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 QUASI-COMPONENTS OF P REIMAGES OF A
 CONNECTIVITY FUNCTION I2 -► I

 Very little is known about what properties are satisfied by the composite of any
 two connectivity functions. In 1959, Stallings [6] asked under what circumstances
 will the composition of almost continuous functions be almost continuous? He
 indicated how to construct an example of connectivity functions I2 - > I and I -* I
 whose composite fails to be a connectivity function I2 - ► I, where I = [0, 1]. In
 1973, Kellum [3] gave an example of almost continuous functions /:/"-> /m
 and g : Im - > In so that g o / : In - ► In has no fixed point and is not almost
 continuous. When n = m = 1,/ and g are then connectivity functions [6].

 It is well known that if a function h : X - ► Y is the composite of connectivity
 functions f : X -* Y and g : Y -* Y, then h must be a Darboux function. In
 this note we give a simple example of an almost continuous Darboux function
 h : I2 - ► I for which the converse is false. To verify this example, we rely on either
 of two useful results about quasi-components. Kellum's question about whether
 the converse is true when X = Y = I is still unanswered. We also give a sufficient
 condition on quasi-components in order for a function I2 - ► I to be Darboux.

 A function / : X - ► Y is defined to be a Darboux (connectivity) function if
 f(C) (the graph of the restriction f'C) is connected for every connected subset C
 of X. We say / : X - ► Y is almost continuous if each open neighborhood of the
 graph of / in X x Y contains the graph of a continuous function from X into Y .
 A function / : X - * Y is peripherally continuous if for each and each open
 neighborhood U of x and V of f(x), there is an open neighborhood W of x in U
 such that f(bd(W)) C V. According to [6], if X = In and n > 2, then W and
 bd(W) can be chosen to be connected. For functions /:/"-> 7m, n >2, we have:
 peripheral continuity <*=> connectivity => almost continuity [2], [7], [6].

 A set A C X has external dimension 0 if for every p 6 X - A, each open
 neighborhood of p contains an open set about p whose boundary misses A. If
 Q C B C X, we say Q is a quasi-component of B provided Q is a maximal set
 which lies in one of two separated sets D or E whenever B = D U E.

 The following result comes out of Whyburn's work [8].
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 Theorem 1. If f : /n - ► Y is a peripherally continuous function and A is a
 closed subset ofY, then each quasi-component of f'1 (A) is a subcontinuum of In.

 Proof. By Theorem 3.1 of [8], /-1(A) has external dimension 0. According to
 Corollary 2.12 of [8], the quasi-components and the components of /-1(A) are the
 same. By Theorem 1 of [4], each component of /-1(A) is closed in In and therefore
 compact.

 The next theorem is a consequence of the following result in [5]: If / : I2 - ► I
 is a connectivity function and z is an interior point of /(/2), then any point of
 /_1([0, z)) and any point of 1]) lie in different quasi-components of I2 -
 /-1(z). An example is given in [5] to show that the conclusion of this result is
 false for Darboux functions.

 Theorem 2. If f : I2 -* I is a connectivity function and g : I - ► I, then for
 every subset C of I and for every quasi-component Q of (g o /)-1(C), f(Q) lies in
 a component of <7-1(C).

 Proof. If f(Q) does not lie in a component of </-1(C), there exist points
 a,b € Q and z £ g~l(C ) such that f(a) < z < f(b). Since / is Darboux and
 1 2 is connected, /(/ 2) is a subinterval of I. Therefore z is an interior point of
 f(I2) because z 6 (/(a), /(6)) C f(I2)- According to [5], a and b lie in different
 quasi-components Qi and Q2 of 1 2 - /-1(z). Q C (g o /)-1(C) C I2 - /-1(z).
 There are separated sets D and E whose union is I2 - /-1 (z) such that Q' d D
 and Qļ C E. Therefore Q cannot be a quasi-component of (g o /)_1(C) because
 Z? H (ťjr ° /)-1(C) and E fi (g o /)_1(C) are separated sets neither of which contains
 Q but whose union is (g o /)-1(C).

 Example. Define the almost continuous function

 {1
 ;
 2 if x = 0

 and define the almost continuous Darboux function

 i u(x) if ( x,y ) € (0,1] X I
 h'x,y) = <

 ļ u(y) if (x,y) € {0} x I

 Then h : I2 - ► I is not the composite of any two connectivity functions f : I2 -> I
 and g : I - > 7.
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 Proof. Assume there exist two such connectivity functions / and g for which
 h = gof. Let C = {0,1}, G = u~'C), and Q = {0} x G. Then G = :
 n = 0,1,2,...} and ( g o /)-1(C) = Q U (G x /). Q is a quasi-component of
 (g o /)-i(C). According to Theorem 2, f(Q) lies in a component K of g~l{C).
 G = h(Q) = g(f(Q)) C g(K) C C. Therefore g(K) = C, in contradiction to the
 fact that g is a Darboux function.

 An obvious consequence of this example is that h is not a connectivity function.
 This also follows directly from the fact that the set M = {(0, 0)}U(/x{l})U(Gx7)
 is connected, but the graph of h'M is not connected.

 Another proof for the above example can be given which does not use Theorem
 2. Instead, Theorem 1 can be applied to see that the set A = g~x{C) fi f(P) is
 not closed in I because the quasi-component Q of /-1 (A) is not a subcontinuum
 of P. Let p (ž Ā - A. Since A has external dimension 0 [8], there is in the real
 line a sequence of nested intervals (an, bn) about p such that for each n, |an - 6n| <
 ¿,an,bn g A , and (an,6n) contains a point pn G A - (an+i,¿>n+i). F°r each n,
 there is a point xn for which f(xn) = pn. Let q G Q and choose no so that f(q) £
 [ßnoj&no]. Since / is peripherally continuous, there exists an open neighborhood
 W of q with connected boundary such that f(bd(W)) misses [ano,6no]. There is
 a nonnegative integer m such that for all integers k > m, bd(W) meets Lk =

 { (2fc+i)j } x an(ł therefore the connected subset f(Lk ) of A misses [a„0, 6„0]. If
 N = 6á(VF)U(UfcLni Lk), then f(N) misses (ano, b and so p ^ f(N). By Theorem
 2 of [4], /(iV) C f(N) because / is peripherally continuous and N is connected. If
 Xi, Xj e Lk ¿md k> 0, then both p,- and pj belong to the connected subset f(Lk )
 of A fi (at, bi) H ( a,j,bj ), which implies p, = pj and Xi = Xj. It follows that for n
 large enough, xn 6 U f=mLķ C Ñ and so pn = f(xn) 6 f(Ñ) C f(N). Since pn
 converges to p, then p G f(N ), a contradiction.

 We end with a sufficient condition for a function to be Darboux.

 Theorem 3. Suppose f : P - > I. If for every point z of f(P), any point of
 /-1([0, z)) and any point of /-1((z, 1]) lie in different quasi-components of P -
 /-1(z), then f is a Darboux function.

 Proof. Suppose K is a connected subset of P for which f(K) is not connected.
 There exist points a, b G K and z £ f(K ) such that /(a) < z < f(b). Since K
 is a connected subset of P - (z), K is a subset of some quasi-component Q
 of P - /-1(z). Then Q contains the point a of /-1([0, z)) and the point b of
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