proof. If there exists an x and y in E which are pathwise connected in E then
 there exists 7 : [0, 1] - ► E , with 7 continuous, 7(0) = x , and 7(1) = y. Since
 7 is continuous, the image of [0,1] (call this 7[0, 1]) is closed and connected.
 Furthermore, since 7(0, 1] C E , it is (T-shell porous. By Theorem 3.5 the
 closed set 7[0, 1] must be disconnected, a contradiction. Thus there is no path
 in E which connects x and y.

 Example 3.5 A set can be porous (strongly porous ) and connected.
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 Proof. In R2 any line will be a strongly porous set and obviously connected.
 Another distinction between porosity and shell porosity in R" can be seen
 by considering sections of porous or shell porous sets as defined below.

 Definition 3.1 Let E be a set in Rn. For x Eilm, m < n, define the section
 Yx as

 Yx = {y G Rn'm such that (x,y) E E}.

 Theorem 3.6 Let E C Rn be shell porous and m < n. Then for all x £Rm,
 Yx is shell porous in Rn~m.

 PROOF. If Yx = 0 then the claim is vacuously true. If Yx ^ 0 then there exists
 y € Rn~m such that (x,y) € E C Rn. Since E is shell porous at (x,y) there
 exists sequences {fit} and {r¿} with

 Rk > r¡ k > 0, Rk -+ 0, S(Xiy)(r Rk) 0^ = 0,

 and

 ^H-,v = p'(E-,(x,y))>0.
 Because this is true we must have in Rn"m that 5y(7*jt, Rk) H Yx = 0 for all
 k = {1,2,...}. Thus p'(Yx'y) > Hindoo Rķnk'h = í; > 0. Hence Yx is shell
 porous.

 The same property is not true of porous sets.

 Example 3.6 In R2 there exist porous sets which have sections that are not
 porous as a subset of R.

 PROOF. In R2 let E = {(x, y) : x = c}, c some constant. For the fixed x-value,
 x = c, the section Yc is the real line as a subset of Rwhich, of course in not
 porous.

 It has yet to be mentioned that if a set is shell porous at a point we have
 no guarantee that the set will also be porous at that point. We now look for
 sufficient conditions on a metric space to guarantee that shell porosity will
 imply porosity.

 Theorem 3.7 Let (X ,d) be a locally connected metric space which has no
 isolated points. If a set A C A' is shell porous at x € A then A is porous at x.

 Proof. Say p'(E'x) = ij > 0. Then we claim p(E'x) > Since E is shell
 porous at x, there exists {/?,»}, {?•„} with

 Rn> rn> 0 ,Än 0 ,S*(rn,/ř„)n£ = 0
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 and
 Rn ~~ rn ^
 Rn '' ^

 Since X is locally connected there is a neighborhood of xìN(x)ì such that
 N(x) is connected. Since x is not an isolated point, pick y £ N(x), y ^ x. Let
 N be a positive integer such that Rn < d(x, y) and if n > N, Bx(Rn) C N(x).
 For n> N define the following:

 tn = rn + ^-=Ąl - 1/n), Tn = Rn- ^Z^(l - 1/n).

 Now if Sx(tn,T»)r'X ^ 0 for all n then for each n there exists r„ 6 Sx(tn, T„)
 such that Bzn(R* ¿ r" (1 - 1/n)) C Ss(rn,Rn) C Ec. Thus

 p(E;x)> lim i¡m /n) = ņ.
 n -* co iť-7j n co Rn

 Say there is an ñ such that Sjr(<A,Ta) fi A' =0. Then If U = [(X ' Bx(tfi)) fl
 /V(x)] and V = [Bx{Tñ) fi N(x)] we have

 u n N(x) # 0, vn N(x) # 0, £/ n 1/ = 0, t/ u v = n(x).

 i. e. a disconnection of our connected set. Thus ST(tn,Tn) D X ^ 0 for all n
 and E is porous at x with p(E; x) > ij.
 Both the local connectedness and the lack of isolated points are necessary

 for shell porosity to imply porosity as the following examples illustrate.

