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THE Equation f? + ¢? = h?, where f,g,
and h Are Derivatives

It is easy to show that the sum of squares of two derivatives is not always the
square of a derivative. (Take, e.g., f(z) = sinl, g(z) = cosi(z # 0), f(0) =
9(0) = 0.) To investigate our equation we introduce the following notation: I =
[0,1]; D is the class of all derivatives on I; C[C,,) is the class of all continuous
[approximately continuous] functions on I; bC,, is the class of all bounded elements
of Cop; M = {f € D; fg € D for each g € bC,,}. It can be proved that M N C,,
is the class of all Lebesgue functions and that each bounded derivative is in M.

It is easy to see that \/f2+g¢2 € D, if f,g € D and g/f € C. This simple
result leads to the question whether the relation

(1) f2+g2=h21 f,g,hED

implies something about g/f, if f # 0. The following theorem points in this
direction:

Theorem 1. Let (1) hold and let
(2) liminfap h(y) >0 (y = z,y € I) for each z € I.
Then f[h, g/h € C,,.

(This follows from [1], Proposition 4.6 with m = 2 and |(z,y)| = V=% + y2.) If,
moreover, f # 0, then, clearly, g/f € C,,. Now it is natural to ask whether the
relations f,g € D and g/f € C,, imply that \/f2 + g2 € D. The next theorem
gives a negative answer to this question.

Theorem 2. Let f € D\ M, f > 0. Let € € (0,1). Then thereisa 3 € C,,
such that | —1|<e, g=pBf € D and \/ff+ g ¢ D.

We get, however, an h fulfilling (1) if we impose some restrictions on f and g;
at the same time the requirement g/f € C,, can be weakened, as Theorems 3 and
4 show.
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Theorem 3. Let f,g € M; let a,8 € C,p, a® + B2 > 0; let ¢ be a function
such that f = ayp, g = Bt. Set v = /a2 + B2, h = Sf+ gg. Then (1) holds.

(The proof is easy.)

Theorem 4. Let f €e M, g € D, f*+g* > 0; let a,8 € C,p and let b be a
function such that f = ay, g = B. Suppose that there is an A € (—o0,0) such

that g 2 A|f|. Then /f2+ g% € D.

Example 5.12 in [1] shows that in Theorem 1 we cannot replace the requirement
(2) by h > 0. However, we have Theorem 5 that points in the same direction as
Theorem 1:

Theorem 5. Let f € M, f > 0 and let (1) hold. Then g,h € M.

A characterization of M and the proofs of Theorems 2, 4, and 5 will be published
later.
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