 Example 3.7 There is a complete metric space with no isolated points , a set
 Af and a point x € A such that p*(A'x) > 0 but p(A'x) = 0.

 Proof. Let (X,d) be ({(0,0)} U{x* G R2 : ¿(0,x) = ł2~n,n = l,2,3,...},eu-

 clidean). Let A = X. Then p'(X;0) = limn^co ^-77^- = 1/2 > 0.
 However, since Xe = 0 we must have p{ X' 0) = 0.

 Example 3.8 There is a locally connected complete metric space (A', d), a set
 A C X and a point x € A such that p*(A;x) > 0 while p(^4;0) = 0.

 PROOF. Let (A, d) =(R2, discrete), =R2, and x = 0. For positive t, h such
 that t + h < 1, So(<, t -f h) = {a?} ' {2} = 0 which says that p*(A; 0) = 1 while
 p(A' 0) = 0 since Ae = 0.
 At the beginning of this section we noted two examples of Evans, Humke

 and Saxe [9] of sets in R. We close this section by looking for analogous
 examples in Rn. First we have
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 Example 3.9 There is a shell porous sel A in Kn which cannot be expressed
 as a union of a sequence of sels {-4n} each having shell porosity at least 1/5
 at each of its points.

 Proof. Let C Cffibe the example of [9] which is symmetrically porous but
 cannot be written as the union of a sequence of sets {C,»} each having sym-
 metric porosity at least 4/5 at each of its points.
 Let A = C X Õ, where 0 denotes the zero vector in IR""1. Then A is shell
 porous in Mn by Corollary 3.4. The conclusion follows from the properties of
 C and Theorem 3.6.

 Next, what is the Kn analogue to the existence of a bilaterally strongly
 porous set which is not ^-symmetrically porous? Clearly a line segment in
 Rn, n > 1, provides an example of a set which is strongly porous but not <r-
 shell porous, the latter via Theorem 3.5. What shall we do about the bilateral
 condition? If we choose to say that a set is strongly porous at x*o in in
 every direction if its intersection with every line through xo is strongly porous
 at xo, viewed as a subset of R, we could then exhibit a set in Kn which is
 strongly porous in every direction at each of its points, yet fails to be <7-shell
 porous by simply considering the graph of a parabola as a subset of IRn. Surely,
 something stronger can be said and indeed we shall observe this in the next
 section after hyperporosity is introduced.

 4. Comparisons of Shell Porosity and Other Generalized
 Porosities

 In Section 3 we looked at shell porosity versus porosity in a general metric
 space. The purpose of this section is to look at shell porosity against other
 definitions of porosity. Specifically, we shall contrast the notion of a shell
 porous set with S. J. Agronskv and A. M. Bruckner's idea of a totally porous
 set [1] and T. Zamfirescifs notion of a hyperporous set [23]. In the context
 of a general metric space we can draw no implications involving shell porous
 sets, totally porous sets and hyperporous sets. However, when we restrict our
 space to be convex then we can show that there is a series of implications
 among the three definitions of porosity.

 The first new definition of porosity we will introduce is that for a totally
 porous set. Agronsky and Bruckner used total porosity to show that for a
 convex set in a separable Banach space there is a direct relationship between
 a set being totally porous and its being locally compact. Specifically, in these
 spaces local compactness can be characterized in terms of the total porosity
 of the compact subsets of the space in question.



 312 Robert W. Vallin

 Definition 4.1 Let (A',d) be a metric space , B C -V and x G B. Let S be a
 sphere in X such that x is in the boundary of S. Then B is said to be porous
 at x with respect to S if there exists 7 > 0 so that for every e > 0 there exists
 spheres S' C S2 C S such that x G "Sõ ' 5o, S' fl B = 0 and

 e > diameter S' > y (diameter So).

 A set B that is porous at a point x G B with respect to every sphere containing
 x in its boundary is called totally porous at x.

 The next type of porous set we will define will be a hyperporous set. Zam-
 firescu, in his 1989 survey article [23], took a geometric approach to looking
 at porous sets in Baire spaces. He extended the idea of a totally porous set
 into what he named a hyperporous set.

 Definition 4.2 A set M C (A', d) is hyperporous at x G M if there is a
 positive 7 such that for any z ^ x there is a point y with d(x,y) + d(y, z) =
 cf(x, z) such that

 By{~)d{x,y)) fl M = 0.

 For a fixed z we say

 sup{7 : 3 y with d(x , y) + d(y, z) = d(x , z) and ßy(7t/(x, y)) fi M = 0}

 is the hyperporosity at x with respect to z. The hyperporosity of M at x is
 then the infimum over all z S X of the hyperporosity with respect to z.

 Although the idea for a hyperporous set grew from the definition of a
 totally porous set, the two definitions are different (not when X =R, where
 they are both equivalent to the notion of bilateral porosity). The following
 examples show that hyperporous sets and totally porous sets are two different
 types of sparse sets outside of Tk.

 Example 4.1 In (®2, euclidean) let E be a line. Then E is a totally porous
 set which is not hyperporous.

 Proof. Let x = (21,22) be a point in E and let. the sphere S be such that
 x G "5 ' S. Given e, greater than zero and less t han the diameter of 5, let
 1S2 be the sphere of diameter e contained in S and with x in its boundary. If
 52 fi E = 0 the let S' =52. If So H E ^ 0 then if we consider the sphere, So,
 as being cut into two sections by E one of the sections must, be large enough
 to contain a sphere of diameter e/2, this sphere will be our S' . In either case,
 we found S' and S2 satisfying

 e > diameter S' > ^(diameter So).
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 So E is a totally porous set.
 However, for our given x, let z be another point in E. For any y on the line

 segment between x and z and any 7 > 0, By( 7^(2, y))f'E •£ 0. Thus E is not
 a hyperporous set. In the same vein, there exist sets which are hyperporous,
 but not totally porous.

 Example 4.2 Let the metric space (X>d) equal (®2, discrete ). If our set E
 consists of just the origin , then E is strongly hyperporous at (0,0), but not
 totally porous at (0,0).

 Proof. To show that E is hyperporous at (0, 0), let z be any point in R2 ' E.
 For any 7 € (0, 1), and letting y = z, we have d(x, y) + d(y, z) = d(x, z) and
 By( yd(x,y)) fl f? = 0. Thus E is strongly hyperporous at the origin. Now
 pick z ^ (0,0) and let S be the open sphere centered at z of diameter 2. Thus
 (0,0) € 2> ' 5. For any 7 € (0, 1) let e < 2j. Then no ball of diameter e can
 contain the origin in its boundary. So E is not totally porous at the origin.
 In the context of a general metric space the results involving shell porosity

 are that there are sets which are shell porous at a point which are not hyper-
 porous there and sets which are shell porous at a point and not totally porous
 there. As far as the reverse implications go, we shall see later on that even
 with convexity both hyperporous sets and totally porous sets need not be shell
 porous. We begin by relating shell porosity and hyperporosity in a non-convex
 space. Unlike the situation we have in Section 3 where local connectivity /shell
 porosity implied porosity we have the following:

 Example 4.3 There is a locally connected metric space (A', d) with no isolated
 points and a set E in X which is shell porous but not hyperporous.

 Proof. Let (A',d) = (R2 ' {(i'i,0) : -1 < ari < '},euclidean ), and let
 E be {(1,0)}. For any R > 0 and any natural number N > 1 the shell
 S(i,o)(-R/N> R) is in Ec. Letting R approach zero and N approach infinity
 we see that E is a strongly shell porous set. However, E is not hyperporous
 at (1,0) since (-1,0) € X but there are no points in A' on the line segment
 joining (-1,0) and (1,0) so the conditions for hyperporosity cannot hold.
 Likewise we have the following:

 Example 4.4 There exists a locally connected metric space (A', d) with no
 isolated points and a set E C X which is shell porous at a point but not totally
 porous there .

 Proof. First, we will define our space. Let E' C IK 2 be defined as

 Ex = {i6R:2-?b < a, < 2"2n+1, u = 1/2,...} x {0}.
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 Similarly, let E2 be

 E2 = {x e R : - (2"2n~1) < * < - (2~2n), 72 = 1,2

 Finally, E3 will be the set defined as

 £3={xGK2:rf(0,i') = 2-n, n= 1,2,...}.

 Putting all this together to define A' we let X = E' U En U £3 U {(0, 0)}. Let
 the set E C -V be £3 U {(0,0)}. From the construction of X we can see that
 for all n, 5(o,o)(l/2n» l/2n~l)r'E = 0 which leads to p*(E' (0, 0)) > 1/2. Thus
 we have E is shell porous at the origin.

 Now we will define a sphere S with (0,0) in its boundary so that for any
 € > 0 there is no sphere of diameter e which will not intersect E thus showing
 E is not a totally porous set. Let S be the sphere centered at (0, 1/2) of radius
 1/2. The only points inside of 5 where we could center the spheres needed
 are points in E . So we cannot construct the sphere Si as called for in the
 definition of a totally porous set.

 From this point onward, we will require the space we work in to be a convex
 topological vector space over R where the topology, r, is generated by a metric
 dģ We shall call this space (A', d) and refer to it as a convex metric space. So
 given any points x, y G X the set of points z such that z = ax + (1 - a)y,
 a G (0, 1) must also be in A' and will be referred to as the line segment between
 x and y.

 In the context of this type of space we begin to have relationships between
 the different notions of porosity. We now have some strict implications among
 the different types of porous sets and we will begin with a relationship between
 shell porous sets and hyperporous sets.

 Theorem 4.1 Assume X is a convex metric space. If a set E C X is shell
 porous at x € X, then E is hyperporous at x.

 Proof. Let E C X and x £ X be a point such that p'(E;x) = 77 > 0. So
 there exists two sequences, {/?n} and {rn}, with

 Rn ^ '*n ^ 0 , Rn ^ 0 , Sx ( r, i , ) fi E = 0

 and
 Rn - 1%ii

 -n

 To show the hyperporosity of E at xy ph(E'x ), is positive take any z € Ar.
 For each n, let yn be the point on the line between x and z with

 d(x,yn) = 1



 Shell Porosity 315

 Thus yn e Sx(rnì Rn) and Byn(R*1r* ) H E = 0. Filially, the hyperporosity of
 E at X with respect to z is at least

 äjLzljL /?nrrn Rnnrn ri
 lim 37-= - r = lim ' ~ - = lim - - " = n- oo Cř(x, yn) »-CO }ļn _ n ~ n n~03 2 - fr" " 2 ~ ł

 From this we see that ph(£; x), the hyperporosity of E at x, is at least > 0.
 So E is hyperporous at x.
 This brings up a relationship between the strong shell porosity of a set and

 the strong hyperporosity of that set.

 Corollary 4.1 Let (X,d) be a convex metric space. If a set E is strongly
 shell porous at a point x, then E is strongly hyperporous at x.

 Proof. In the proof of Theorem 4.1 we found that if a set has shell porosity

 77 at a point then the hyperporosity of the set at that point is at least 7^.
 Apply this result with 77 = 1.
 Another positive implication, now that we are working in a convex space,

 involves the relationship between hyperporous sets and totally porous sets.

 Theorem 4.2 Let (X.d) be a convex metric space. Let E C X and x be a
 point in X such that E is hyperporous at x. Then E is totally porous at x.

 Proof. Let 7; > 0 be the hyperporosity of E at x and let q > rj' > 0. Let 5
 be a sphere such that x G S'S and let e > 0 be given. Define the center of the
 sphere S as z' and if e < diameter S define So as the sphere of diameter e with
 x G So 'Sq and center z , where z) -f d(z, z') = d(x, z'). If e > diameter S
 then let S = So and z = z'. Given this 2, from the hyperporosity of E
 at x , there is a y such that y is on the line segment between x and z, and
 By(rj,d(xiy)) fl J? = 0. Let So be the sphere centered at y with diameter
 2 d(x,y) and let S' be the sphere centered at y with diameter 2r],d(xiy). Thus

 x e So ' So, S' fi E = 0

 and

 e > diameterSi > if (diameter So).

 Since e and 5 were arbitrary, E is totally porous at x.
 So in convex metric spaces we have the following implications between

 these three types of porous sets:

 shell porous - - hyperporous - » totally porous, (f)

 From this relationship, we see indirectly that in a convex metric space if a
 set is shell porous at a point then it is also totally porous there.
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 Now we show that the implications between the different porosities in (f)
 are strict, that is, there exists sets which are totally porous yet not hyperporous
 and sets which are hyperporous but not shell porous. Note that the former
 has already been shown in Example 4.1
 e and S leaving the last thing to note as
 As mentioned before, the hyperporosity of a set at a point does not mean

 that the set will also be shell porous there. As the following example shows,
 even in the plane a set can be hyperporous and not. shell porous at a point.

 Example 4.5 There exists a set E C R2 ivhich is hyperporous at the origin,
 but p'(£;(0,0)) = 0.

 Proof. Let X be the unit disk in (R2, eucl.). Define E as

 {x = (xi,x2) : X'y #2 > 0 and 2~(2n+1) < c/((0,0),x) < 2~2,ł, n = 0, 1, . . .}

 U {x : xi, £2 < 0 and 2~(2n+2) < d((0,0),x) < 2~(2n+1' n = 0, 1, . . .}.

 Now, p*{E'{ 0,0)) = 0, but ph(E;(0i0)) > 1/3. To see the latter, let z G X
 and pick y = az for some a G (0, 1) such that, y G Ec and there exists an M
 with d((0,0),y) = i(2~A/+1 -2~A/) + 2~'łi = Note: Bv(^Tr)nE = 0.
 Also note that limM-+oo = 3. Thus the hyperporosity of E at (0, 0) with

 2A/+1

 respect to z is at least 1/3. Since z was arbitrary we have ph(E; (0, 0)) >
 This last result can be strengthened to say there is a set of hyperporosity

 one which is not even a countable union of shell porous sets.

 Example 4.6 There exists a set in Rn which is strongly hyperporous but not
 ( T-shell porous.

 Proof. We will show the existence of this set in R2. The proof in Rn is
 analogous. In [9] Evans, Humke and Saxe construct in Ra symmetric Cantor
 set and show that it contains a residual subset which is strongly bilaterally
 porous (hyperporous) but not ^-symmetrically porous (<7-shell porous). Call
 this subset 5.

 Claim: In R2 the set S x {0} is strongly hyperporous but not a-shell porous.
 Pick x € 5 x {0} and z G R2. If z - (~i,0), showing S x {0} is strongly

 hyperporous with respect to z is a restatement of the strong bilateral porosity
 of S in R. Without loss of generality, let x = (xi,0) x' > 0 and r = (21,22)
 with z' > xi. Using the strong bilateral porosity of S at xi, given any e > 0
 there exists t > 0 and h > 0 such that t -f h < e, (x + ť, x -f t + h) fi S = 0
 and > 1 - e. Let y = (2/1,2/2) be the point on the line between x and
 z with yi = xi +ť -f h/2 (note y G £*(0). First, note that By(d(y, (xi +
 ť,0))) fi (5 x {0}) = 0. Secondly, since h/(t + h) > 1 - e we have the bound
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 t/li < e/(l - e). To find the hyperporosity at x with respect to ^ we look at
 the ratio of d(y, (ari -f t, 0)) and d(y} x). By the construction we see this ratio
 must be less than one. From the triangle inequality we have that d(y, x) <
 d(y,(x i + *,0)) + d(£,(x'i + 1,0)) = d(y,(xi +í,0)) + ť. Thus we have

 %, («1 + <.0)) > d(y,x)-t _ _ t _ t _ X
 d(y,x) - d(y,x) d(y,x) ~ i + h/2 ¿ + 5'

 and as e approaches 0 we have the hyperporosity with respect to z approaching
 one.

 Since this holds for all x G 5 x {0} and z GR2 the set S x {0} is strongly
 hyperporous. Now S x {0} cannot be cr-shell porous. If S x {0} was c-shell
 porous, we could write S x {0} = U Fn, where each Fn wets shell porous. Then
 from Theorem 3.6 the set En = {x : (x,0) G Fn} would be shell porous. Thus
 S could be written as

 S = Ui?,», En shell porous

 and hence S would be cr-shell porous, a contradiction.

 One property which places shell porous sets apart from the three other
 types of thin sets we have looked at (porous sets, hyperporous sets, and totally
 porous sets) concerns the ability of a closed set to be connected, yet porous
 in one of our definitions. In Theorem 3.5 we saw that a set which is closed

 and (7-shell porous must be totally disconnected. Also, we have already seen
 a set in R2 which is connected and both porous and totally porous. Namely,
 a line in M2 will meet these criteria. We shall next consider a set which is
 hyperporous and connected.

 Theorem 4.3 The classical von Koch curve is a set in the plane which is
 connected and hyperporous.

 Proof. Let K be the von Koch curve placed in the first quadrant of R2
 with one endpoint at (0,0) and the other at (1,0). More specifically, we may
 describe K in the terminology of Barnsley [2] as the attractor for the iterated
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 function system {/1, /21/3, /4} where

 '•UHKS ï)(s)

 A(S)-^(i í)(5)-(2á*)-
 Let h : R2 - ► R2 be the affine map

 that is, /1 may be viewed as a rotation (about the origin) ^ radians, followed
 by a change of scale of magnitude l/'/3, followed by a translation sending the
 origin to (1/2, 1/2VÏÏ). Note, as is obvious, that f'(K) = E = {s = (£1,22) :
 X E K and 0 < xi < 1/3} is a repeat of the von Koch curve, just scaled
 down by 1/3. We shall argue that K is hyperporous at each point of E and
 then appeal to the self similarity of K to conclude that K is a hyperporous
 set. Toward this end we let L' denote the line segment joining (1/2,0) and
 (17/48, 15/48V5). Then h(L') is the line segment joining (1/4, l/4'/3) and
 (3/8, 1/96V5). We let L = L' U h(L'). Clearly, L f) K = 0 and we let
 do = dist(L,K) > 0. Note that for any x € E and y 6 L, d(x,y) < We
 claim that K has hyperporosity at least 2do at each point in E.

 To establish this, fix x € E. First consider a z = (zj, zn) such that z' > 1/2
 and 0 < arg z < 7t/6, viewing z as a complex number. The line segment joining
 x and z must intersect L in at least one point, call it y. We know By (do)DE = 0
 and d(x,y) < 1/2. Next, if z' > 1/2 and arg z £ [0, tt/6], then we may utilize
 the large inlets that K determines to give us the existence of a y on the line
 segment between x and z such that

 By{'d{x,y))CE<,

 and 1/4 > 2do- Now, if z' < 1/2 we appeal to the self similarity of K and
 repeat our argument, but on a sufficiently smaller scale, using an appropriately
 scaled copy of L. Thus, the hyperporosity of K at x with respect to z is at
 least 2do and it follows that K is a hyperporous set.
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